Микробиология, 2023, T. 92, № 6, стр. 545-563

Транскриптомный анализ покоящихся цистоподобных клеток Escherichia coli

Ю. А. Николаев a*, Н. Г. Лойко a, О. А. Галуза a, А. В. Марданов b, А. В. Белецкий b, Д. Г. Дерябин c, Е. В. Демкина a, Г. И. Эль-Регистан a

a Институт микробиологии им. С.Н. Виноградского, ФИЦ “Фундаментальные основы биотехнологии” РАН
119071 Москва, Россия

b Институт биоинженерии им. К.Г. Скрябина, ФИЦ “Фундаментальные основы биотехнологии” РАН
119071 Москва, Россия

c ФНЦ биологических систем и агротехнологий РАН
460000 Оренбург, Россия

* E-mail: nikolaevya@mail.ru

Поступила в редакцию 09.07.2023
После доработки 19.07.2023
Принята к публикации 20.07.2023

Аннотация

Впервые исследован транскриптом покоящихся клеток Esherichia coli (цистоподобных покоящихся клеток). Содержание РНК в одной покоящейся клетке составляет 0.26 фг/кл., что в 13.5 раз меньше, чем в одной клетке растущей культуры. Наличие мРНК в покоящихся клетках E. coli показано впервые. Охарактеризованы пулы прочтений генов покоящихся и растущих клеток, а также дифференциальные экспрессии всех генов, рассчитанной по специальному алгоритму, учитывающему среднее количество мРНК в одной клетке. Впервые рассмотрено понятие “гены, активные в каждой клетке популяции”. Выявлено, что не каждый ген, представленный в пуле транскриптов всей популяции, представлен транскриптами в каждой клетке популяции. В каждой клетке популяций покоящихся и растущих клеток E. coli представлены транскриптами 21 и 16% генов соответственно. Выявленная разнокачественность клеток по совокупности активных генов является одной из причин (и форм) гетерогенности популяций бактерий. Выявлено 60 генов, активность которых возрастает в 2 и более раз при формировании покоящихся клеток E. coli. Это гены, ответственные за активность генома, строение и свойства оболочек клеток, пролиферацию клеток, стрессоадаптацию, образование и функционирование биопленок и коллективное поведение, а также обеспечивающие выживание популяции при прорастании покоящихся клеток.

Ключевые слова: цистоподобные покоящиеся клетки, Escherichia coli К12, транскриптом

Список литературы

  1. Бухарин О.В., Гинцбург А.Л., Романова Ю.М., Эль-Регистан Г.И. Механизмы выживания бактерий. М.: Медицина, 2005. 367 с.

  2. Дорошенко Е.В., Лойко Н.Г., Ильинская О.Н., Колпаков А.И., Горнова И.В., Эль-Регистан Г.И. Характеристика диссоциантов Bacillus cereus шт. 504 // Микробиология. 2001. Т. 70. С. 811–819.

  3. Doroshenko E.V., Loiko N.G., Il’inskaya O.N., Kolpakov A.I., Gornova I.B., Klimanova E.V., El’-Registan G.I. Characterization of Bacillus cereus dissociants // Mucrobiology (Moscow). 2001. V. 70. P. 698‒706.

  4. Капрельянц А.С., Скрыпин В.И., Эль-Регистан Г.И., Стоянович Ф.М., Лилле Ю.Э., Островский Д.Н. Изменение структурного состояния мембран M. lysodeikticus под влиянием препаратов ауторегуляторных факторов d1 // Прикл. биохимия и микробиология. 1985. Т. 21. С. 378–381.

  5. Лойко Н.Г., Сузина Н.Е., Соина В.С., Смирнова Т.А., Зубашева М.В., Азизбекян Р.Р., Синицын Д.О., Терешкина К.Б., Николаев Ю.А., Крупянский Ю.Ф., Эль-Регистан Г.И. Биокристаллические структуры в нуклеоидах стационарных и покоящихся клеток прокариот // Микробиология. 2017. Т. 86. С. 703–719.

  6. Loiko N.G., Suzina N.E., Soina V.S., Smirnova T.A., Zubasheva M.V., Azizbekyan R.R., Sinitsyn D.O., Tereshkina K.B., Nikolaev Yu.A., Krupyanskii Yu.F., El’-Registan G.I. Biocrystalline structures in the nucleoids of the stationary and dormant prokaryotic cells // Microbiology (Moscow). 2017. V. 86. P. 714–728.

  7. Мулюкин А.Л., Козлова А.Н., Сорокин В.В., Сузина Н.Е., Чердынцева Т.А., Котова И.Б., Гапонов А.М., Тутельян А.В., Эль-Регистан Г.И. Формы выживания Pseudomonas aeruginosa при антибиотической обработке // Mикробиология. 2015. Т. 84. С. 645–659.

  8. Mulyukin A.L., Kozlova A.N., Sorokin V.V., Suzina N.E., Cherdyntseva T.A., Kotova I.B., Gaponov A.M., Tutel’yan A.V., El’-Registan G.I. Surviving forms in antibiotic-treated Pseudomonas aeruginosa // Microbiology (Moscow). 2015. V. 84. P. 751‒764.

  9. Мулюкин А.Л., Сузина Н.Е., Дуда В.И., Эль-Регистан Г.И. Структурное и физиологическое разнообразие цистоподобных покоящихся клеток бактерий рода Pseudomonas // Микробиология. 2008. Т. 77. С. 512–523.

  10. Mulyukin A.L., Suzina N.E., Duda V.I., El’-Registan G.I. Structural and physiological diversity among cystlike resting cells of bacteria of the genus Pseudomonas // Microbiology (Moscow). 2008. V. 77. P. 455‒466.

  11. Мулюкин А.Л., Сузина Н.Е., Погорелова А.Ю., Антонюк Л.П., Дуда В.И., Эль-Регистан Г.И. Разнообразие морфотипов покоящихся клеток и условия их образования у Azospirillum brasilense // Микробиология. 2009. Т. 78. С. 42–51.

  12. Mulyukin A.L., Suzina N.E., Pogorelova A.Yu., Antonyuk L.P., Duda V.I., El-Registan G.I. Diverse morphological types of dormant cells and conditions for their formation in Azospirillum brasilense // Microbiology (Moscow). 2009. V. 78. P. 33‒42.

  13. Погорелова А.Ю., Мулюкин А.Л., Антонюк Л.П., Гальченко В.Ф., Эль-Регистан Г.И. Фенотипическая вариабельность у Azospirillum brasilense штаммов Sp7 и Sp245: сопряженность с состоянием покоя и свойства диссоциантов // Микробиология. 2009. Т. 78. С. 618–628.

  14. Pogorelova A.Y., Mulyukin A.L., Galchenko V.F., El’-Registan G.I., Antonyuk L.P. Phenotypic variability in Azospirillum brasilense strains Sp7 and Sp245: association with dormancy and characteristics of the variants // Microbiology (Moscow). 2009. V. 78. P. 559‒568.

  15. Мулюкин А.Л., Демкина Е.В., Кряжевских Н.А., Сузина Н.Е., Воробьева Л.И., Дуда В.И., Гальченко В.Ф., Эль-Регистан Г.И. Покоящиеся формы Micrococcus luteus и Arthrobacter globiformis, не прорастающие на стандартных средах // Микробиология. 2009. Т. 78. С. 456–468.

  16. Mulyukin A.L., Demkina E.V., Kryazhevskikh N.A., Suzina N.E., Vorob’eva L.I., Duda V.I., Galchenko V.F., El-Registan G.I. Dormant forms of Micrococcus luteus and Arthrobacter globiformis not platable on standard media // Microbiology (Moscow). 2009. V. 78. P. 407–419.

  17. Ратнер В.А. Что содержит геном Escherichia coli? // Вавиловский журн. генетики и селекции. 2002. № 18. Статья 1.

  18. Соляникова И.П., Сузина Н.Е., Егозарьян Н.С., Поливцева В.Н., Мулюкин А.Л., Егорова Д.О., Эль-Регистан Г.И., Головлева Л.А. Особенности структурно-функциональных перестроек клеток актинобактерий BN52 при переходе от вегетативного роста в состояние покоя и при прорастании покоящихся форм // Микробиология. 2017. Т. 86. С. 463–475.

  19. Solyanikova I.P., Suzina N.E., Egozarjan N.S., Polivtseva V.N., Mulyukin A.L., Egorova D.O., El-Registan G.I., Golovleva L.A. Structural and functional rearrangements in the cells of actinobacteria Microbacterium foliorum BN52 during transition from vegetative growth to a dormant state and during germination of dormant forms // Microbiology (Moscow). 2017. V. 86. P. 476‒487.

  20. Соляникова И.П., Сузина Н.Е., Мулюкин А.Л., Эль-Регистан Г.И., Головлева Л.А. Влияние состояния покоя на штамм Pseudomonas fluorescens 26К – деструктор ксенобиотиков // Микробиология. 2013. Т. 82. С. 552–562.

  21. Solyanikova I.P., Suzina N.E., Mulyukin A.L., El’-Registan G.I., Golovleva L.A. Effect of a dormant state on the xenobiotic-degrading strain Pseudomonas fluorescens 26K // Microbiology (Moscow). 2013. V. 82. P. 562‒571.

  22. Хабибуллин С.С., Николаев Ю.А., Лойко Н.Г., Голод Н.А., Милько Е.С., Воейкова Т.А., Эль-Регистан Г.И. Ауторегуляция фенотипической диссоциации у Bacillus licheniformis // Журнал микробиол., эпидемиол. иммунобиол. 2006. № 6. С. 9–13.

  23. Цыганкова С.В., Булыгина Е.С., Кузнецов Б.Б., Хабибулин С.С., Дорошенко Е.В., Коротков Е.В., Эль-Регистан Г.И. Получение внутрипопуляционных диссоциантов некоторых бацилл и применение метода DIR-ПЦР для их идентификации // Микробиология. 2004. Т. 73. С. 398–405.

  24. Tsygankova S.V., Boulygina E.S., Kuznetsov B.B., Khabibulin S.S., Doroshenko E.V., Korotkov E.V., El’-Registan G.I. Obtaining of intrapopulational dissociants of some bacilli and the use of DIR-PCR for their identification // Microbiology (Moscow). 2004. V. 73. P. 334‒341.

  25. Agafonov D.E., Spirin A.S. The ribosome-associated inhibitor A reduces translation errors // Biochem. Biophys. Res. Commun. 2004. V. 320. P. 354–358.

  26. Alkasir R., Ma Y., Liu F., Li J., Lv N., Xue Y., Hu Y., Zhu B. Characterization and transcriptome analysis of Acinetobacter baumannii persister cells // Microbial. Drug Resist. 2018. V. 24. P. 1466–1474.

  27. Almiron M., Link A.J., Furlong D., Kolter R. A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli 2646 // Genes & Development. 1992. V. 6. P. 2646–2654.

  28. Armstrong R.L., Sueoka N. Phase transitions in ribonucleic acid synthesis during germination of Bacillus subtilis spores // Proc. Natl. Acad. Sci. USA. 1968. V. 59. P. 153–160.

  29. Arunasri K., Adil M., Khan P.A.A., Shivaji S. Global gene expression analysis of long-term stationary phase effects in E. coli K12 MG1655 // PLoS One. 2014. V. 9. Art. e96701.

  30. Bishop H.L., Doi R.H. Isolation and characterization of ribosomes from Bacillus subtilis spores // J. Bacteriol. 1966. V. 91. P. 695–701.

  31. Boaretti M., Lleo M.M., Bonato B., Signoretto C., Canepari P. Involvement of rpoS in the survival of Escherichia coli in the viable but non-culturable state // Environ. Microbiol. 2003. V. 5. P. 986–996.

  32. Boone T., Driks A. Protein synthesis during germination: shedding new light on a classical question // J. Bacteriol. 2016. V. 198. P. 3251‒3253.

  33. Chung L.M., Ferguson J.P., Zheng W., Qian F., Bruno V., Montgomery R.R., Zhao H. Differential expression analysis for paired RNA-seq data // BMC Bioinform. 2013. V. 14. P. 110.

  34. Doi R.H., Igarashi R.T. Ribonucleic acids of Bacillus subtilis spores and sporulating cells // J. Bacteriol. 1964. V. 87. P. 323–328.

  35. Domka J., Lee J., Bansal T., Wood T.K. Temporal gene-expression in Escherichia coli K-12 biofilms // Environ. Microbiol. 2007. V. 9. P. 332–346.

  36. Dong Q., Bauer C.E. Transcriptome analysis of cyst formation in Rhodospirillum centenum reveals large global changes in expression during cyst development // BMC Genomics. 2015. V. 16. P. 68.

  37. Dworkin M., Gibson S.M. A system for studying microbial morphogenesis: rapid formation of microcysts in Myxococcus xanthus // Science. 1964. V. 146 P. 243–244.

  38. Flores-Kim J., Darwin A.J. The phage shock protein response // Annu. Rev. Microbiol. 2016. V. 70. P. 83‒101.

  39. Hammer N.D., Schmidt J.C., Chapman M.R. The curli nucleator protein, CsgB, contains an amyloidogenic domain that directs CsgA polymerization // Proc. Natl. Acad. Sci. USA. 2007. V. 104. P. 12494–12499.

  40. Hayashi K., Morooka N., Yamamoto Y., Fujita K., Isono K., Choi S., Ohtsubo E., Baba T., Wanner B.L., Mori H., Horiuchi T. Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110 // Mol. Syst. Biol. 2006. V. 2. Art. 2006.0007.

  41. Ignatov D.V., Salina E.G., Fursov M.V., Skvortsov T.A., Azhikina T.L., Kaprelyants A.S. Dormant non-culturable Mycobacterium tuberculosis retains stable low-abundant mRNA // BMC Genomics. 2015. V. 16. P. 954.

  42. Isaac D.D., Pinkner J.S., Hultgren S.J., Silhavy T.J. The extracytoplasmic adaptor protein CpxP is degraded with substrate by DegP // Proc. Natl Acad. Sci. USA. 2005. V. 102. P. 17775–17779.https://doi.org/10.1073/pnas.0508936102

  43. Ishihama A. Modulation of the nucleoid, the transcription apparatus, and the translation machinery in bacteria for stationary phase survival // Genes to Cells. 1999. V. 4. P. 135–143.

  44. Ivshina I.B., Mukhutdinova A.N., Tyumina H.A., Vikhareva H.V., Suzina N.E., El’-Registan G.I., Mulyukin A.L. Drotaverine hydrochloride degradation using cyst-like dormant cells of Rhodococcus ruber // Curr. Microbiol. 2015. V. 70. P. 307–314.

  45. Jones S.E., Lennon J.T. Dormancy contributes to the maintenance of microbial diversity // Proc. Natl Acad. Sci. USA. 2010. V. 107. P. 5881–5886.

  46. Kannan G., Wilks J.C., Fitzgerald D.M., Jones B.D., Bondurant S.S., Slonczewski J.L. Rapid acid treatment of Escherichia coli: transcriptomic response and recovery // BMC Microbiol. 2008. V. 8. P. 37.

  47. Kaprelyants A.S., Gottschal J.C., Kell D.B. Dormancy in non-sporulating bacteria // FEMS Microbiol. Rev. 1993. V. 3‒4. P. 271–285.

  48. Keijser B.J.F., Beek A.T., Rauwerda H., Schuren F., Montijn R., van der Spek H., Brul1 S. Analysis of temporal gene expression during Bacillus subtilis spore germination and outgrowth // J. Bacteriol. 2007. V. 189. P. 3624–3634.

  49. Kim J.S., Chowdhury N., Yamasaki R., Wood T.K. Viable but non-culturable and persistence describe the same bacterial stress state // Environ. Microbiol. 2018. V. 20. P. 2038–2048.

  50. Klein W., Horlacher R., Boos W. Molecular analysis of treB encoding the Escherichia coli enzyme II specific for trehalose // J. Bacteriol. 1995. V. 177. P. 4043–4052.https://doi.org/10.1128/jb.177.14.4043-4052.1995

  51. Koch R. The etiology of anthrax, based on the life history of Bacillus anthracis // Beiträge zur Biologie der Pflanzen. 1876. V. 2. P. 277–310.

  52. Kong I.S., Bates T.C., Hulsmann A., Hassan H., Smith B.E., Oliver J.D. Role of catalase and oxyR in the viable but nonculturable state of Vibrio vulnificus // FEMS Microbiol. Ecol. 2004. V. 50. P. 133–142.

  53. Kvam V.M., Liu P., Si Y. A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data // Am. J. Bot. 2012. V. 99. P. 248–256.

  54. Labie C., Bouché F., Bouché J.P. Minicell-forming mutants of Escherichia coli: suppression of both DicB- and MinD-dependent division inhibition by inactivation of the minC gene product // J. Bacteriol. 1990. V. 172. P. 5852–5855.

  55. Maisonneuve E., Gerdes K. Molecular mechanisms underlying bacterial persisters // Cell. 2014. V. 157. P. 539–548.

  56. Masuda H., Tan Q., Awano N., Wu K., Inouye M. YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli // Mol. Microbiol. 2012. V. 84. P. 979–989.

  57. Milo R., Phillips R. Cell biology by the numbers. N.Y.: Garland Science, 2015. 400 p.https://doi.org/10.1201/9780429258770

  58. Müller F.-D., Treuner-Lange A., Heider J., Huntley S.M., Higgs P.I. Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation // BMC Genomics. 2010. V. 11. P. 264.

  59. Oren A., Garrity G.M. Valid publication of the names of forty-two phyla of prokaryotes // Int. J. Syst. Evol. Microbiol. 2021. V. 71.https://doi.org/10.1099/IJSEM.0.005056

  60. Oshlack A., Robinson M.D., Young M.D. From RNA-seq reads to differential expression results // Genome Biol. 2010. V. 11. P. 220.

  61. Parry B.R., Surovtsev I.V., Cabeen M.T., O’Hern C.S., Dufresne E.R., Jacobs-Wagner C. The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity // Cell. 2014. V. 156. P. 183–194.

  62. Pinto D., Santos M.A., Chambel L. Thirty years of viable but nonculturable state research: unsolved molecular mechanisms // Crit. Rev. Microbiol. 2015. V. 41. P. 61–76.

  63. Raivio T.L., Leblanc S.K.D., Price N.L. The Escherichia coli Cpx envelope stress response regulates genes of diverse function that impact antibiotic resistance and membrane integrity // J. Bacteriol. 2013. V. 195. P. 2755–2767.

  64. Rennella E., Sára T., Juen M., Wunderlich C., Imbert L., Solyom Z., Favier A., Ayala I., Weinhäupl K., Schanda P., Konrat R., Kreutz C., Brutscher B. RNA binding and chaperone activity of the E. coli cold-shock protein CspA // Nucleic Acids Res. 2017. V. 45. P. 4255–4268.

  65. Reynolds E.S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy // J. Cell. Biol. 1963. V. 17. P. 208–213.

  66. Richmond C.S., Glasner J.D., Mau R., Jin H., Blattner F.R. Genome-wide expression profiling in Escherichia coli K-12 // Nucleic Acids Res. 1999. V. 27. P. 3821–3835.

  67. Rolfe M.D., Rice C.J., Lucchini S., Pin C., Thompson A., Cameron A.D.S., Alston M., Stringer M.F., Betts R.P., Baranyi J., Peck M.W., Hintona J.C.D. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation // J. Bacteriol. 2012. V. 194. P. 686–701.

  68. Sastry A.V., Gao Y., Szubin R., Hefner Y., Xu S., Kim D., Choudhary K.S., Yang L., King Z.A., Palsson B.O. The Escherichia coli transcriptome mostly consists of independently regulated modules // Nat. Commun. 2019. V. 10. P. 5536.https://doi.org/10.1038/s41467-019-13483-w

  69. Sato R., Sawasato K., Nishiyama K. YnbB is a CdsA paralogue dedicated to biosynthesis of glycolipid MPIase involved in membrane protein integration // Biochem. Biophys. Res. Commun. 2019. V. 510. P. 636‒642.https://doi.org/10.1016/j.bbrc.2019.01.145

  70. Sauter A., Braun V. Defined inactive FecA derivatives mutated in functional domains of the outer membrane transport and signaling protein of Escherichia coli K-12 // J. Bacteriol. 2004. V. 186. P. 5303–5310.

  71. Schwanhäusser B., Busse D., Li N., Dittmar G., Schuchhardt J., Wolf J., Chen W., Selbach M. Global quantification of mammalian gene expression control // Nature. 2011. V. 473. P. 337–342.

  72. Selinger D.W., Saxena R.M., Cheung K.J., Church G.M., Rosenow C. Global RNA half-life analysis in Escherichia coli reveals positional patterns of transcript degradation // Genome Res. 2003. V. 13. P. 216–223.

  73. Setlow P. Germination of spores of Bacillus Species: what we know and do not know // J. Bacteriol. 2014. V. 196. P. 1297–1305.

  74. Setlow P. Protein metabolism during germination of Bacillus megaterium spores. II. Degradation of pre-existing and newly synthesized protein // J. Biol. Chem. 1975. V. 250. P. 631–637.

  75. Shah D., Zhang Z., Khodursky A.B., Kaldalu N., Kurg K., Lewis K. Persisters: a distinct physiological state of E. coli // BMC Microbiol. 2006. V. 6. P. 53.

  76. Sinai L., Rosenberg A., Smith Y., Segev E., Ben-Yehuda S. The molecular timeline of a reviving bacterial spore // Molecular Cell. 2015. V. 57. P. 695–707.

  77. Solyanikova I.P., Suzina N.E., Golovleva L.A., Mulyukin A.L., El-Registan G.I. Improved xenobiotic-degrading activity of Rhodococcus opacus strain 1cp after dormancy // J. Environ. Sci. Health. Part B: Pesticides, Food Contaminants, and Agricultural Wastes. 2011. V. 46. C. 638–647.

  78. Soneson C., Delorenzi M. A comparison of methods for differential expression analysis of RNA-seq data // BMC Bioinform. 2013. V. 14. P. 91.

  79. Sussman A.S., Douthit H.A. Dormancy in microbial spores // Annu. Rev. Plant. Physiol. 1973. V. 24. P. 311–352.

  80. Tatusov R.L., Galperin M.Y., Natale D.A., Koonin E.V. The COG database: a tool for genome-scale analysis of protein functions and evolution // Nucleic Acids Res. 2000. V. 28. P. 33–36.

  81. Thede G.L., Arthur D.C., Edwards R.A., Buelow D.R., Wong J.L., Raivio T.L., Glover J.N.M. Structure of the periplasmic stress response protein CpxP // J. Bacteriol. 2011. V. 193. P. 2149–2157.

  82. Trapnell C., Hendrickson D.G., Sauvageau M., Goff L., Rinn J.L., Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq // Nat. Biotechnol. 2013. V. 31. P. 46‒53.

  83. Ueta M., Wada C., Daifuku T., Sako Y., Bessho Y., Kitamura A., Ohniwa R.L., Morikawa K., Yoshida H., Kato T., Miyata T., Namba K., Wada A. Conservation of two distinct types of 100S ribosome in bacteria // Genes to Cells. 2013. V. 18. P. 554–574.

  84. van der Woude M.W., Bäumler A.J. Phase and antigenic variation in bacteria // Clin. Microbiol. Rev. 2004. V. 17. P. 581–611. https://doi.org/10.1128/CMR.17.3.581-611

  85. Wada A., Igarashi K., Yoshimura S., Aimoto S., Ishihama A. Ribosome modulation factor: stationary growth phase-specific inhibitor of ribosome functions from Escherichia coli // Biochem. Biophys. Res. Commun. 1995. V. 214. P. 410–417.

  86. Wada A. Growth phase coupled modulation of Escherichia coli ribosomes // Genes Cells. 1998. V. 3. P. 203–208.

  87. Wada A., Yamazaki Y., Fujita N., Ishihama A. Structure and probable genetic location of a “ribosome modulation factor” associated with 100S ribosomes in stationary-phase Escherichia coli cells // Proc. Natl. Acad. Sci. USA. 1990. V. 87. P. 2657–2661.

  88. Wagley S., Morcrette H., Kovacs-Simon A., Yang Z.R., Power A., Tennant R. K., Love J., Murray N., Titball R.W., Butler C.S. Bacterial dormancy: a subpopulation of viable but non-culturable cells demonstrates better fitness for revival // PLoS Pathogens. 2012. V. 17. Art. e1009194.

  89. Wainwright J., Hobbs G., Nakouti I. Persister cells: formation, resuscitation and combative therapies // Arch. Microbiol. 2021. V. 203. P. 5899–5906.

  90. White-Ziegler C.A., Um S., Pérez N.M., Berns A.L., Malhowski A.J., Young S. Low temperature (23°C) increases expression of biofilm-, cold-shock- and RpoS-dependent genes in Escherichia coli K-12 // Microbiology (SGM). 2008. V. 154. P. 148–166.https://doi.org/10.1099/mic.0.2007/012021-0

  91. Wu M.-L., Gengenbacher M., Chung J.C.S., Chen S.L., Mollenkopf H.-J., Kaufmann S.H.E., Dick T. Developmental transcriptome of resting cell formation in Mycobacterium smegmatis // BMC Genomics. 2016. V. 17. P. 837.

  92. Yoshida H., Nakayama H., Maki Y., Ueta M., Wada C., Wada A. Functional sites of ribosome modulation factor (RMF) involved in the formation of 100S ribosome // Front. Mol. Biosci. 2021. V. 8. P. 661691.

  93. Zhang D., de Souza R.F., Anantharaman V., Iyer L.M., Aravind L. Polymorphic toxin systems: comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics // Biology Direct. 2012. V. 7. P. 18.

  94. Zhang X.H., Ahmad W., Zhu X.Y., Chen J., Austin B. Viable but nonculturable bacteria and their resuscitation: implications for cultivating uncultured marine microorganisms // Mar. Life Sci. Technol. 2021. V. 3. P. 189–203.

Дополнительные материалы

скачать ESM.zip
Приложение 1.
Таблица S1. Картирование чтений на геном E.coli K12/MG1655 и количество чтений каждого гена, полученных после секвенатора (без домножения числа чтений для точки 1).