Молекулярная биология, 2022, T. 56, № 1, стр. 83-102

Генно-инженерные системы для изучения вирусных патогенов человека из семейства Coronaviridae

С. О. Галкин ab, А. Н. Анисенко abc, О. А. Шадрина bc, М. Б. Готтих bc*

a Факультет биоинженерии и биоинформатики Московского государственного университета им. М.В. Ломоносова
119991 Москва, Россия

b Химический факультет Московского государственного университета им. М.В. Ломоносова
119991 Москва, Россия

c Научно-исследовательский институт физико-химической биологии им. А.Н. Белозерского Московского государственного университета им. М.В. Ломоносова
119991 Москва, Россия

* E-mail: gottikh@belozersky.msu.ru

Поступила в редакцию 12.05.2021
После доработки 09.06.2021
Принята к публикации 14.06.2021

Аннотация

Охватившая весь мир пандемия коронавирусного инфекционного заболевания (COVID-19), которое вызвано ранее неизвестным бетакоронавирусом SARS-CoV-2, сделала крайне актуальной разработку простых и безопасных клеточных систем, позволяющих манипулировать с геномом вируса, а также проводить высокопроизводительный скрининг его потенциальных ингибиторов. В этом обзоре мы постарались обобщить существующие на настоящий момент данные о генно-инженерных системах для исследования не только SARS-CoV-2, но и других вирусов из семейства Coronaviridae. Кроме того, в обзоре кратко представлены основные сведения о строении и жизненном цикле коронавирусов.

Ключевые слова: SARS-CoV-2, COVID-19, репликоны, псевдовирусы

Список литературы

  1. Yin Y., Wunderink R.G. (2018) MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 23, 130–137.

  2. Wu F., Zhao S., Yu B., Chen Y.-M., Wang W., Song Z.-G., Hu Y., Tao Z.-W., Tian J.-H., Pei Y.-Y., Yuan M.-L., Zhang Y.-L., Dai F.-H., Liu Y., Wang Q.-M., Zheng J.-J., Xu L., Holmes E.C., Zhang Y.-Z. (2020) A new coronavirus associated with human respiratory disease in China. Nature. 579, 265–269.

  3. Rothe C., Schunk M., Sothmann P., Bretzel G., Froeschl G., Wallrauch C., Zimmer T., Thiel V., Janke C., Guggemos W., Seilmaier M., Drosten C., Vollmar P., Zwirglmaier K., Zange S., Wölfel R., Hoelscher M. (2020) Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N. Engl. J. Med. 382, 970–971.

  4. Perez-Saez J., Lauer S.A., Kaiser L., Regard S., Delaporte E., Guessous I., Stringhini S., Azman A.S., Serocov-POP Study Group. (2021) Serology-informed estimates of SARS-CoV-2 infection fatality risk in Geneva, Switzerland. Lancet Infect. Dis. 21, e69–e70.

  5. Rebello C. J., Kirwan J.P., Greenway F.L. (2020) Obesity, the most common comorbidity in SARS-CoV-2: is leptin the link? Int. J. Obes. (Lond.). 44, 1810–1817.

  6. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. (2020) The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5, 536–544.

  7. Baltimore D. (1971) Expression of animal virus genomes. Bacteriol. Rev. 35, 235–241.

  8. Schoeman D., Fielding B.C. (2019) Coronavirus envelope protein: current knowledge. Virol. J. 16, 69.

  9. Sarkar M., Saha S. (2020) Structural insight into the role of novel SARS-CoV-2 E protein: a potential target for vaccine development and other therapeutic strategies. PLoS One. 15, e0237300.

  10. Lang Y., Li W., Li Z., Koerhuis D., van den Burg A.C.S., Rozemuller E., Bosch B.-J., van Kuppeveld F.J. M., Boons G.-J., Huizinga E.G., van der Schaar H.M., de Groot R.J. (2020) Coronavirus hemagglutinin-esterase and spike proteins coevolve for functional balance and optimal virion avidity. Proc. Natl. Acad. Sci. USA. 117, 25759–25770.

  11. Bar-On Y.M., Flamholz A., Phillips R., Milo R. (2020) SARS-CoV-2 (COVID-19) by the numbers. eLife. 9, e57309.

  12. Almazán F., Galán C., Enjuanes L. (2004) The nucleoprotein is required for efficient coronavirus genome replication. J. Virol. 78, 12683–12688.

  13. Masters P.S. (2006) The molecular biology of coronaviruses. Adv. Virus Res. 66, 193‒292.

  14. Belshaw R., Pybus O.G., Rambaut A. (2007) The evolution of genome compression and genomic novelty in RNA viruses. Genome Res. 17, 1496–1504.

  15. Sanjuán R., Nebot M.R., Chirico N., Mansky L.M., Belshaw R. (2010) Viral mutation rates. J. Virol. 84, 9733–9748.

  16. Chen Y., Liu Q., Guo D. (2020) Emerging coronaviruses: genome structure, replication, and pathogenesis. J. Med. Virol. 92, 418–423.

  17. Song Z., Xu Y., Bao L., Zhang L., Yu P., Qu Y., Zhu H., Zhao W., Han Y., Qin C. (2019) From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses. 11, 59.

  18. Sa Ribero M., Jouvenet N., Dreux M., Nisole S. (2020) Interplay between SARS-CoV-2 and the type I interferon response. PLoS Pathog. 16(7), e1008737.

  19. Snijder E.J., Decroly E., Ziebuhr J. (2016) The nonstructural proteins directing coronavirus RNA synthesis and processing. Adv. Virus Res. 96, 59–126.

  20. Raj R. (2021) Analysis of non-structural proteins, NSPs of SARS-CoV-2 as targets for computational drug designing. Biochem. Biophys. Rep. 25, 100847.

  21. Khan M.T., Irfan M., Ahsan H., Ahmed A., Kaushik A.C., Khan A.S., Chinnasamy S., Ali A., Wei D.-Q. (2021) Structures of SARS-CoV-2 RNA-binding proteins and therapeutic targets. Intervirology. 64, 55–68.

  22. Yoshimoto F.K. (2020) The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19. Protein J. 39, 198–216.

  23. Guo Y.-R., Cao Q.-D., Hong Z.-S., Tan Y.-Y., Chen S.-D., Jin H.-J., Tan K.-S., Wang D.-Y., Yan Y. (2020) The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil. Med. Res. 7, 11.

  24. Cui J., Li F., Shi Z.-L. (2019) Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181–192.

  25. Artika I.M., Dewantari A.K., Wiyatno A. (2020) Molecular biology of coronaviruses: current knowledge. Heliyon. 6, e04743.

  26. Banerjee A.K., Blanco M.R., Bruce E.A., Honson D.D., Chen L.M., Chow A., Bhat P., Ollikainen N., Quinodoz S.A., Loney C., Thai J., Miller Z.D., Lin A.E., Schmidt M.M., Stewart D.G., Goldfarb D., De Lorenzo G., Rihn S.J., Voorhees R.M., Botten J.W., Majumdar D., Guttman M. (2020) SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses. Cell. 183, 1325‒1339.e21.

  27. Gaglia M M., Covarrubias S., Wong W., Glaunsin-ger B.A. (2012) A common strategy for host RNA degradation by divergent viruses. J. Virol. 86, 9527–9530.

  28. Cornillez-Ty C.T., Liao L., Yates J.R., Kuhn P., Buchmeier M.J. (2009) Severe acute respiratory syndrome coronavirus nonstructural protein 2 interacts with a host protein complex involved in mitochondrial biogenesis and intracellular signaling. J. Virol. 83, 10314–10318.

  29. Graham R.L., Sims A.C., Brockway S.M., Bari, R.S., Denison M.R. (2005) The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication. J. Virol. 79, 13399–13411.

  30. Lei J., Kusov Y., Hilgenfeld R. (2018) Nsp3 of coronaviruses: structures and functions of a large multi-domain protein. Antiviral Res. 149, 58–74.

  31. Wolff G., Limpens R.W.A.L., Zevenhoven-Dobbe J.C., Laugks U., Zheng S., de Jong A.W.M., Koning R.I., Agard D.A., Grünewald K., Koster A.J., Snijder E.J., Bárcena M. (2020) A molecular pore spans the double membrane of the coronavirus replication organelle. Science. 369, 1395–1398.

  32. Oostra M., te Lintelo E.G., Deijs M., Verheije M.H., Rottier P.J.M., de Haan C.A.M. (2007) Localization and membrane topology of coronavirus nonstructural protein 4: involvement of the early secretory pathway in replication. J. Virol. 81, 12323–12336.

  33. Tomar S., Johnston M.L., St John S.E., Osswald H.L., Nyalapatla P.R., Paul L.N., Ghosh A.K., Denison M.R., Mesecar A.D. (2015) Ligand-induced dimerization of middle east respiratory syndrome (MERS) coronavirus nsp5 protease (3CLpro): implications for nsp5 regulation and the development of antivirals. J. Biol. Chem. 290, 19403–19422.

  34. Cottam E.M., Whelband M.C., Wileman T. (2014) Coronavirus NSP6 restricts autophagosome expansion. Autophagy. 10, 1426–1441.

  35. Zhai Y., Sun F., Li X., Pang H., Xu X., Bartlam M., Rao Z. (2005) Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer. Nat. Struct. Mol. Biol. 12, 980–986.

  36. Imbert I., Guillemot J.-C., Bourhis J.-M., Bussetta C., Coutard B., Egloff M.-P., Ferron F., Gorbalenya A.E., Canard B. (2006) A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J. 25, 4933–4942.

  37. te Velthuis A.J.W., van den Worm S.H.E., Snijder E.J. (2012) The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids. Res. 40, 1737–1747.

  38. Sawicki S.G., Sawicki D.L., Younker D., Meyer Y., Thiel V., Stokes H., Siddell S.G. (2005) Functional and genetic analysis of coronavirus replicase-transcriptase proteins. PLoS Pathog. 1, e39.

  39. Donaldson E.F., Sims A.C., Graham R.L., Denison M.R., Baric R.S. (2007) Murine hepatitis virus replicase protein nsp10 is a critical regulator of viral RNA synthesis. J. Virol. 81, 6356–6368.

  40. Bouvet M., Debarnot C., Imbert I., Selisko B., Snijder E.J., Canard B., Decroly E. (2010) In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog. 6, e1000863.

  41. Bouvet M., Imbert I., Subissi L., Gluais L., Canard B., Decroly E. (2012) RNA 3'-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex. Proc. Natl. Acad. Sci. USA. 109, 9372–9377.

  42. Shu T., Huang M., Wu D., Ren Y., Zhang X., Han Y., Mu J., Wang R., Qiu Y., Zhang D.-Y., Zhou X. (2020) SARS-coronavirus-2 Nsp13 possesses NTPase and RNA helicase activities that can be inhibited by bismuth salts. Virol. Sin. 35, 321–329.

  43. Minskaia E., Hertzig T., Gorbalenya A.E., Campanacci V., Cambillau C., Canard B., Ziebuhr J. (2006) Discovery of an RNA virus 3′→5′ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc. Natl. Acad. Sci. USA. 103, 5108–5113.

  44. Chen Y., Cai H., Pan J., Xiang N., Tien P., Ahola T., Guo D. (2009) Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc. Natl. Acad. Sci. USA. 106, 3484–3489.

  45. Deng X., Hackbart M., Mettelman R.C., O’Brien A., Mielech A.M., Yi G., Kao C.C., Baker S.C. (2017) Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages. Proc. Natl. Acad. Sci. USA. 114, E4251–E4260.

  46. Forni D., Cagliani R., Clerici M., Sironi M. (2017) Molecular evolution of human coronavirus genomes. Trends Microbiol. 25, 35–48.

  47. Li F. (2016) Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol. 3, 237–261.

  48. Yeager C.L., Ashmun R.A., Williams R.K., Cardellichio C.B., Shapiro L.H., Look A.T., Holmes K.V. (1992) Human aminopeptidase N is a receptor for human coronavirus 229E. Nature. 357, 420–422.

  49. Wu K., Li W., Peng G., Li F. (2009) Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor. Proc. Natl. Acad. Sci. USA. 106, 19970–19974.

  50. Naskalska A., Dabrowska A., Szczepanski A., Milewska A., Jasik K.P., Pyrc K. (2019) Membrane protein of human coronavirus NL63 is responsible for interaction with the adhesion receptor. J. Virol. 93, e00355-19.

  51. Desforges M., Desjardins J., Zhang C., Talbot P.J. (2013) The acetyl-esterase activity of the hemagglutinin-esterase protein of human coronavirus OC43 strongly enhances the production of infectious virus. J. Virol. 87, 3097–3107.

  52. Raj V.S., Mou H., Smits S.L., Dekkers D.H.W., Müller M.A., Dijkman R., Muth D., Demmers J.A.A., Zaki A., Fouchier R.A.M., Thiel V., Drosten C., Rottier P.J.M., Osterhaus A.D.M.E., Bosch B.J., Haagmans B.L. (2013) Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 495, 251–254.

  53. Kalra R.S., Kandimalla R. (2021) Engaging the spikes: heparan sulfate facilitates SARS-CoV-2 spike protein binding to ACE2 and potentiates viral infection. Sig. Transduct. Target. Ther. 6(1), 39.

  54. Hartenian E., Nandakumar D., Lari A., Ly M., Tucker J.M., Glaunsinger B.A. (2020) The molecular viro-logy of coronaviruses. J. Biol. Chem. 295, 12910–12934.

  55. Tang T., Bidon M., Jaimes J.A., Whittaker G.R., Daniel S. (2020) Coronavirus membrane fusion mechanism offers a potential target for antiviral deve-lopment. Antiviral. Res. 178, 104792.

  56. Sola I., Almazán F., Zúñiga S., Enjuanes L. (2015) Continuous and discontinuous RNA synthesis in coronaviruses. Annu. Rev. Virol. 2, 265–288.

  57. Sawicki S.G., Sawicki D.L., Siddell S.G. (2007) A contemporary view of coronavirus transcription. J. Virol. 81, 20–29.

  58. Sztuba-Solińska J., Stollar V., Bujarski J.J. (2011) Subgenomic messenger RNAs: mastering regulation of (+)-strand RNA virus life cycle. Virology. 412, 245–255.

  59. Zúñiga S., Sola I., Alonso S., Enjuanes L. (2004) Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis. J. Virol. 78, 980–994.

  60. Wu H.-Y., Brian D.A. (2007) 5'-proximal hot spot for an inducible positive-to-negative-strand template switch by coronavirus RNA-dependent RNA polymerase. J. Virol. 81, 3206–3215.

  61. Bojkova D., Klann K., Koch B., Widera M., Krause D., Ciesek S., Cinatl J., Münch C. (2020) Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature. 583, 469‒472.

  62. Finkel Y., Gluck A., Nachshon A., Winkler R., Fisher T., Rozman B., Mizrahi O., Lubelsky Y., Zuckerman B., Slobodin B., Yahalom-Ronen Y., Tamir H., Ulitsky I., Israely T., Paran N., Schwartz M., Stern-Ginossar N. (2021) SARS-CoV-2 uses a multipronged strategy to impede host protein synthesis. Nature. 594, 240–245.

  63. Woo J., Lee E.Y., Lee M., Kim T., Cho Y.-E. (2019) An in vivo cell-based assay for investigating the specific interaction between the SARS-CoV N-protein and its viral RNA packaging sequence. Biochem. Biophys. Res. Commun. 520, 499–506.

  64. Narayanan K., Makino S. (2001) Cooperation of an RNA packaging signal and a viral envelope protein in coronavirus RNA packaging. J. Virol. 75, 9059–9067.

  65. Vennema H., Godeke G.J., Rossen J.W., Voorhout W.F., Horzinek M.C., Opstelten D.J., Rottier P.J. (1996) Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J. 15, 2020–2028.

  66. Hsieh P.-K., Chang S.C., Huang C.-C., Lee T.-T., Hsiao C.-W., Kou Y.-H., Chen I.-Y., Chang C.-K., Huang T.-H., Chang M.-F. (2005) Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent. J. Virol. 79, 13848–13855.

  67. Masters P.S. (2019) Coronavirus genomic RNA packaging. Virology. 537, 198–207.

  68. Yao S., Narayanan A., Majowicz S., Jose J., Archetti M. (2021) A synthetic defective interfering SARS-CoV-2. Peer J. 9, e11686.

  69. Kuo L., Hurst-Hess K.R., Koetzner C.A., Masters P.S. (2016) Analyses of coronavirus assembly interactions with interspecies membrane and nucleocapsid protein chimeras. J. Virol. 90, 4357–4368.

  70. Orenstein J.M., Banach B., Baker S. (2008) Morphogenesis of coronavirus HCoV-NL63 in cell culture: a transmission electron microscopic study. Open Infect. Dis. J. 2, 52–58.

  71. Makino S., Lai M.M. (1990) Studies of coronavirus DI RNA replication using in vitro constructed DI cDNA clones. Adv. Exp. Med. Biol. 276, 341–347.

  72. Kim K.H., Narayanan K., Makino S. (1998) Characterization of coronavirus DI RNA packaging. Adv. Exp. Med. Biol. 440, 347–353.

  73. Bos E.C., Dobbe J.C., Luytjes W., Spaan W.J. (1997) A subgenomic mRNA transcript of the coronavirus mouse hepatitis virus strain A59 defective interfering (DI) RNA is packaged when it contains the DI packa-ging signal. J. Virol. 71, 5684–5687.

  74. Makino S., Keck J.G., Stohlman S.A., Lai M.M. (1986) High-frequency RNA recombination of murine coronaviruses. J. Virol. 57, 729–737.

  75. Williams G.D., Chang R.-Y., Brian D.A. (1999) A phylogenetically conserved hairpin-type 3′ untransla-ted region pseudoknot functions in coronavirus RNA replication. J. Virol. 73, 8349–8355.

  76. Almazán F., González J.M., Pénzes Z., Izeta A., Calvo E., Plana-Durán J., Enjuanes L. (2000) Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc. Natl. Acad. Sci. USA. 97, 5516–5521.

  77. Strauss-Soukup J.K., Strobel S.A. (2001) Ribozyme enzymology. In: RNA. Eds Söll D., Nishimura S., Moore P. Pergamon, Oxford, pp. 187–206.

  78. Yang D., Leibowitz J.L. (2015) The structure and functions of coronavirus genomic 3' and 5' ends. Virus Res. 206, 120–133.

  79. Yang J., Sun B., Huang H., Jiang Y., Diao L., Chen B., Xu C., Wang X., Liu J., Jiang W., Yang S. (2014) High-efficiency scarless genetic modification in Escherichia coli by using lambda red recombination and I-SceI cleavage. Appl. Environ. Microbiol. 80, 3826–3834.

  80. St-Jean J.R., Desforges M., Almazán F., Jacomy H., Enjuanes L., Talbot P.J. (2006) Recovery of a neurovirulent human coronavirus OC43 from an infectious cDNA clone. J. Virol. 80, 3670–3674.

  81. Almazán F., DeDiego M.L., Sola I., Zuñiga S., Nieto-Torres J.L., Marquez-Jurado S., Andrés G., Enjuanes L. (2013) Engineering a replication-competent, propagation-defective middle east respiratory syndrome coronavirus as a vaccine candidate. mBio, 4, e00650-13.

  82. Pfefferle S., Krähling V., Ditt V., Grywna K., Mühlberger E., Drosten C. (2009) Reverse genetic characterization of the natural genomic deletion in SARS-coronavirus strain Frankfurt-1 open reading frame 7b reveals an attenuating function of the 7b protein in-vitro and in-vivo. Virol. J. 6, 131.

  83. Ye C., Chiem K., Park J.-G., Oladunni F., Platt R. N., Anderson T., Almazan F., de la Torre J.C., Martinez-Sobrido L. (2020) Rescue of SARS-CoV-2 from a single bacterial artificial chromosome. mBio. 11(5), e02168-20. https://doi.org/10.1128/mBio.02168-20

  84. Thi Nhu Thao T., Labroussaa F., Ebert N., V’kovski P., Stalder H., Portmann J., Kelly J., Steiner S., Holwerda M., Kratzel A., Gultom M., Schmied K., Laloli L., Hüsser L., Wider M., Pfaender S., Hirt D., Cippà V., Crespo-Pomar S., Schröder S., Muth D., Niemeyer D., Corman V.M., Müller M.A., Drosten C., Dijkman R., Jores J., Thiel V. (2020) Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform. Nature. 582, 561–565.

  85. Eriksson K.K., Makia D., Thiel V. (2008) Generation of recombinant coronaviruses using vaccinia virus as the cloning vector and stable cell lines containing coronaviral replicon RNAs. Methods Mol. Biol. 454, 237–254.

  86. Donaldson E.F., Yount B., Sims A.C., Burkett S., Pickles R.J., Baric R.S. (2008) Systematic assembly of a full-length infectious clone of human coronavirus NL63. J. Virol. 82, 11948–11957.

  87. Scobey T., Yount B.L., Sims A.C., Donaldson E.F., Agnihothram S.S., Menachery V.D., Graham R.L., Swanstrom J., Bove P.F., Kim J.D., Grego S., Randell S.H., Baric R.S. (2013) Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus. Proc. Natl. Acad. Sci. USA. 110, 16157–16162.

  88. Yount B., Curtis K.M., Fritz E.A., Hensley L.E., Jahrling P.B., Prentice E., Denison M.R., Geisbert T.W., Baric R.S. (2003) Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. Proc. Natl. Acad. Sci. USA. 100, 12995–13000.

  89. van den Worm S.H.E., Eriksson K.K., Zevenhoven J.C., Weber F., Züst R., Kuri T., Dijkman R., Chang G., Siddell S.G., Snijder E. J., Thiel V., Davidson A.D. (2012) Reverse genetics of SARS-related coronavirus using vaccinia virus-based recombination. PLoS One. 7, e32857.

  90. Xie X., Muruato A., Lokugamage K.G., Narayanan K., Zhang X., Zou J., Liu J., Schindewolf, C., Bopp N.E., Aguilar P.V., Plante K.S., Weaver S.C., Makino S., LeDuc J.W., Menachery V.D., Shi P.Y. (2020) An infectious cDNA clone of SARS-CoV-2. Cell Host Microbe. 27, 841–848.e3.

  91. Kouprina N., Larionov V. (2016) Transformation-associated recombination (TAR) cloning for genomics studies and synthetic biology. Chromosoma. 125, 621.

  92. Cunningham C., Gatherer D., Hilfrich B., Baluchova K., Dargan D.J., Thomson M., Griffiths P.D., Wilkinson G.W.G., Schulz T.F., Davison A.J. (2010) Sequences of complete human cytomegalovirus genomes from infected cell cultures and clinical specimens. J.Gen. Virol. 91, 605.

  93. Vashee S., Stockwell T.B., Alperovich N., Denisova E.A., Gibson D.G., Cady K.C., Miller K., Kannan K., Malouli D., Crawford L.B., Voorhies A.A., Bruening E., Caposio P., Früh K. (2017) Cloning, assembly, and modification of the primary human cytomegalovirus isolate Toledo by yeast-based transformation-associated recombination. mSphere. 2, e00331-17.

  94. Oldfield L.M., Grzesik P., Voorhies A.A., Alperovich N., MacMath D., Najera C.D., Chandra D.S., Prasad S., Noskov V.N., Montague M. G., Friedman R.M., Desai P.J., Vashee S. (2017) Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods. Proc. Natl. Acad. Sci. USA. 114, E8885–E8894.

  95. Smith S., Reuven N., Mohni K.N., Schumacher A.J., Weller S.K. (2014) Structure of the herpes simplex virus 1 genome: manipulation of nicks and gaps can abrogate infectivity and alter the cellular DNA damage response. J. Virol. 88, 10146–10156.

  96. Yount B., Curtis K.M., Baric R.S. (2000) Strategy for systematic assembly of large rna and dna genomes: transmissible gastroenteritis virus model. J. Virol. 74, 10600–10611.

  97. Merchlinsky M., Moss B. (1992) Introduction of foreign DNA into the vaccinia virus genome by in vitro ligation: recombination-independent selectable cloning vectors. Virology. 190, 522–526.

  98. Mohsen M.O., Zha L., Cabral-Miranda G., Bachmann M.F. (2017) Major findings and recent advances in virus-like particle (VLP)-based vaccines. Semin. Immunol. 34, 123–132.

  99. Nooraei S., Bahrulolum H., Hoseini Z.S., Katalani C., Hajizade A., Easton A.J., Ahmadian G. (2021) Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnology. 19, 59.

  100. Chan S.K., Du P., Ignacio C., Mehta S., Newton I.G., Steinmetz N.F. (2021) Biomimetic virus-like particles as severe acute respiratory syndrome coronavirus 2 diagnostic tools. ACS Nano. 15, 1259–1272.

  101. Bos E.C., Luytjes W., Spaan W.J. (1997) The function of the spike protein of mouse hepatitis virus strain A59 can be studied on virus-like particles: cleavage is not required for infectivity. J. Virol. 71, 9427–9433.

  102. Naskalska A., Dabrowska A., Nowak P., Szczepanski A., Jasik K., Milewska A., Ochman M., Zeglen S., Rajfur Z., Pyrc K. (2018) Novel coronavirus-like particles targeting cells lining the respiratory tract. PLoS One. 13, e0203489.

  103. Huang Y., Yang Z., Kong W., Nabel G.J. (2004) Ge-neration of synthetic severe acute respiratory syndrome coronavirus pseudoparticles: implications for assembly and vaccine production. J. Virol. 78, 12557–12565.

  104. Siu Y.L., Teoh K.T., Lo J., Chan C.M., Kien F., Escriou N., Tsao S.W., Nicholls J.M., Altmeyer R., Peiris J.S., Bruzzone R., Nal B. (2008) The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J. Virol. 82, 11318–11330.

  105. Swann H., Sharma A., Preece B., Peterson A., Eldridge C., Belnap D.M., Vershinin M., Saffarian S. (2020) Minimal system for assembly of SARS-CoV-2 virus like particles. Sci. Rep. 10, 21877.

  106. Xu R., Shi M., Li J., Song P., Li N. (2020) Construction of SARS-CoV-2 virus-like particles by mammalian expression system. Front. Bioeng. Biotechnol. 8, 862.

  107. Ju X., Zhu Y., Wang Y., Li J., Zhang J., Gong M., Ren W., Li S., Zhong J., Zhang L., Zhang Q.C., Zhang R., Ding Q. (2021) A novel cell culture system modeling the SARS-CoV-2 life cycle. PLoS Pathog. 17, e1009439.

  108. Wang C., Zheng X., Gai W., Zhao Y., Wang H., Wang H., Feng N., Chi H., Qiu B., Li N., Wang T., Gao Y., Yang S., Xia X. (2016) MERS-CoV virus-like particles produced in insect cells induce specific humoural and cellular imminity in rhesus macaques. Oncotarget. 8, 12686–12694.

  109. Talbot P.J., Ekandé S., Cashman N.R., Mounir S., Stewart J.N. (1993) Neurotropism of human coronavirus 229E. Adv. Exp. Med. Biol. 342, 339–346.

  110. Thiel V., Karl N., Schelle B., Disterer P., Klagge I., Siddell S.G. (2003) Multigene RNA vector based on coronavirus transcription. J. Virol. 77, 9790–9798.

  111. Khromykh A.A. (2000) Replicon-based vectors of positive strand RNA viruses. Curr. Opin. Mol. Ther. 2, 555–569.

  112. Kotaki T., Xie X., Sh, P.-Y., Kameoka M. (2021) A PCR amplicon-based SARS-CoV-2 replicon for antiviral evaluation. Sci. Rep. 11, 2229.

  113. He X., Quan S., Xu M., Rodriguez S., Goh S.L., Wei J., Fridman A., Koeplinger K.A., Carroll S.S., Grobler J.A., Espeseth A.S., Olsen D.B., Hazuda D.J., Wang D. (2021) Generation of SARS-CoV-2 reporter replicon for high-throughput antiviral screening and testing. Proc. Natl. Acad. Sci. USA. 118, e2025866118.

  114. Ge F., Luo Y., Liew P.X., Hung E. (2007) Derivation of a novel SARS–coronavirus replicon cell line and its application for anti-SARS drug screening. Virology. 360, 150–158.

  115. Almazán F., DeDiego M.L., Galán C., Escors D., Álvarez E., Ortego J., Sola I., Zuñiga S., Alonso S., Moreno J.L., Nogales A., Capiscol C., Enjuanes L. (2006) Construction of a severe acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to study coronavirus RNA synthesis. J. Virol. 80, 10900–10906.

  116. Hertzig T., Scandella E., Schelle B., Ziebuhr J., Siddell S.G., Ludewig B., Thiel V. (2004) Rapid identification of coronavirus replicase inhibitors using a selectable replicon RNA. J. Gen. Virol. 85, 1717–1725.

  117. Wang J.-M., Wang L.-F., Shi Z.-L. (2008) Construction of a non-infectious SARS coronavirus replicon for application in drug screening and analysis of viral protein function. Biochem. Biophys. Res. Commun. 374, 138–142.

  118. Luo Y., Yu F., Zhou M., Liu Y., Xia B., Zhang X., Liu J., Zhang J., Du Y., Li R., Wu L., Zhang X., Pan T., Guo D., Peng T., Zhang H. (2021) Engineering a reliable and convenient SARS-COV-2 replicon system for analysis of viral RNA synthesis and screening of antiviral inhibitors. mBio. 12, e02754-20. https://doi.org/10.1128/mBio.02754-20

  119. McBride R., van Zyl M., Fielding B.C. (2014) The coronavirus nucleocapsid is a multifunctional protein. Viruses. 6, 2991–3018.

  120. Dutta N.K., Mazumdar K., GordyJ.T. (2020) The nucleocapsid protein of SARS-COV-2: a target for vaccine development. J. Virol. 94, e00647-20.

  121. Ge F., Xiong S., Lin F.S., Zhang Z.P., Zhang X.E. (2008) High-throughput assay using a GFP-expressing replicon for SARS-CoV drug discovery. Antiviral Res. 80, 107–113.

  122. Pfefferle S., Schöpf J., Kögl M., Friedel C.C., Müller M.A., Carbajo-Lozoya J., Stellberger T., von Dall’Armi E., Herzog P., Kallies S., Niemeyer D., Ditt V., Kuri T., Züst R., Pumpor K., Hilgenfeld R., Schwarz F., Zimmer R., Steffen I., Weber F., Thiel V., Herrler G., Thiel H.J., Schwegmann-Wessels C., Pöhlmann S., Haas J., Drosten C., von Brunn A. (2011) The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors. PLoS Pathog. 7, e1002331.

  123. Jin Y.-Y., Lin H., Cao L., Wu W.-C., Ji Y., Du L., Jiang Y., Xie Y., Tong K., Xing F., Zheng F., Shi M., Pan J.A., Peng X., Guo D. (2021) A convenient and biosafe replicon with accessory genes of SARS-CoV-2 and its potential application in antiviral drug disco-very. Virol. Sin. 36(5), 913–923. https://doi.org/10.1007/s12250-021-00385-9

  124. Wang B., Zhang C., Lei X., Ren L., Zhao Z., Wang J., Huang H. (2021) Construction of non-infectious SARS-CoV-2 replicons and their application in drug evaluation. Virol. Sin. 36, 890–900.https://doi.org/10.1007/s12250-021-00369-9

  125. Zhang Q.-Y., Deng C.-L., Liu J., Li J.-Q., Zhang H.-Q., Li N., Zhang Y.-N., Li X.-D., Zhang B., Xu Y., Ye H.-Q. (2021) SARS-CoV-2 replicon for high-throughput antiviral screening. J. Gen. Virol. 102, 001583.

  126. Ahn D.-G., Lee W., Choi J.-K., Kim S.-J., Plant E.P., Almazán F., Taylor D.R., Enjuanes L., Oh J.-W. (2011) Interference of ribosomal frameshifting by antisense peptide nucleic acids suppresses SARS coronavirus replication. Antiviral Res. 91, 1–10.

  127. Adedeji A.O., Marchand B., te Velthuis A.J.W., Snijder E.J., Weiss S., Eoff R.L., Singh K., Sarafianos S.G. (2012) Mechanism of nucleic acid unwinding by SARS-CoV helicase. PLoS One. 7, e36521.

  128. Ivanov K.A., Hertzig T., Rozanov M., Bayer S., Thiel V., Gorbalenya A.E., Ziebuhr J. (2004) Major genetic marker of nidoviruses encodes a replicative endoribonuclease. Proc. Natl. Acad. Sci. USA. 101, 12694–12699.

Дополнительные материалы отсутствуют.