Молекулярная биология, 2022, T. 56, № 1, стр. 103-117

Взаимодействие MxyR Mycobacterium tuberculosis c ксиланами: необычные лиганды транскрипционных регуляторов семейства MarR

S. Mauran a, N. T. Perera b, I. C. Perera a*

a Synthetic Biology Laboratory, Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo
00700 Colombo 03, Sri Lanka

b Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura
Nugegoda, Sri Lanka

* E-mail: icperera@sci.cmb.ac.lk

Поступила в редакцию 19.02.2021
После доработки 12.04.2021
Принята к публикации 28.04.2021

Аннотация

Ген rv3095 Mycobacterium tuberculosis, принадлежащий семейству транскрипционных регуляторов MarR, кодирует фактор MxyR (Mycobacterium xylanase regulator – регулятор ксиланазы Mycobacterium). Этот ген расположен дивергентно по отношению к генам, кодирующим гидролазу (rv3094c), оксидоредуктазу (rv3093c), белок-транспортер семейства ABC (rv3092c), и конвергентно по отношению к гену ксиланазы (rv3096). Ксиланаза широко используется микробными патогенами растений для деградации ксиланов – основного компонента гемицеллюлозы. В работе методом сдвига электрофоретической подвижности исследованы молекулярные взаимодействия очищенного транскрипционного регулятора MxyR. Этот белок взаимодействует с расположенной выше межгенной областью mxyO с высокой специфичностью и константой диссоцииации, равной 5.01 ± 0.017 нМ. Примечательно, что это связывание ослабляется специфическими углеводными лигандами, такими как ксилан, L-арабиноза и D-галактоза, со значениями IC50, равными 22.7 ± 1.02 нг/мкл, 360.8 ± 24.25 нг/мкл и 2320.0 ± 96.97 мкг/мкл соответственно. Очевидно, эта ассоциация изменяет конформацию ДНК-связывающей спирали α4, вследствие чего MxyR теряет способность связываться с операторной ДНК, тем самым не препятствуя транскрипции регулируемых им генов ксиланазы и других белков. В результате проведенного исследования идентифицированы природные лиганды MxyR M. tuberculosis, что углубляет наши знания относительно метаболической регуляции углевода ксилана.

Ключевые слова: туберкулез, Mycobacterium tuberculosis, фактор транскрипции, MxyR, ДНК-связывание, углеводные лиганды, ксилан

Список литературы

  1. World Health Organization. (2020) Global tuberculosis report 2020.

  2. Perera I.C., Grove A. (2010) Urate is a ligand for the transcriptional regulator PecS. J. Mol. Biol. 402(3), 539–551.

  3. Wilkinson S.P., Grove A. (2004) HucR, a novel uric acid-responsive member of the MarR family of transcriptional regulators from Deinococcus radiodurans. J. Biol. Chem. 279(49), 51442–51450.

  4. Stapleton M.R., Norte V.A., Read R.C., Green J. (2002) Interaction of the Salmonella typhimurium transcription and virulence factor SlyA with target DNA and identification of members of the SlyA regulon. J. Biol. Chem. 277(20), 17630–17637.

  5. Ellison D.W., Miller V.L. (2006) Regulation of virulence by members of the MarR/SlyA family. Curr. Opin. Microbiol. 9, 153–159.

  6. Chang Y.M., Jeng W.Y., Ko T.P., Yeh Y.J., Chen C.K., Wang A.H. (2010) Structural study of TcaR and its complexes with multiple antibiotics from Staphylococcus epidermidis. Proc. Natl. Acad. Sci. USA. 107(19), 8617–8622.

  7. Michaux C., Sanguinetti M., Reffuveille F., Auffray Y., Posteraro B., Gilmore M.S., Hartke A., Giard J.C. (2011) SlyA is a transcriptional regulator involved in the virulence of Enterococcus faecalis. Infect. Immun. 79(7), 2638–2645.

  8. Birukou I., Seo S.M., Schindler B.D., Kaatz G.W., Brennan R.G. (2014) Structural mechanism of transcription regulation of the Staphylococcus aureus multidrug efflux operon mepRA by the MarR family repressor MepR. Nucleic Acids Res. 42(4), 2774–2788.

  9. Kim H., Choe J. (2013) The X-ray crystal structure of PA1374 from Pseudomonas aeruginosa, a putative oxidative-stress sensing transcriptional regulator. Biochem. Biophys. Res. Commun. 431(3), 376–381.

  10. Palm G.J., Khanh Chi B., Waack P., Gronau K., Becher D., Albrecht D., Hinrichs W., Read R.J., Antelmann H. (2012) Structural insights into the redox-switch mechanism of the MarR/DUF24-type regulator HypR. Nucleic Acids Res. 40(9), 4178–4192.

  11. Aoki R., Takeda T., Omata T., Ihara K., Fujita Y. (2012) MarR-type transcriptional regulator ChlR activates expression of tetrapyrrole biosynthesis genes in response to low-oxygen conditions in cyanobacteria. J. Biol. Chem. 287(16), 13500–13507.

  12. Seoane A.S., Levy S.B. (1995) Characterization of MarR, the repressor of the multiple antibiotic resistance (mar) operon in Escherichia coli. J. Bacteriol. 177(12), 3414–3419.

  13. Quade N., Mendonca C., Herbst K., Heroven A.K., Ritter C., Heinz D.W., Dersch P. (2012) Structural basis for intrinsic thermosensing by the master virulence regulator RovA of Yersinia. J. Biol. Chem. 287(43), 35796–35803.

  14. Martin R.G., Rosner J.L. (1995) Binding of purified multiple antibiotic-resistance repressor protein (MarR) to mar operator sequences. Proc. Natl. Acad. Sci. USA. 92(12), 5456–5460.

  15. Alekshun M.N., Levy S.B., Mealy T.R., Seaton B.A., Head J.F. (2001) The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 Å resolution. Nat. Struct. Biol., 8, 710–714.

  16. Brugarolas P., Movahedzadeh F., Wang Y., Zhang N., Bartek I.L., Gao Y.N., Voskuil M.I., Franzblau S.G., He C. (2012) The Oxidation-sensing regulator (MosR) is a new redox- dependent transcription factor in Mycobacterium tuberculosis. J. Biol. Chem. 287(45), 37703–37712.

  17. Camara A.S., Horjales E. (2018) Computer simulations reveal changes in the conformational space of the transcriptional regulator MosR upon the formation of a disulphide bond and in the collective motions that regulate its DNA-binding affinity. PLoS One. 13(2), 1–23.

  18. Healy C., Golby P., Machugh D.E., Gordon S.V. (2016) The MarR family transcription factor Rv1404 coordinates adaptation of Mycobacterium tuberculosis to acid stress via controlled expression of Rv1405c, a virulence-associated methyltransferase. Tuberculosis. 97, 154–162.

  19. Winglee K., Lun S., Pieroni M., Kozikowski A., Bishai W. (2015) Mutation of Rv2887, a marR-like gene, confers Mycobacterium tuberculosis resistance to an imidazopyridine-based agent. Antimicrob. Agents Chemother. 59(11), 6873–6881.

  20. Warrier T., Kapilashrami K., Argyrou A., Ioerger T.R., Little D., Murphy K.C. (2016) N-methylation of a bactericidal compound as a resistance mechanism in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA. 113(31), E4523–E4530.

  21. Radhakrishnan A., Kumar N., Wright C.C., Chou T.H, Tringides M.L., Bolla J.R., Lei H.T, Rajashankar K.R, Su C.C, Purdy G.E., Yu E.W. (2014) Crystal structure of the transcriptional regulator Rv0678 of Mycobacterium tuberculosis. J. Biol. Chem. 289(23), 16526–16540.

  22. Yeoman C.J., Han Y., Dodd D., Schroeder C.M., Mackie R.I., Cann I.K.O. (2010) Thermostable enzymes as biocatalysts in the biofuel industry. Adv. Appl. Microbiol. 70, 1–55.

  23. Schyns P. (1997) The bacterial degradation of xylan. In: Xylan Degradation by the Anaerobic Bacterium Bacteroides xylanolyticus. 1–44.

  24. Han Y., Agarwal V., Dodds D., Kims J., Bae B., Mackie R.I., Nair S.K., Cann I.K.O. (2012) Biochemical and structural insights into xylan utilization by the thermophilic bacterium Caldanaerobius polysaccharolyticus. J. Biol. Chem. 287(42), 34946–34960.

  25. Johnsen U., Dambeck M., Zaiss H., Fuhrer T., Soppa J., Sauer U., Schönheit P. (2009) D-xylose degradation pathway in the halophilic archaeon Haloferax volcanii. J. Biol. Chem.284, 27290–27303.

  26. Hasper A.A., Visser J., De Graaff L.H. (2000) The Aspergillus niger transcriptional activator XlnR, which is involved in the degradation of the polysaccharides xylan and cellulose, also regulates D-xylose reductase gene expression. Mol. Microbiol. 36(1), 193–200.

  27. Lovell S.C., Davis I.W., Arendall III W.B., de Bak-ker P.I.W., Word J.M., Prisant M.G., Richardson J.S., Richardson D.C. (2003) Structure validation by C alpha geometry: Phi, Psi and C beta deviation. Proteins Struct. Funct. Genet. 50(3), 437–450.

  28. Solovyev V.V., Salamov A. (2011) Automatic annotation of microbial genomes and metagenomic sequences. In: Metagenomics and its Applications in Agriculture, Biomedicine and Environmental Studies. 61–78.

  29. Specific binding with Hill’s slope performed using GraphPad Prism version 7.00 for Windows, GraphPad Software, San Diego, California USA, www.graphpad.com

  30. Schneider C.A., Rasband W.S., Eliceiri K.W., Instrumentation C. (2012) NIH Image to ImageJ : 25 years of Image Analysis. Nat. Methods. 9(7), 671–675.

  31. Crooks G.E., Hon G., Chandonia J.M., Brenner S.E. (2004) WebLogo: a sequence logo generator. Genome Res. 14(6), 1188–1190.

  32. Peterson E.J.R., Ma S., Sherman D.R., Baliga N.S. (2016) Network analysis identifies Rv0324 and Rv0880 as regulators of bedaquiline tolerance in Mycobacterium tuberculosis. Nat. Microbiol. 1(8), 1–7.

  33. Häkkinen M., Sivasiddarthan D., Aro N., Saloheimo M., Pakula T.M. (2015) The effects of extracellular pH and of the transcriptional regulator PACI on the transcriptome of Trichoderma reesei. Microb. Cell Fact. 14(63), 1–15.

  34. Topakas E., Panagiotou G., Christakopoulos P. (2013) Xylanases: characteristics, sources, production, and applications. In: Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers. 147–165.

  35. Marumo K., Nakamura H., Tazawa S., Kazumi Y., Kawano R., Shirata C., Taguchi K. (2010) Isolation of novel mycobacteria contaminating an aquarium fish tank in a Japanese university hospital. J. Appl. Microbiol. 109(2), 558–566.

  36. Pourahmad F., Pate M., Borroni E., Cabibbe A.M., Capitolo E., Cittaro D., Frizzera E., Mariottini A., Marumo K., Cirillo D.M., Tortoli E. (2015) Mycobacterium angelicum sp. nov., a non-chromogenic, slow-growing species isolated from fish and related to Mycobacterium szulgai. Int. J. Syst. Evol. Microbiol. 65(12), 4724–4729.

  37. Aronson J.D. (1926) Spontaneous tuberculosis in salt water fish. J. Infect. Dis. 39(4), 315–320.

  38. Tsukamura M., Yan I., Imaeda T. (1986) Mycobacterium moriokaense sp. nov., a rapidly growing, nonphotochromogenic mycobacterium. Internl. J. Syst. Bacteriol. 36(2), 333–338.

  39. Kopecky J., Kyselkova M., Omelka M., Cermak L., Novotna J., Grundmann G., Moënne-loccoz Y., Sagova-Mareckova M. (2011) Soil biology and biochemistry environmental mycobacteria closely related to the pathogenic species evidenced in an acidic forest wetland. Soil Biol. Biochem. 43(3), 697–700.

  40. Suriyachadkun C., Ngaemthao W., Chunhametha S., Tamura T., Sanglier J.J. (2013) Kutzneria buriramensis sp. nov., isolated from soil, and emended description of the genus Kutzneria. Int. J. Syst. Evol. Microbiol. 63(1), 47–52.

  41. Chen J., Su J.J., Wei Y.Z., Li Q.P., Yu L.Y., Liu H.Y., Zhang Y.Q., Zhang Y.Q. (2010) Amycolatopsis xylanica sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 60(9), 2124–2128.

  42. Kaur N., Kumar S., Mayilraj S. (2014) Genomics data genome sequencing and annotation of Amycolatopsis vancoresmycina. Genomics Data. 2, 16–17.

  43. Carlsohn M.R., Groth I., Tan G.Y.A., Schütze B., Saluz H.P., Munder T., Yang J., Wink J., Goodfellow M. (2007) Amycolatopsis saalfeldensis sp. nov., a novel actinomycete isolated from a medieval alum slate mine. Int. J. Syst. Evol. Microbiol. 57(7), 1640–1646.

  44. Titgemeyer F., Amon J., Parche S., Mahfoud M., Bail J., Schlicht M., Rehm N., Hillmann D., Stephan J., Walter B., Burkovski A., Niederweis M. (2007) A genomic view of sugar transport in Mycobacterium smegmatis and Mycobacterium tuberculosis. J. Bacteriol. 189(16), 5903–5915.

  45. Hanks J.H. (1961) Demonstration of capsules on M. leprae during carbol-fuchsin staining mechanism of the Ziehl-Neelsen stain. Int. J. Lepr. Other Mycobact. Dis. 29(2), 179–182.

  46. Ortalo-Magné A., Dupont M.A., Lemassu A., Andersen A.B., Gounon P., Daffé M. (1995) Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiology. 141(7), 1609–1620.

  47. Sassetti C.M., Rubin E.J. (2003) Genetic requirements for mycobacterial survival during infection. Proc. Natl. Acad. Sci. USA. 100(22), 12989–12994.

  48. Hanks J.H. (1961) The origin of the capsules on Mycobacterium leprae and other tissue-grown Mycobacteria. Int. J. Lepr. Other Mycobact. Dis. 29(2), 172–174.

  49. Chatterjee D. (1997) The mycobacterial cell wall: structure, biosynthesis and sites of drug action. Curr. Opin. Chem. Biol. 1(4), 579–588.

Дополнительные материалы

скачать EMS.docx
Table S1. sequences of synthetic oligonucleotides used in the current study.
 
Figure S1. MxyR Model validation by Ramachandran’s plot. It shows that majority of the residues (91.5%) are in the favored region of the plot.
 
Figure S2. Binding of xylooligosaccharides towards MxyR.