Молекулярная биология, 2022, T. 56, № 3, стр. 451-464

Динамика структуры мРНК эукариот в ходе трансляции

Н. С. Бизяев a, Т. В. Егорова ab, Е. З. Алкалаева ab*

a Институт молекулярной биологии им. В.А. Энгельгардта Российской академии наук
119991 Москва, Россия

b Центр высокоточного редактирования и генетических технологий для биомедицины
119991 Москва, Россия

* E-mail: alkalaeva@eimb.ru

Поступила в редакцию 02.11.2021
После доработки 07.12.2021
Принята к публикации 07.12.2021

Аннотация

На настоящий момент нет единого представления о том, какую пространственную структуру образует мРНК в ходе трансляции. Известно, что множество белков, связанных с 5′-концом мРНК, взаимодействуют с белками, связанными с 3′-концом. Более того, такие белки часто влияют на активность друг друга. В пределах одной молекулы мРНК это возможно лишь тогда, когда мРНК образует кольцевую структуру, в которой ее концы сближены. В 90-х годах XX века изучение таких белков привело к появлению гипотезы о существовании структуры трансляционно активной мРНК, представляющей собой замкнутую петлю (closed-loop), в которой концы молекулы зафиксированы рядом друг с другом с помощью белковых и/или РНК-взаимодействий. Однако затем стали появляться свидетельства того, что сближение концов мРНК и формирование closed-loop-структуры не обязательны для трансляции некоторых мРНК. Более того, в некоторых работах утверждалось, что транслируемая мРНК, напротив, должна быть развернута в линейную структуру. Таким образом, пространственная структура транслируемой мРНК не обязательно должна быть универсальной для всех мРНК и может динамически меняться, что влияет на ее функциональную активность. В рамках данного обзора мы обобщили разнообразие экспериментальных данных и гипотез о связи пространственной структуры мРНК с ее трансляционной активностью.

Ключевые слова: трансляция, мРНК, closed-loop мРНК, eIF4F, PABP, рибосома

Список литературы

  1. Fakim H., Fabian M.R.F. (2019) Communication is key: 5′–3′ interactions that regulate mRNA translation and turnover. In: The Biology of mRNA: Function and Structure. Advances in Experimental Medicine and Biology. Eds Oeffinger M., Zenklusen D. Cham: Springer Nature Switzerland, 1203. 149–165.

  2. Marzluff W.F. (1992) Histone 3′ ends: essential and regulatory functions. Gene Expr. 2, 93–97.

  3. Mathias A.P., Williamson R., Huxley H.E., Page S. (1964) Occurrence and function of polysomes in rabbit reticulocytes. J. Mol. Biol. 9, 154–IN11.

  4. Christensen A.K., Kahn L.E., Bourne C.M. (1987) Circular polysomes predominate on the rough endoplasmic reticulum of somatotropes and mammotropes in the rat anterior pituitary. Am. J. Anatomy. 178, 1–10.

  5. Wells S.E., Hillner P.E., Vale R.D., Sachs A.B. (1998) Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell. 2, 135–140.

  6. Vicens Q., Kieft J.S., Rissland O.S. (2018) Revisiting the closed-loop model and the nature of mRNA 5′–3′ communication. Mol. Cell. 72, 805–812.

  7. Archer S.K., Shirokikh N.E., Hallwirth C.V., Beilharz T.H., Preiss T. (2015) Probing the closed-loop model of mRNA translation in living cells. RNA Biol. 12, 248–254.

  8. Amrani N., Ghosh S., Mangus D.A., Jacobson A. (2008) Translation factors promote the formation of two states of the closed-loop mRNP. Nature. 453, 1276–1280.

  9. Kahvejian A., Svitkin Y.V., Sukarieh R., M’Boutchou M.N., Sonenberg N. (2005) Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev. 19, 104–113.

  10. Le H., Tanguay R.L., Balasta M.L., Wei C.C., Browning K.S., Metz A.M., Goss D.J., Gallie D.R. (1997) Translation initiation factors eIF-iso4G and eIF-4B interact with the poly(A)-binding protein and increase its RNA binding activity. J. Biol. Chem. 272, 16247–16255.

  11. Gross J.D., Moerke N.J., Von Der Haar T., Lugovskoy A.A., Sachs A.B., McCarthy J.E.G., Wagner G. (2003) Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell. 115, 739–750.

  12. Borman A.M., Yanne M., Kean K.M. (2000) Biochemical characterisation of cap-poly(A) synergy in rabbit reticulocyte lysates: the eIF4G-PABP interaction increases the functional affinity of eIF4E for the capped mRNA 5′-end. Nucl. Acids Res. 28, 4068–4075.

  13. Von Der Haar T., Ball P.D., McCarthy J.E.G. (2000) Stabilization of eukaryotic initiation factor 4E binding to the mRNA 5′-cap by domains of eIF4G. J. Biol. Chem. 275, 30551–30555.

  14. Machida K., Shigeta T., Yamamoto Y., Ito T., Svitkin Y., Sonenberg N., Imataka H. (2018) Dynamic interaction of poly(A)-binding protein with the ribosome. Sci. Rep. 8, 17435.

  15. Michel Y.M., Poncet D., Piron M., Kean K.M., Borman A.M. (2000) Cap-poly(A) synergy in mammalian cell-free extracts. Investigation of the requirements for poly(A)-mediated stimulation of translation initiation. J. Biol. Chem. 275, 32268–32276.

  16. Gallie D.R. (1991) The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 5, 2108–2116.

  17. Alekhina O.M., Terenin I.M., Dmitriev S.E., Vassilenko K.S. (2020) Functional cyclization of eukaryotic mRNAs. Internat. J. Mol. Sci. 21, 1–18.

  18. Rifo R.S., Ricci E.P., Decimo D., Moncorge O., Ohlmann T. (2007) Back to basics: the untreated rabbit reticulocyte lysate as a competitive system to recapitulate cap/poly(A) synergy and the selective advantage of IRES-driven translation. Nucl. Acids Res. 35, e121–e121.

  19. Safaee N., Kozlov G., Noronha A.M., Xie J., Wilds C.J., Gehring K. (2012) Interdomain allostery promotes assembly of the poly(A) mRNA complex with PABP and eIF4G. Mol. Cell. 48, 375–386.

  20. Craig A.W.B., Haghighat A., Yu A.T.K., Sonenberg N. (1998) Interaction of polyadenylate-binding protein with the eIF4G homologue PAIP enhances translation. Nature. 392, 520–523.

  21. Martineau Y., Derry M.C., Wang X., Yanagiya A., Berlanga J.J., Shyu A.-B., Imataka H., Gehring K., Sonenberg N. (2008) Poly(A)-Binding protein-interacting protein 1 binds to eukaryotic translation initiation factor 3 to stimulate translation. Mol. Cell. Biol. 28, 6658–6667.

  22. Groft C.M., Burley S.K. (2002) Recognition of eIF4G by rotavirus NSP3 reveals a basis for mRNA circularization. Mol. Cell. 9, 1273–1283.

  23. Nelson M.R., Leidal A.M., Smibert C.A. (2004) Drosophila cup is an eIF4E-binding protein that functions in Smaug-mediated translational repression. EMBO J. 23, 150–159.

  24. Adivarahan S., Livingston N., Nicholson B., Rahman S., Wu B., Rissland O.S., Zenklusen D. (2018) Spatial organization of single mRNPs at different stages of the gene expression pathway. Mol. Cell. 72, 727–738.e5.

  25. Haghighat A., Sonenberg N. (1997) eIF4G dramatically enhances the binding of eIF4E to the mRNA 5′-cap structure. J. Biol. Chem. 272, 21677–21680.

  26. Tarun S.Z., Sachs A.B. (1996) Association of the yeast poly(A) tail binding protein with translation initiation factor elF-4G. EMBO J. 15, 7168–7177.

  27. Bushell M., Wood W., Carpenter G., Pain V.M., Morley S.J., Clemens M.J. (2001) Disruption of the interaction of mammalian protein synthesis eukaryotic initiation factor 4B with the poly(A)-binding protein by caspase- and viral protease-mediated cleavages. J. Biol. Chem. 276, 23922–23928.

  28. Bannerman B.P., Kramer S., Dorrell R.G., Carrington M. (2018) Multispecies reconstructions uncover widespread conservation, and lineage-specific elaborations in eukaryotic mRNA metabolism. PLoS One. 13, 1–23.

  29. Cosson B., Berkova N., Couturier A., Chabelskaya S., Philippe M., Zhouravleva G. (2002) Poly(A)-binding protein and eRF3 are associated in vivo in human and Xenopus cells. Biol. Cell. 94, 205–216.

  30. Hoshino S., Imai M., Kobayashi T., Uchida N., Katada T. (1999) The eukaryotic polypeptide chain releasing factor (eRF3/GSPT) carrying the translation termination signal to the 3′-poly(A) tail of mRNA. J. Biol. Chem. 274, 16677–16680.

  31. Ivanov A., Mikhailova T., Eliseev B., Yeramala L., Sokolova E., Susorov D., Shuvalov A., Schaffitzel C., Alkalaeva E. (2016) PABP enhances release factor recruitment and stop codon recognition during translation termination. Nucl. Acids Res. 44, 7766–7776.

  32. Uchida N., Hoshino S. ichi, Imataka H., Sonenberg N., Katada T. (2002) A novel role of the mammalian GSPT/eRF3 associating with poly(A)-binding protein in cap/poly(A)-dependent translation. J. Biol. Chem. 277, 50286–50292.

  33. Cosson B., Couturier A., Chabelskaya S., Kiktev D., Inge-Vechtomov S., Philippe M., Zhouravleva G. (2002) Poly(A)-binding protein acts in translation termination via eukaryotic release factor 3 interaction and does not influence [PSI(+)] propagation. Mol. Cell. Biol. 22, 3301–3315.

  34. Ivanov A., Shuvalova E., Egorova T., Shuvalov A., Sokolova E., Bizyaev N., Shatsky I., Terenin I., Alkalaeva E. (2019) Polyadenylate-binding protein-interacting proteins PAIP1 and PAIP2 affect translation termination. J. Biol. Chem. 294, 8630–8639.

  35. Bonderoff J.M., Lloyd R.E. (2010) Time-dependent increase in ribosome processivity. Nucl. Acids Res. 38, 7054–7067.

  36. Costello J., Castelli L.M., Rowe W., Kershaw C.J., Talavera D., Mohammad-Qureshi S.S., Sims P.F.G., Grant C.M., Pavitt G.D., Hubbard S.J., Ashe M.P. (2015) Global mRNA selection mechanisms for translation initiation. Genome Biol. 16, 1–21.

  37. Smith R.W.P., Gray N.K. (2010) Poly(A)-binding protein (PABP): a common viral target. Biochem. J. 426, 1–12.

  38. Kulak N.A., Pichler G., Paron I., Nagaraj N., Mann M. (2014) Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat. Methods. 11, 319–324.

  39. Merrick W.C., Pavitt G.D. (2018) Protein synthesis initiation in eukaryotic cells. Cold Spring Harb. Perspect. Biol. 10, a033092.

  40. Singh G., Rebbapragada I., Lykke-Andersen J. (2008) A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. PLoS Biol. 6, 860–871.

  41. Ivanov P.V., Gehring N.H., Kunz J.B., Hentze M.W., Kulozik A.E. (2008) Interactions between UPF1, eRFs, PABP and the exon junction complex suggest an integrated model for mammalian NMD pathways. EMBO J. 27, 736–747.

  42. Aragón T., de la Luna S., Novoa I., Carrasco L., Ortín J., Nieto A. (2000) Eukaryotic translation initiation factor 4GI is a cellular target for NS1 protein, a translational activator of influenza virus. Mol. Cell. Biol. 20, 6259–6268.

  43. Burgui I., Aragón T., Ortín J., Nieto A. (2003) PABP1 and eIF4GI associate with influenza virus NS1 protein in viral mRNA translation initiation complexes. J. Gen. Virol. 84, 3263–3274.

  44. Vende P., Piron M., Castagne N., Poncet D. (2000) Efficient translation of rotavirus mrna requires simultaneous interaction of NSP3 with the eukaryotic translation initiation factor eIF4G and the mRNA 3′ end. J. Virol. 74, 7064–7071.

  45. Gratia M., Sarot E., Vende P., Charpilienne A., Baron C.H., Duarte M., Pyronnet S., Poncet D. (2015) Rotavirus NSP3 is a translational surrogate of the poly(A) binding protein-poly(A) complex. J. Virol. 89, 8773–8782.

  46. Harb M., Becker M.M., Vitour D., Baron C.H., Vende P., Brown S.C., Bolte S., Arold S.T., Poncet D. (2008) Nuclear localization of cytoplasmic poly(A)-binding protein upon rotavirus infection involves the interaction of NSP3 with eIF4G and RoXaN. J. Virol. 82, 11283–11293.

  47. Piron M., Vende P., Cohen J., Poncet D. (1998) Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F. EMBO J. 17, 5811–5821.

  48. Joachims M., Van Breugel P.C., Lloyd R.E. (1999) Cleavage of poly(A)-binding protein by enterovirus proteases concurrent with inhibition of translation in vitro. J. Virol. 73, 718–727.

  49. Kuyumcu-Martinez N.M., Van Eden M.E., Younan P., Lloyd R.E. (2004) Cleavage of poly(A)-binding protein by poliovirus 3C protease inhibits host cell translation: a novel mechanism for host translation shutoff. Mol. Cell. Biol. 24, 1779–1790.

  50. Prévôt D., Darlix J.L., Ohlmann T. (2003) Conducting the initiation of protein synthesis: the role of eIF4G. Biol. Cell. 95, 141–156.

  51. Guo L., Allen E.M., Miller W.A. (2001) Base-pairing between untranslated regions facilitates translation of uncapped, nonpolyadenylated viral RNA. Mol. Cell. 7, 1103–1109.

  52. Fabian M.R., White K.A. (2006) Analysis of a 3′-translation enhancer in a tombusvirus: a dynamic model for RNA-RNA interactions of mRNA termini. RNA. 12, 1304–1314.

  53. Nicholson B.L., White K.A. (2011) 3′ Cap-independent translation enhancers of positive-strand RNA plant viruses. Curr. Opin. Virol. 1, 373–380.

  54. Simon A.E., Miller W.A. (2013) 3′ Cap-independent translation enhancers of plant viruses. Annu. Rev. Microbiol. 67, 21–42.

  55. Sonenberg N., Hinnebusch A.G. (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell. 136, 731–745.

  56. Cho P.F., Poulin F., Cho-Park Y.A., Cho-Park I.B., Chicoine J.D., Lasko P., Sonenberg N. (2005) A new paradigm for translational control: inhibition via 5′-3′ mRNA tethering by Bicoid and the eIF4E cognate 4EHP. Cell. 121, 411–423.

  57. Cho P.F., Gamberi C., Cho-Park Y.A., Cho-Park I.B., Lasko P., Sonenberg N. (2006) Cap-dependent translational inhibition establishes two opposing morphogen gradients in Drosophila embryos. Curr. Biol. 16, 2035–2041.

  58. Stebbins-Boaz B., Cao Q., de Moor C.H., Mendez R., Richter J.D. (1999) Maskin Is a CPEB-associated factor that transiently interacts with eIF-4E. Mol. Cell. 4, 1017–1027.

  59. Minshall N., Reiter M.H., Weil D., Standart N. (2007) CPEB interacts with an ovary-specific eIF4E and 4E-T in early Xenopus oocytes. J. Biol. Chem. 282, 37389–37401.

  60. Nakamura A., Sato K., Hanyu-Nakamura K. (2004) Drosophila cup is an eIF4E binding protein that associates with bruno and regulates oskar mRNA translation in oogenesis. Dev. Cell. 6, 69–78.

  61. Richter J.D. (2007) CPEB: a life in translation. Trends Biochem. Sci. 32, 279–285.

  62. Kojima S., Sher-Chen E.L., Green C.B. (2012) Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression. Genes Dev. 26, 2724–2736.

  63. Kiriakidou M., Tan G.S., Lamprinaki S., De Planell-Saguer M., Nelson P.T., Mourelatos Z. (2007) An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell. 129, 1141–1151.

  64. Kapasi P., Chaudhuri S., Vyas K., Baus D., Komar A.A., Fox P.L., Merrick W.C., Mazumder B. (2007) L13a blocks 48S assembly: role of a general initiation factor in mRNA-specific translational control. Mol. Cell. 25, 113–126.

  65. Wang Z.F., Whitfield M.L., Ingledue T.C., Domin-ski Z., Marzluff W.F. (1996) The protein that binds the 3′ end of histone mRNA: a novel RNA-binding protein required for histone pre-mRNA processing. Genes Dev. 10, 3028–3040.

  66. Neusiedler J., Mocquet V., Limousin T., Ohlmann T., Morris C., Jalinot P. (2012) INT6 interacts with MIF4GD/SLIP1 and is necessary for efficient histone mRNA translation. RNA. 18, 1163–1177.

  67. Tan D., Marzluff W.F., Dominski Z., Tong L. (2013) Structure of histone mRNA stem-loop, human stem-loop binding protein, and 3′ hExo ternary complex. Science. 339, 318–321.

  68. Von Moeller H., Lerner R., Ricciardi A., Basquin C., Marzluff W.F., Conti E. (2013) Structural and biochemical studies of SLIP1-SLBP identify DBP5 and eIF3g as SLIP1-binding proteins. Nucl. Acids Res. 41, 7960–7971.

  69. Samuelsson T., Da M. (2008) Early evolution of histone mRNA 3′ end processing. RNA. 14, 1–10.

  70. Choe J., Lin S., Zhang W., Liu Q., Wang L., Ramirez-Moya J., Du P., Kim W., Tang S., Sliz P., Santisteban P., George R.E., Richards W.G., Wong K.-K., Locker N., Slack F.J., Gregory R.I. (2018) mRNA circularization by METTL3–eIF3h enhances translation and promotes oncogenesis. Nature. 561, 556–560.

  71. Fang L.T., Gelbart W.M., Ben-Shaul A. (2011) The size of RNA as an ideal branched polymer. J. Chem. Physics. 135, 19–21.

  72. Yoffe A.M., Prinsen P., Gelbart W.M., Ben-Shaul A. (2011) The ends of a large RNA molecule are necessarily close. Nucl. Acids Res. 39, 292–299.

  73. Clote P., Ponty Y., Steyaert J.M. (2012) Expected distance between terminal nucleotides of RNA secondary structures. J. Math. Biol. 65, 581–599.

  74. Fang L.T. (2011) The end-to-end distance of RNA as a randomly self-paired polymer. J. Theor. Biol. 280, 101–107.

  75. Han H.S.W., Reidys C.M. (2012) The 5′-3′ distance of RNA secondary structures. J. Comput. Biol. 19, 867–878.

  76. Leija-Martínez N., Casas-Flores S., Cadena-Nava R.D., Roca J.A., Mendez-Cabañas J.A., Gomez E., Ruiz-Garcia J. (2014) The separation between the 5′-3′ ends in long RNA molecules is short and nearly constant. Nucl. Acids Res. 42, 13963–13968.

  77. Lai W.-J.C., Kayedkhordeh M., Cornell E.V., Farah E., Bellaousov S., Rietmeijer R., Salsi E., Mathews D.H., Ermolenko D.N. (2018) mRNAs and lncRNAs intrinsically form secondary structures with short end-to-end distances. Nat. Commun. 9, 4328.

  78. Ermolenko D.N., Mathews D.H. (2021) Making ends meet: new functions of mRNA secondary structure. Wiley Interdiscip. Rev. RNA. 12, 1–14.

  79. Aw J.G.A., Shen Y., Wilm A., Sun M., Lim X.N., Boon K.L., Tapsin S., Chan Y.S., Tan C.P., Sim A.Y.L., Zhang T., Susanto T.T., Fu Z., Nagarajan N., Wan Y. (2016) In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation. Mol. Cell. 62, 603–617.

  80. Lu Z., Zhang Q.C., Lee B., Flynn R.A., Smith M.A., Robinson J.T., Davidovich C., Gooding A.R., Goodrich K.J., Mattick J.S., Mesirov J.P., Cech T.R., Chang H.Y. (2016) RNA duplex map in living cells reveals higher-order transcriptome structure. Cell. 165, 1267–1279.

  81. Sharma E., Sterne-Weiler T., O′Hanlon D., Blencowe B.J. (2016) Global mapping of human RNA–RNA interactions. Mol. Cell. 62, 618–626.

  82. Egorova T., Biziaev N., Shuvalov A., Sokolova E., Mukba S., Evmenov K., Zotova M., Kushchenko A., Shuvalova E., Alkalaeva E. (2021) eIF3j facilitates loading of release factors into the ribosome. Nucl. Acids Res. 49, 11181–11196.

  83. Skabkin M.A., Skabkina O.V., Hellen C.U.T., Pestova T.V. (2013) Reinitiation and other unconventional posttermination events during eukaryotic translation. Mol. Cell. 51, 249–264.

  84. Rajkowitsch L., Vilela C., Berthelot K., Ramirez C.V., McCarthy J.E.G. (2004) Reinitiation and recycling are distinct processes occurring downstream of translation termination in yeast. J. Mol. Biol. 335, 71–85.

  85. Tarun S.Z., Sachs A.B. (1995) A common function for mRNA 5′ and 3′ ends in translation initiation in yeast. Genes Dev. 9, 2997–3007.

  86. Kessler S.H., Sachs A.B. (1998) RNA recognition motif 2 of yeast PAB1p is required for its functional interaction with eukaryotic translation initiation factor 4G. Mol. Cell. Biol. 18, 51–57.

  87. Park E.-H., Zhang F., Warringer J., Sunnerhagen P., Hinnebusch A.G. (2011) Depletion of eIF4G from yeast cells narrows the range of translational efficiencies genome-wide. BMC Genomics. 12, 68.

  88. Altmann M., Linder P. (2010) Power of yeast for analysis of eukaryotic translation initiation. J. Biol. Chem. 285, 31907–31912.

  89. Borman A.M., Michel Y.M., Malnou C.E., Kean K.M. (2002) Free poly(A) stimulates capped mRNA translation in vitro through the eIF4G-poly(A)-binding protein interaction. J. Biol. Chem. 277, 36818–36824.

  90. Kawaguchi D., Shimizu S., Abe N., Hashiya F., Tomoike F., Kimura Y., Abe H. (2020) Translational control by secondary-structure formation in mRNA in a eukaryotic system. Nucleosides, Nucleotides Nucl. Acids. 39, 195–203.

  91. Wang Y., Wang Z. (2015) Efficient backsplicing produces translatable circular mRNAs. RNA. 21, 172–179.

  92. Chen C.Y., Sarnow P. (1995) Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science. 268, 415–417.

  93. Abe N., Matsumoto K., Nishihara M., Nakano Y., Shibata A., Maruyama H., Shuto S., Matsuda A., Yoshida M., Ito Y., Abe H. (2015) Rolling circle translation of circular RNA in living human cells. Sci. Rep. 5, 16435. https://doi.org/10.1038/srep16435

  94. Liu J., Liu T., Wang X., He A. (2017) Circles reshaping the RNA world: from waste to treasure. Mol. Cancer. 16, 1–12.

  95. Cortés-López M., Miura P. (2016) Focus: epigenetics: emerging functions of circular RNAs. Yale J. Biol. Med. 89, 527.

  96. Khong A., Parker R. (2018) mRNP architecture in translating and stress conditions reveals an ordered pathway of mRNP compaction. J. Cell Biol. 217, 4124–4140.

  97. Sen N.D., Zhou F., Harris M.S., Ingolia N.T., Hinnebusch A.G. (2016) eIF4B stimulates translation of long mRNAs with structured 5′ UTRs and low closed-loop potential but weak dependence on eIF4G. Proc. Natl. Acad. Sci. USA. 113, 10464–10472.

  98. Christensen A.K., Bourne C.M. (1999) Shape of large bound polysomes in cultured fibroblasts and thyroid epithelial cells. Anat. Rec. 255, 116–129.

  99. Shelton E., Kuff E.L. (1966) Substructure and configuration of ribosomes isolated from mammalian cells. J. Mol. Biol. 22, 23–31.

  100. Afonina Z.A., Myasnikov A.G., Shirokov V.A., Klaholz B.P., Spirin A.S. (2015) Conformation transitions of eukaryotic polyribosomes during multi-round translation. Nucl. Acids Res. 43, 618–628.

  101. Brandt F., Carlson L.A., Hartl F.U., Baumeister W., Grünewald K. (2010) The three-dimensional organization of polyribosomes in intact human cells. Mol. Cell. 39, 560–569.

  102. Afonina Z.A., Myasnikov A.G., Shirokov V.A., Klaholz B.P., Spirin A.S. (2014) Formation of circular polyribosomes on eukaryotic mRNA without cap-structure and poly(A)-tail: a cryo electron tomography study. Nucl. Acids Res. 42, 9461–9469.

  103. Arava Y., Wang Y., Storey J.D., Liu C.L., Brown P.O., Herschlag D. (2003) Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 100, 3889–3894.

  104. Thompson M.K., Rojas-Duran M.F., Gangaramani P., Gilbert W.V. (2016) The ribosomal protein Asc1/RACK1 is required for efficient translation of short mRNAs. ELife. 5, 1–22.

  105. Thompson M.K., Gilbert W.V. (2017) mRNA length-sensing in eukaryotic translation: reconsidering the “closed loop” and its implications for translational control. Curr. Genet. 63, 613–620.

  106. Çetin B., Leary S.E.O. (2021) mRNA- and factor-driven dynamic variability controls eIF4F-cap recognition for translation initiation. BioRxiv. 2021.06.17.448745; https://doi.org/10.1101/20

  107. Koch A., Aguilera L., Morisaki T., Munsky B., Stasevich T.J. (2020) Quantifying the dynamics of IRES and cap translation with single-molecule resolution in live cells. Nat. Struct. Mol. Biol. 27, 1095–1104.

  108. Subtelny A.O., Eichhorn S.W., Chen G.R., Sive H., Bartel D.P. (2014) Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature. 508, 66–71.

  109. Lim J., Lee M., Son A., Chang H., Kim V.N. (2016) MTAIL-seq reveals dynamic poly(A) tail regulation in oocyte-to-embryo development. Genes Dev. 30, 1671–1682.

  110. Park J.-E., Yi H., Kim Y., Chang H., Kim V.N. (2016) Regulation of poly(A) tail and translation during the somatic cell cycle. Mol. Cell. 62, 462–471.

  111. Елисеева И.А., Лябин Д.Н., Овчинников Л.П. (2013) Поли(А)-связывающие белки: строение, функции и регуляция активности. Успехи биол. химии. 53, 3–34.

  112. Hay N. (2004) Upstream and downstream of mTOR. Genes Dev. 18, 1926–1945.

Дополнительные материалы отсутствуют.