Молекулярная биология, 2022, T. 56, № 5, стр. 751-763

Онколитические вирусы в терапии лимфопролиферативных заболеваний

П. О. Воробьев a, Ф. Э. Бабаева b, А. В. Панова c, Я. Шакиба d, С. К. Кравченко b, А. В. Соболева a, А. В. Липатова a*

a Институт молекулярной биологии им. В.А. Энгельгардта Российской академии наук
119991 Москва, Россия

b Национальный медицинский исследовательский центр гематологии Министерства здравоохранения России
125167 Москва, Россия

c Институт общей генетики им. Н.И. Вавилова Российской академии наук
117971 Москва, Россия

d Московский физико-технический институт
141701 Долгопрудный, Московская обл., Россия

* E-mail: lipatovaanv@gmail.com

Поступила в редакцию 01.04.2022
После доработки 28.04.2022
Принята к публикации 04.05.2022

Аннотация

В настоящее время онкологические заболевания остаются одной из основных причин смертности. Несмотря на достижение значительных успехов в терапии лимфопролиферативных заболеваний (ЛПЗ), проблемы рецидивов и лекарственной резистентности до сих пор актуальны. Онколитические вирусы могут реплицироваться в опухолевых клетках и разрушать их, не воздействуя на нормальные, здоровые ткани. Активируя противоопухолевый иммунитет, вирусные препараты эффективны в отношении злокачественных новообразований различной природы. Для резистентных ЛПЗ описано много случаев ремиссии на фоне применения виротерапии. Благодаря современному уровню развития методов молекулярной биологии и накопленным знаниям о биологии вирусов и механизмах их взаимодействия с клеткой хозяина, удалось создать уникальные штаммы с высокой опухолевой специфичностью, которые вошли в широкое применение в клинической практике в последние годы.

Ключевые слова: лимфопролиферативные заболевания, спонтанная ремиссия, онколитические вирусы, клинические испытания, виротерапия

Список литературы

  1. Ivanowski D. (1892) Ueber die mosaikkrankheit der tabakspflanze. St. Petersb. Acad. Imp. Sci. Bul. 35, 67‒70.

  2. Dock G. (1904) The influence of complicating diseases upon leukemia. Am. J. Med. Sci. 127, 563.

  3. De Pace N. (1912) Sulla scomparsa di un enome canco vegetante del collo dell’utero senza cura chirurgica. Ginecologia. 9, 82‒89.

  4. Hoster H.A., Zanes R.P., Jr., Von Haam E. (1949) Studies in Hodgkin’s syndrome; the association of viral hepatitis and Hodgkin’s disease; a preliminary report. Cancer Res. 9, 473‒480.

  5. Higgins G.K., Pack G.T. (1951) Virus therapy in the treatment of tumors. Bull. Hosp. Joint Dis. 12, 379‒382.

  6. Koprowska I. (1953) Morphologic changes of exfoliated cells in effusions of cancer patients following induced viral infections; preliminary observations. Am. J. Pathol. 29, 1105‒1121.

  7. Moore A.E. (1954) Effects of viruses on tumors. Annu. Rev. Microbiol. 8, 393‒410.

  8. Huebner R.J., Bell J.A., Rowe W.P., Ward T.G., Suskind R.G., Hartley J.W., Paffenbarger R.S., Jr. (1955) Studies of adenoidal-pharyngeal-conjunctival vaccines in volunteers. J. Am. Med. Assoc. 159, 986‒989.

  9. Huebner R.J., Rowe W.P., Schatten W.E., Smith R.R., Thomas L.B. (1956) Studies on the use of viruses in the treatment of carcinoma of the cervix. Cancer. 9, 1211‒1218.

  10. Okuno Y., Asada T., Yamanishi K., Otsuka T., Takahashi M., Tanioka T., Aoyama H., Fukui O., Matsumoto K., Uemura F., Wada A. (1978) Studies on the use of mumps virus for treatment of human cancer. Biken J. 21, 37‒49.

  11. Ворошилова М.К. (1988) Вирусологические и иммунологические аспекты применения ЖЭВ при онкологических заболеваниях. В кн: Полезные для огранизма непатогенные штаммы энтеровирусов: Профилактическое и лечебное их применение. Москва: Изд-во Минздрава СССР, 24‒29.

  12. Ворошилова М.К., Тольская Е.А., Королева Г.А., Чумаков К.М., Чумаков П.М. (1970) Изучение биологических и морфологических свойств вирусов ECHO-1 и ЕСНО-12. Энтеровирусные инфекции. Труды ИПВЭ АМН СССР. Москва. 269–274.

  13. Babiker H.M., Riaz I.B., Husnain M., Borad M.J. (2017) Oncolytic virotherapy including RIGVIR and standard therapies in malignant melanoma. Oncolytic Virother. 6, 11‒18.

  14. Newman W., Southam C.M. (1954) Virus treatment in advanced cancer; a pathological study of fifty-seven cases. Cancer. 7, 106‒118.

  15. De Munck J., Binks A., McNeish I.A., Aerts J.L. (2017) Oncolytic virus-induced cell death and immunity: a match made in heaven? J. Leukoc. Biol. 102, 631‒643.

  16. Annels N.E., Mansfield D., Arif M., Ballesteros-Merino C., Simpson G.R., Denyer M., Sandhu S.S., Melcher A.A., Harrington K.J., Davies B., Au G., Grose M., Bagwan I., Fox B., Vile R., Mostafid H., Shafren D., Pandha H.S. (2019) Phase I trial of an ICAM-1-targeted immunotherapeutic-Coxsackievirus A21 (CVA21) as an oncolytic agent against non muscle-invasive bladder cancer. Clin. Cancer Res. 25, 5818‒5831.

  17. Dolgin E. (2015) Oncolytic viruses get a boost with first FDA-approval recommendation. Nat. Rev. Drug Discov. 14, 369‒371.

  18. Schmidt C. (2011) Amgen spikes interest in live virus vaccines for hard-to-treat cancers. Nat. Biotechnol. 29, 295‒296.

  19. Liang M. (2018) Oncorine, the world first oncolytic virus medicine and its update in China. Curr. Cancer Drug Targets. 18, 171‒176.

  20. Tseng J.C., Granot T., DiGiacomo V., Levin B., Meruelo D. (2010) Enhanced specific delivery and targeting of oncolytic sindbis viral vectors by modulating vascular leakiness in tumor. Cancer Gene Ther. 17, 244‒255.

  21. Matveeva O., Kochneva G., Netesov S., Onikienko S., Chumakov P. (2015) Mechanisms of oncolysis by paramyxovirus Sendai. Acta Naturae. 7, 6‒16.

  22. Maginnis M.S. (2018) Virus-receptor interactions: the key to cellular invasion. J. Mol. Biol. 430, 2590‒2611.

  23. Marsh M., Helenius A. (2006) Virus entry: open sesame. Cell. 124, 729‒740.

  24. Zhao X., Zhang G., Liu S., Chen X., Peng R., Dai L., Qu X., Li S., Song H., Gao Z., Yuan P., Liu Z., Li C., Shang Z., Li Y., Zhang M., Qi J., Wang H., Du N., Wu Y., Bi Y., Gao S., Shi Y., Yan J., Zhang Y., Xie Z., Wei W., Gao G.F. (2019) Human neonatal Fc receptor is the cellular uncoating receptor for enterovirus B. Cell. 177, 1553‒1565.e1516.

  25. Barrass S.V., Butcher S.J. (2020) Advances in high-throughput methods for the identification of virus receptors. Med. Microbiol. Immunol. 209, 309‒323.

  26. Dautzenberg I.J., van den Wollenberg D.J., van den Hengel S.K., Limpens R.W., Barcena M., Koster A.J., Hoeben R.C. (2014) Mammalian orthoreovirus T3D infects U-118 MG cell spheroids independent of junction adhesion molecule-A. Gene Ther. 21, 609‒617.

  27. Lipatova A.V., Le T.H., Sosnovtseva A.O., Babaeva F.E., Kochetkov D.V., Chumakov P.M. (2018) Relationship between cell receptors and tumor cell sensitivity to oncolytic enteroviruses. Bull. Exp. Biol. Med. 166, 58‒62.

  28. Huang Y.Y., Yu Z., Lin S.F., Li S., Fong Y., Wong R.J. (2007) Nectin-1 is a marker of thyroid cancer sensiti-vity to herpes oncolytic therapy. J. Clin. Endocrinol. Metab. 92, 1965‒1970.

  29. Friedman G.K., Langford C.P., Coleman J.M., Cassady K.A., Parker J.N., Markert J.M., Yancey Gillespie G. (2009) Engineered herpes simplex viruses efficiently infect and kill CD133+ human glioma xenograft cells that express CD111. J. Neurooncol. 95, 199‒209.

  30. Geoffroy K., Bourgeois-Daigneault M.C. (2020) The pros and cons of interferons for oncolytic virotherapy. Cytokine Growth Factor Rev. 56, 49‒58.

  31. Katze M.G., He Y., Gale M., Jr. (2002) Viruses and interferon: a fight for supremacy. Nat. Rev. Immunol. 2, 675‒687.

  32. Wollmann G., Robek M.D., van den Pol A.N. (2007) Variable deficiencies in the interferon response enhance susceptibility to vesicular stomatitis virus oncolytic actions in glioblastoma cells but not in normal human glial cells. J. Virol. 81, 1479‒1491.

  33. Jin K.T., Tao X.H., Fan Y.B., Wang S.B. (2021) Crosstalk between oncolytic viruses and autophagy in cancer therapy. Biomed. Pharmacother. 134, 110932.

  34. Choi A.H., O’Leary M.P., Lu J., Kim S.I., Fong Y., Chen N.G. (2018) Endogenous akt activity promotes virus entry and predicts efficacy of novel chimeric orthopoxvirus in triple-negative breast cancer. Mol. Ther. Oncolytics. 9, 22‒29.

  35. Chakrabarty R., Tran H., Selvaggi G., Hagerman A., Thompson B., Coffey M. (2015) The oncolytic virus, pelareorep, as a novel anticancer agent: a review. Invest. New Drugs. 33, 761‒774.

  36. Lin L., Su Z., Lebedeva I.V., Gupta P., Boukerche H., Rai T., Barber G.N., Dent P., Sarkar D., Fisher P.B. (2006) Activation of Ras/Raf protects cells from melanoma differentiation-associated gene-5-induced apoptosis. Cell Death Differ. 13, 1982‒1993.

  37. Noser J.A., Mael A.A., Sakuma R., Ohmine S., Marcato P., Lee P.W., Ikeda Y. (2007) The RAS/Raf1/ MEK/ERK signaling pathway facilitates VSV-mediated oncolysis: implication for the defective interferon response in cancer cells. Mol. Ther. 15, 1531‒1536.

  38. Blackham A.U., Northrup S.A., Willingham M., Sirintrapun J., Russell G.B., Lyles D.S., Stewart J.H. (2014) Molecular determinants of susceptibility to oncolytic vesicular stomatitis virus in pancreatic adenocarcinoma. J. Surg. Res. 187, 412‒426.

  39. Cascallo M., Capella G., Mazo A., Alemany R. (2003) Ras-dependent oncolysis with an adenovirus VAI mutant. Cancer Res. 63, 5544‒5550.

  40. Pikor L.A., Bell J.C., Diallo J.-S. (2015) Oncolytic viruses: exploiting cancer’s deal with the devil. Trends Cancer. 1, 266‒277.

  41. Li Q., Tainsky M.A. (2011) Epigenetic silencing of IRF7 and/or IRF5 in lung cancer cells leads to increased sensitivity to oncolytic viruses. PLoS One. 6, e28683.

  42. Levaditi C., Nicolau S. (1922) Sur le culture du virus vaccinal dans les neoplasmes epithelieux. CR Soc. Biol. 86, 928.

  43. Weller T.H., Robbins F.C., Enders J.F. (1949) Cultivation of poliomyelitis virus in cultures of human foreskin and embryonic tissues. Proc. Soc. Exp. Biol. Med. 72, 153‒155.

  44. Grayston J.T., Johnston P.B., Loosli C.G., Smith M.E. (1956) An improved technique for the neutralization test with adenoviruses in HeLa cell cultures. J. Infect. Dis. 99, 188‒198.

  45. Moore A.E. (1951) Inhibition of growth of five transplantable mouse tumors by the virus of Russian Far East encephalitis. Cancer. 4, 375‒382.

  46. Cassel W.A. (1957) Multiplication of influenza virus in the Ehrlich ascites carcinoma. Cancer Res. 17, 618‒622.

  47. Flanagan A.D., Love R., Tesar W. (1955) Propagation of Newcastle disease virus in Ehrlich ascites cells in vitro and in vivo. Proc. Soc. Exp. Biol. Med. 90, 82‒86.

  48. Nemunaitis J. (1999) Oncolytic viruses. Invest. New Drugs. 17, 375‒386.

  49. Suskind R.G., Huebner R.J., Rowe W.P., Love R. (1957) Viral agents oncolytic for human tumors in hete-rologous host; oncolytic effect of Coxsackie B viruses. Proc. Soc. Exp. Biol. Med. 94, 309‒318.

  50. Taylor M.W., Cordell B., Souhrada M., Prather S. (1971) Viruses as an aid to cancer therapy: regression of solid and ascites tumors in rodents after treatment with bovine enterovirus. Proc. Natl. Acad. Sci. USA. 68, 836‒840.

  51. Zakay-Roness Z., Bernkopf H. (1964) Effect of active and ultraviolet-irradiated inactive vaccinia virus on the development of Shay leukemia in rats. Cancer Res. 24, 373‒378.

  52. Pulvertaft J.V. (1964) Cytology of Burkitt’s tumour (African lymphoma). Lancet. 1, 238‒240.

  53. Epstein M.A., Barr Y.M. (1965) Characteristics and mode of growth of tissue culture strain (Eb1) of human lymphoblasts from Burkitt’s lymphoma. J. Natl. Cancer Inst. 34, 231‒240.

  54. Minowada J., Onuma T., Moore G.E. (1972) Rosette-forming human lymphoid cell lines. I. Establishment and evidence for origin of thymus-derived lymphocytes. J. Natl. Cancer Inst. 49, 891‒895.

  55. Koeffler H.P., Golde D.W. (1978) Acute myelogenous leukemia: a human cell line responsive to colony-stimulating activity. Science. 200, 1153‒1154.

  56. Lozzio B.B., Lozzio C.B. (1979) Properties and usefulness of the original K-562 human myelogenous leukemia cell line. Leuk. Res. 3, 363‒370.

  57. Sundstrom C., Nilsson K. (1976) Establishment and characterization of a human histiocytic lymphoma cell line (U-937). Int. J. Cancer. 17, 565‒577.

  58. Schneider U., Schwenk H.U., Bornkamm G. (1977) Characterization of EBV-genome negative “null” and “T” cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int. J. Cancer. 19, 621‒626.

  59. Hurwitz R., Hozier J., LeBien T., Minowada J., Gajl-Peczalska K., Kubonishi I., Kersey J. (1979) Characterization of a leukemic cell line of the pre-B phenotype. Int. J. Cancer. 23, 174‒180.

  60. Drexler H.G., Minowada J. (1998) History and classification of human leukemia-lymphoma cell lines. Leuk. Lymphoma. 31, 305‒316.

  61. Drexler H.G., MacLeod R.A. (2003) Leukemia-lymphoma cell lines as model systems for hematopoietic research. Ann. Med. 35, 404‒412.

  62. Maurer S., Salih H.R., Smirnow I., Lauer U.M., Berchtold S. (2019) Suicide gene‑armed measles vaccine virus for the treatment of AML. Int. J. Oncol. 55, 347‒358.

  63. Hall K., Scott K.J., Rose A., Desborough M., Harrington K., Pandha H., Parrish C., Vile R., Coffey M., Bowen D. (2012) Reovirus-mediated cytotoxicity and enhancement of innate immune responses against acute myeloid leukemia. BioRes. Open Access. 1(1), 3‒15.

  64. Madlambayan G.J., Bartee E., Kim M., Rahman M.M., Meacham A., Scott E.W., McFadden G., Cogle C.R. (2012) Acute myeloid leukemia targeting by myxoma virus in vivo depends on cell binding but not permissiveness to infection in vitro. Leuk. Res. 36, 619‒624.

  65. Koldehoff M., Lindemann M., Opalka B., Bauer S., Ross R.S., Elmaagacli A.H. (2015) Cytomegalovirus induces apoptosis in acute leukemia cells as a virus-versus-leukemia function. Leuk. Lymphoma. 56, 3189‒3197.

  66. Drexler H.G., Pommerenke C., Eberth S., Nagel S. (2018) Hodgkin lymphoma cell lines: to separate the wheat from the chaff. Biol. Chem. 399, 511‒523.

  67. Younes A., Drach J., Katz R., Jendiroba D., Sabourian M.H., Sarris A.H., Swan F., Jr., Hill D., Cabanillas F., Ford R., Andreeff M. (1994) Growth inhibition of follicular small-cleaved-cell lymphoma cells in short-term culture by interleukin-3. Ann. Oncol. 5, 265‒268.

  68. Бабаева Ф., Липатова А., Кочетков Д., Чумаков П., Кравченко С. (2019) Исследование репродукции онколитических вирусов в органных культурах лимфоидных опухолей человека. Онкогематология. 14, 84–90.

  69. Foxall R., Narang P., Glaysher B., Hub E., Teal E., Coles M.C., Ashton-Key M., Beers S.A., Cragg M.S. (2020) Developing a 3D B cell lymphoma culture system to model antibody therapy. Front. Immunol. 11, 605231.

  70. Lamaison C., Latour S., Helaine N., Le Morvan V., Saint-Vanne J., Mahouche I., Monvoisin C., Dussert C., Andrique L., Deleurme L., Dessauge E., Pangault C., Baulande S., Legoix P., Seffals M., Broca-Brisson L., Alessandri K., Carlotti M., Soubeyran P., Merlio J.P., Mourcin F., Nassoy P., Recher G., Tarte K., Bresson-Bepoldin L. (2021) A novel 3D culture model recapitulates primary FL B-cell features and promotes their survival. Blood Adv. 5, 5372‒5386.

  71. Bluming A.Z., Ziegler J.L. (1971) Regression of Burkitt’s lymphoma in association with measles infection. Lancet. 2, 105‒106.

  72. Webb H.E., Wetherley-Mein G., Smith C.E., McMahon D. (1966) Leukaemia and neoplastic processes treated with Langat and Kyasanur forest disease viruses: a clinical and laboratory study of 28 patients. Br. Med. J. 1, 258‒266.

  73. Pasquinucci G. (1971) Possible effect of measles on leukaemia. Lancet. 1, 136.

  74. Zygiert Z. (1971) Hodgkin’s disease: remissions after measles. Lancet. 1, 593.

  75. Mota H.C. (1973) Infantile hodgkin’s disease: remission after measles. Br. Med. J. 2, 421.

  76. Taqi A.M., Abdurrahman M.B., Yakubu A.M., Fleming A.F. (1981) Regression of Hodgkin’s disease after measles. Lancet. 1, 1112.

  77. Gross S. (1971) Measles and leukaemia. Lancet. 1, 397‒398.

  78. Romanets-Korbut O., Kovalevska L.M., Seya T., Sidorenko S.P., Horvat B. (2016) Measles virus hemagglutinin triggers intracellular signaling in CD150-expressing dendritic cells and inhibits immune response. Cell Mol. Immunol. 13, 828‒838.

  79. Naniche D., Varior-Krishnan G., Cervoni F., Wild T., Rossi B., Rabourdin-Combe C., Gerlier D. (1993) Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J. Virol. 67, 6025‒6032.

  80. Anderson B.D., Nakamura T., Russell S.J., Peng K.W. (2004) High CD46 receptor density determines pre-ferential killing of tumor cells by oncolytic measles virus. Cancer Res. 64, 4919‒4926.

  81. Dorig R., Marcil A., Chopra A. (1993) The human CD46 molecule is a receptor for measles virus (Edmonston strain) cell. Cell. 75, 295–305.

  82. Mateo M., Navaratnarajah C.K., Syed S., Cattaneo R. (2013) The measles virus hemagglutinin β-propeller head β4-β5 hydrophobic groove governs functional interactions with nectin-4 and CD46 but not those with the signaling lymphocytic activation molecule. J. Virol. 87, 9208‒9216.

  83. Jurianz K., Ziegler S., Garcia-Schüler H., Kraus S., Bohana-Kashtan O., Fishelson Z., Kirschfink M. (1999) Complement resistance of tumor cells: basal and induced mechanisms. Mol. Immunol. 36, 929‒939.

  84. Surowiak P., Materna V., Maciejczyk A., Kaplenko I., Spaczynski M., Dietel M., Lage H., Zabel M. (2006) CD46 expression is indicative of shorter revival-free survival for ovarian cancer patients. Anticancer Res. 26(6C), 4943‒4948.

  85. Allen C., Vongpunsawad S., Nakamura T., James C.D., Schroeder M., Cattaneo R., Giannini C., Krempski J., Peng K.-W., Goble J.M. (2006) Retargeted oncolytic measles strains entering via the EGFRvIII receptor maintain significant antitumor activity against gliomas with increased tumor specificity. Cancer Res. 66, 11840‒11850.

  86. Munoz-Alia M.A., Nace R.A., Tischer A., Zhang L., Bah E.S., Auton M., Russell S.J. (2021) MeV-stealth: a CD46-specific oncolytic measles virus resistant to neutralization by measles-immune human serum. PLoS Pathog. 17, e1009283.

  87. Msaouel P., Iankov I.D., Allen C., Russell S.J., Galanis E. (2012) Oncolytic measles virus retargeting by ligand display. Methods Mol. Biol. 797, 141‒162.

  88. Gambichler T., Boms S., Hessam S., Tischoff I., Tannapfel A., Luttringhaus T., Beckman J., Stranzenbach R. (2021) Primary cutaneous anaplastic large-cell lymphoma with marked spontaneous regression of organ manifestation after SARS-CoV-2 vaccination. Br. J. Dermatol. 185, 1259‒1262.

  89. Cutts F.T., Markowitz L.E. (1994) Successes and failures in measles control. J. Infect. Dis. 170, S32‒S41.

  90. Heinzerling L., Kunzi V., Oberholzer P.A., Kundig T., Naim H., Dummer R. (2005) Oncolytic measles virus in cutaneous T-cell lymphomas mounts antitumor immune responses in vivo and targets interferon-resistant tumor cells. Blood. 106, 2287‒2294.

  91. Allen C., Paraskevakou G., Liu C., Iankov I.D., Msaouel P., Zollman P., Myers R., Peng K.W., Russell S.J., Galanis E. (2008) Oncolytic measles virus strains in the treatment of gliomas. Expert Opin. Biol. Ther. 8(2), 213‒220.

  92. Galanis E., Hartmann L.C., Cliby W.A., Long H.J., Peethambaram P.P., Barrette B.A., Kaur J.S., Haluska P.J., Aderca I., Zollman P.J. (2010) Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res. 70, 875‒882.

  93. Iankov I.D., Msaouel P., Allen C., Federspiel M.J., Bulur P.A., Dietz A.B., Gastineau D., Ikeda Y., Ingle J.N., Russell S.J. (2010) Demonstration of anti-tumor activity of oncolytic measles virus strains in a malignant pleural effusion breast cancer model. Breast Cancer Res. Treat. 122, 745‒754.

  94. Liu C., Sarkaria J.N., Petell C.A., Paraskevakou G., Zollman P.J., Schroeder M., Carlson B., Decker P.A., Wu W., James C.D. (2007) Combination of measles virus virotherapy and radiation therapy has synergistic activity in the treatment of glioblastoma multiforme. Clin. Cancer Res. 13, 7155‒7165.

  95. Msaouel P., Iankov I.D., Allen C., Morris J.C., Von Messling V., Cattaneo R., Koutsilieris M., Russell S.J., Galanis E. (2009) Engineered measles virus as a novel oncolytic therapy against prostate cancer. Prostate. 69, 82‒91.

  96. Dingli D., Peng K.W., Harvey M.E., Greipp P.R., O’Connor M.K., Cattaneo R., Morris J.C., Russell S.J. (2004) Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood. 103, 1641‒1646.

  97. Ong H.T., Timm M.M., Greipp P.R., Witzig T.E., Dispenzieri A., Russell S.J., Peng K.W. (2006) Oncolytic measles virus targets high CD46 expression on multiple myeloma cells. Exp. Hematol. 34, 713‒720.

  98. Muller L., Berkeley R., Barr T., Ilett E., Errington-Mais F. (2020) Past, present and future of oncolytic reovirus. Cancers (Basel). 12, 3219.

  99. Carew J.S., Espitia C.M., Zhao W., Kelly K.R., Coffey M., Freeman J.W., Nawrocki S.T. (2013) Reolysin is a novel reovirus-based agent that induces endoplasmic reticular stress-mediated apoptosis in pancreatic cancer. Cell Death Dis. 4, e728.

  100. Berkeley R.A., Steele L.P., Mulder A.A., van den Wollenberg D.J.M., Kottke T.J., Thompson J., Coffey M., Hoeben R.C., Vile R.G., Melcher A., Ilett E.J. (2018) Antibody-neutralized reovirus is effective in oncolytic virotherapy. Cancer Immunol. Res. 6, 1161‒1173.

  101. Kelly K.R., Espitia C.M., Zhao W., Wendlandt E., Tricot G., Zhan F., Carew J.S., Nawrocki S.T. (2015) Junctional adhesion molecule-A is overexpressed in advanced multiple myeloma and determines response to oncolytic reovirus. Oncotarget. 6, 41275‒41289.

  102. Strong J.E., Coffey M.C., Tang D., Sabinin P., Lee P.W. (1998) The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J. 17, 3351‒3362.

  103. Phillips M.B., Stuart J.D., Rodriguez Stewart R.M., Berry J.T., Mainou B.A., Boehme K.W. (2018) Current understanding of reovirus oncolysis mechanisms. Oncolytic. Virother. 7, 53‒63.

  104. Nikolic J., Belot L., Raux H., Legrand P., Gaudin Y., Albertini A.A. (2018) Structural basis for the recognition of LDL-receptor family members by VSV glycoprotein. Nat. Commun. 9, 1029.

  105. Dunn G.P., Bruce A.T., Ikeda H., Old L.J., Schreiber R.D. (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3, 991‒998.

  106. Finkelshtein D., Werman A., Novick D., Barak S., Rubinstein M. (2013) LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc. Natl. Acad. Sci. USA. 110, 7306‒7311.

  107. Qiao J., Kottke T., Willmon C., Galivo F., Wongthida P., Diaz R.M., Thompson J., Ryno P., Barber G.N., Chester J., Selby P., Harrington K., Melcher A., Vile R.G. (2008) Purging metastases in lymphoid organs using a combination of antigen-nonspecific adoptive T cell therapy, oncolytic virotherapy and immunotherapy. Nat. Med. 14, 37‒44.

  108. Lichty B.D., Power A.T., Stojdl D.F., Bell J.C. (2004) Vesicular stomatitis virus: re-inventing the bullet. Trends Mol. Med. 10, 210‒216.

  109. Shen W., Patnaik M.M., Ruiz A., Russell S.J., Peng K.W. (2016) Immunovirotherapy with vesicular stomatitis virus and PD-L1 blockade enhances therapeutic outcome in murine acute myeloid leukemia. Blood. 127, 1449‒1458.

  110. Hastie E., Cataldi M., Marriott I., Grdzelishvili V.Z. (2013) Understanding and altering cell tropism of vesicular stomatitis virus. Virus Res. 176(1‒2), 16‒32.

  111. Jenner E. (1800) Dr. Jenner on the vaccine inoculation. Med. Phys. J. 3(16), 502‒503.

  112. Hansen R.M., Libnoch J.A. (1978) Remission of chronic lymphocytic leukemia after smallpox vaccination. Arch. Intern. Med. 138, 1137‒1138.

  113. Lei W., Wang S., Xu N., Chen Y., Wu G., Zhang A., Chen X., Tong Y., Qian W. (2020) Enhancing therapeutic efficacy of oncolytic vaccinia virus armed with Beclin-1, an autophagic gene in leukemia and myeloma. Biomed. Pharmacother. 125, 110030.

  114. Futami M., Sato K., Miyazaki K., Suzuki K., Nakamura T., Tojo A. (2017) Efficacy and safety of doubly-regulated vaccinia virus in a mouse xenograft model of multiple myeloma. Mol. Ther. Oncolytics. 6, 57‒68.

  115. Deng H., Tang N., Stief A.E., Mehta N., Baig E., Head R., Sleep G., Yang X.Z., McKerlie C., Trudel S., Stewart A.K., McCart J.A. (2008) Oncolytic virothe-rapy for multiple myeloma using a tumour-specific double-deleted vaccinia virus. Leukemia. 22, 2261‒2264.

  116. Guo Z.S., Lu B., Guo Z., Giehl E., Feist M., Dai E., Liu W., Storkus W.J., He Y., Liu Z., Bartlett D.L. (2019) Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. J. Immunother. Cancer. 7, 6.

  117. Thorne S.H., Hwang T.H., O’Gorman W.E., Bartlett D.L., Sei S., Kanji F., Brown C., Werier J., Cho J.H., Lee D.E., Wang Y., Bell J., Kirn D.H. (2007) Rational strain selection and engineering creates a broad-spectrum, systemically effective oncolytic poxvirus, JX-963. J. Clin. Invest. 117, 3350‒3358.

  118. Zhou S., Zhang M., Zhang J., Shen H., Tangsakar E., Wang J. (2012) Mechanisms of apoptin-induced cell death. Med. Oncol. 29, 2985‒2991.

  119. Kowalsky S.J., Liu Z., Feist M., Berkey S.E., Ma C., Ravindranathan R., Dai E., Roy E.J., Guo Z.S., Bartlett D.L. (2018) Superagonist IL-15-armed oncolytic virus elicits potent antitumor immunity and therapy that are enhanced with PD-1 blockade. Mol. Ther. 26, 2476‒2486.

  120. Lei W., Wang S., Yang C., Huang X., Chen Z., He W., Shen J., Liu X., Qian W. (2016) Combined expression of miR-34a and Smac mediated by oncolytic vaccinia virus synergistically promote anti-tumor effects in multiple myeloma. Sci. Rep. 6, 32174.

  121. Topp M.S., Gokbuget N., Zugmaier G., Klappers P., Stelljes M., Neumann S., Viardot A., Marks R., Diedrich H., Faul C., Reichle A., Horst H.A., Bruggemann M., Wessiepe D., Holland C., Alekar S., Mergen N., Einsele H., Hoelzer D., Bargou R.C. (2014) Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J. Clin. Oncol. 32, 4134‒4140.

  122. Lei W., Ye Q., Hao Y., Chen J., Huang Y., Yang L., Wang S., Qian W. (2022) CD19-targeted bite expression by an oncolytic vaccinia virus significantly augments therapeutic efficacy against B-cell lymphoma. Blood Cancer J. 12, 35.

  123. Yurchenko K.S., Zhou P., Kovner A.V., Zavjalov E.L., Shestopalova L.V., Shestopalov A.M. (2018) Oncolytic effect of wild-type Newcastle disease virus isolates in cancer cell lines in vitro and in vivo on xenograft model. PLoS One. 13, e0195425.

  124. Zhang S., Sun Y., Chen H., Dai Y., Zhan Y., Yu S., Qiu X., Tan L., Song C., Ding C. (2014) Activation of the PKR/eIF2α signaling cascade inhibits replication of Newcastle disease virus. Virol. J. 11, 62. https://doi.org/10.1186/1743-422X-11-62

  125. Матвеева О.В., Кочнева Г.В., Зайнутдинов С.С., Ильинская Г.В., Чумаков П.М. (2018) Онколитические парамиксовирусы: механизм действия, доклинические и клинические исследования. Молекуляр. биология. 52(3), 360‒379.

  126. Cassel W.A., Garrett R.E. (1965) Newcastle disease virus as an antineoplastic agent. Cancer. 18, 863‒868.

  127. Bar-Eli N., Giloh H., Schlesinger M., Zakay-Rones Z. (1996) Preferential cytotoxic effect of Newcastle disease virus on lymphoma cells. J. Cancer Res. Clin. Oncol. 122, 409‒415.

  128. Eaton M.D., Almquist S.J. (1975) Antibody response of syngeneic mice to membrane antigens from NDV-lnfected lymphoma. Proc. Soc. Exp. Biol. Med. 148, 1090‒1094.

  129. Eaton M.D., Levinthal J.D., Scala A.R. (1967) Contribution of antiviral immunity to oncolysis by Newcastle disease virus in a murine lymphoma. J. Natl. Cancer Inst. 39, 1089‒1097.

  130. Al-Shammari A.M., Rameez H., Al-Taee M.F. (2016) Newcastle disease virus, rituximab, and doxorubicin combination as anti-hematological malignancy therapy. Oncolytic Virother. 5, 27‒34.

  131. Klafuric E. (2022) Combining Newcastle disease virus and decitabine enhances leukemia cell death in models of murine acute T-cell lymphocytic and acute myeloid leukemias. Thesis of Master of Science in Pathobiology, University of Guelph. https://atrium.lib.uoguelph.ca/ xmlui/handle/10214/26655

  132. Wheelock E.F., Dingle J.H. (1964) Observations on the repeated administration of viruses to a patient with acute leukemia. A preliminary report. N. Engl. J. Med. 271, 645‒651.

  133. Lorence R.M., Scot Roberts M., O’Neil J.D., Gro-ene W.S., Miller J.A., Mueller S.N., Bamat M.K. (2007) Phase 1 clinical experience using intravenous administration of PV701, an oncolytic Newcastle disease virus. Curr. Cancer Drug Targets. 7, 157‒167.

  134. Csatary L., Eckhardt S., Bukosza I., Czegledi F., Fenyvesi C., Gergely P., Bodey B., Csatary C. (1993) Attenuated veterinary virus vaccine for the treatment of cancer. Cancer Detect. Prev. 17, 619‒627.

  135. Liang W., Wang H., Sun T.-M., Yao W.-Q., Chen L.-L., Jin Y., Li C.-L., Meng F.-J. (2003) Application of autologous tumor cell vaccine and NDV vaccine in treatment of tumors of digestive traet. World J. Gastroenterol. 9, 495‒498.

  136. Au G.G., Beagley L.G., Haley E.S., Barry R.D., Shafren D.R. (2011) Oncolysis of malignant human melanoma tumors by Coxsackieviruses A13, A15 and A18. Virol. J. 8, 22.

  137. Berry L.J., Au G.G., Barry R.D., Shafren D.R. (2008) Potent oncolytic activity of human enteroviruses against human prostate cancer. Prostate. 68, 577‒587.

  138. Haley E.S., Au G.G., Carlton B.R., Barry R.D., Shafren D.R. (2009) Regional administration of oncolytic Echovirus 1 as a novel therapy for the peritoneal disse-mination of gastric cancer. J. Mol. Med. 87, 385‒399.

  139. Муцениеце А.Я. (1978) Изучение чувствительности меланом человека к энтеровирусам, адаптированным к этим опухолям. В кн: Вирусы в терапии опухолей. Рига: Зинатне, 175‒189.

  140. Dobrikova E.Y., Broadt T., Poiley-Nelson J., Yang X., Soman G., Giardina S., Harris R., Gromeier M. (2008) Recombinant oncolytic poliovirus eliminates glioma in vivo without genetic adaptation to a pathogenic phenotype. Mol. Ther. 16, 1865‒1872.

  141. Gromeier M., Lachmann S., Rosenfeld M.R., Gutin P.H., Wimmer E. (2000) Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc. Natl. Acad. Sci. USA. 97, 6803‒6808.

  142. Toyoda H., Ido M., Hayashi T., Gabazza E.C., Suzuki K., Kisenge R.R., Kang J., Hori H., Komada Y. (2004) Experimental treatment of human neuroblastoma using live-attenuated poliovirus. Int. J. Oncol. 24, 49‒58.

  143. Toyoda H., Wimmer E., Cello J. (2011) Oncolytic poliovirus therapy and immunization with poliovirus-infected cell lysate induces potent antitumor immunity against neuroblastoma in vivo. Int. J. Oncol. 38, 81‒87.

  144. Au G.G., Lincz L.F., Enno A., Shafren D.R. (2007) Oncolytic Coxsackievirus A21 as a novel therapy for multiple myeloma. Br. J. Haematol. 137, 133‒141.

  145. Au G.G., Lindberg A.M., Barry R.D., Shafren D.R. (2005) Oncolysis of vascular malignant human melanoma tumors by Coxsackievirus A21. Int. J. Oncol. 26, 1471‒1476.

  146. Skelding K.A., Barry R.D., Shafren D.R. (2009) Systemic targeting of metastatic human breast tumor xenografts by Coxsackievirus A21. Breast Cancer Res. Treat. 113, 21‒30.

  147. Чумаков М.П., Ворошилова М.К., Анцупова А.С., Бойко В.М., Блинова М.И., Приймяги Л.С., Родин В.И., Сейбиль В.Б., Синяк К.М., Смородинцев А.А., Степанчук В.А., Терехов С.Н., Трофимова Л.И., Чумаков П.М. (1992) Живые энтеровирусные вакцины для экстренной неспецифичес-кой профилактики массовых респираторных заболеваний во время осенне-зимних эпидемий гриппа и острых респираторных заболеваний. Журн. микробиологии, эпидемиологии и иммунобиологии. 11–12, 37‒40.

  148. Ворошилова М.К. (1970) Живые энтеровирусные вакцины. Материалы 13 Всесоюзного съезда эпидемиологов, микробиологов и инфекционистов. Тбилиси, 355.

  149. Voroshilova M.K. (1989) Potential use of nonpathogenic enteroviruses for control of human disease. Prog. Med. Virol. 36, 191‒202.

  150. Ворошилова М.К., Горюнова А.Г., Горбачкова Е.А., Чумаков П.М., Оганян Г.Р., Кодкинд Г.X. (1977) Изучение клеточного иммунитета у онкологических больных в процессе бессимптомной энтеровирусной инфекции. В кн.: Виротерапия и искусственная гетерогенизацпя опухолей. Рига: Зинатне, 17‒19.

  151. Hu J.C., Coffin R.S., Davis C.J., Graham N.J., Groves N., Guest P.J., Harrington K.J., James N.D., Love C.A., McNeish I., Medley L.C., Michael A., Nutting C.M., Pandha H.S., Shorrock C.A., Simpson J., Steiner J., Steven N.M., Wright D., Coombes R.C. (2006) A phase I study of OncovexGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin. Cancer Res. 12, 6737‒6747.

  152. Shimizu Y., Hasumi K., Okudaira Y., Yamanishi K., Takahashi M. (1988) Immunotherapy of advanced gynecologic cancer patients utilizing mumps virus. Cancer Detect. Prev. 12, 487‒495.

  153. Stepanenko A.A., Chekhonin V.P. (2018) A compendium of adenovirus genetic modifications for enhanced replication, oncolysis, and tumor immunosurveillance in cancer therapy. Gene. 679, 11‒18.

  154. Kirn D., Hermiston T., McCormick F. (1998) ONYX-015: clinical data are encouraging. Nat. Med. 4, 1341‒1342.

  155. Pasin F., Mascalchi Calveri M., Calabrese A., Pizzarelli G., Bongiovanni I., Andreoli M., Cattaneo C., Rignanese G. (2020) Oncolytic effect of SARV-CoV2 in a patient with NK lymphoma. Acta Biomed. 91(3), e2020047.

  156. Paz A., Condori X., Hofmann A., Soares T., Predebon V., Siqueira V., Dortzbacher F., Calvache E., Gomes C., Portich J. (2021) SARS-CoV-2 induced remission of diffuse large B-cell lymphoma: a case report. Hematol. Transfusion Cell Therapy. 43(S1), s103. https://doi.org/10.1016/j.htct.2021.10.175

  157. Kandeel E.Z., Refaat L., Abdel-Fatah R., Samra M., Bayoumi A., Abdellateif M.S., Abdel-Hady H., Ali M., Khafagy M. (2021) Could COVID-19 induce remission of acute leukemia? Hematology. 26, 870‒873.

  158. Ohadi L., Hosseinzadeh F., Dadkhahfar S., Nasiri S. (2022) Oncolytic effect of SARS-CoV-2 in a patient with mycosis fungoides (MF): a case repor Clin. Case Rep. 10(4), e05682.

  159. Nechipurenko Y.D., Anashkina A.A., Matveeva O.V. (2020) Change of antigenic determinants of SARS-CoV-2 virus S-protein as a possible cause of antibody-dependent enhancement of virus infection and cytokine storm. Biophysics (Oxford). 65, 703‒709.

  160. Markert J.M., Liechty P.G., Wang W., Gaston S., Braz E., Karrasch M., Nabors L.B., Markiewicz M., Lakeman A.D., Palmer C.A., Parker J.N., Whitley R.J., Gillespie G.Y. (2009) Phase Ib trial of mutant herpes simplex virus G207 inoculated pre-and post-tumor resection for recurrent GBM. Mol. Ther. 17, 199‒207.

  161. Sun L., Funchain P., Song J.M., Rayman P., Tannenbaum C., Ko J., McNamara M., Marcela Diaz-Montero C., Gastman B. (2018) Talimogene laherparepvec combined with anti-PD-1 based immunotherapy for unresectable stage III‒IV melanoma: a case series. J. Immunother. Cancer. 6, 36.

  162. Mell L.K., Brumund K.T., Daniels G.A., Advani S.J., Zakeri K., Wright M.E., Onyeama S.J., Weisman R.A., Sanghvi P.R., Martin P.J., Szalay A.A. (2017) Phase I trial of intravenous oncolytic vaccinia virus (GL-ONC1) with cisplatin and radiotherapy in patients with locoregionally advanced head and neck carcinoma. Clin. Cancer Res. 23, 5696‒5702.

  163. Beasley G.M., Nair S.K., Farrow N.E., Landa K., Selim M.A., Wiggs C.A., Jung S.H., Bigner D.D., True Kelly A., Gromeier M., Salama A.K. (2021) Phase I trial of intratumoral PVSRIPO in patients with unresectable, treatment-refractory melanoma. J. Immunother. Cancer. 9, e002203

Дополнительные материалы отсутствуют.