Молекулярная биология, 2023, T. 57, № 3, стр. 387-410

Улучшение культурных растений при помощи системы CRISPR/Cas: новые гены-мишени

Ю. В. Ухатова a*, М. В. Ерастенкова a, Е. С. Коршикова a, Е. А. Крылова a, А. С. Михайлова a, Т. В. Семилет a, Н. Г. Тихонова a, Н. А. Швачко a, Е. К. Хлесткина a

a Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений им. Н.И. Вавилова
190000 Санкт-Петербург, Россия

* E-mail: sci_secretary@vir.nw.ru

Поступила в редакцию 04.05.2022
После доработки 23.09.2022
Принята к публикации 07.10.2022

Аннотация

Успехи геномного редактирования сельскохозяйственных культур с использованием системы CRISPR/Cas в большой степени зависят от правильного выбора генов-мишеней, направленные изменения в которых позволят повысить урожайность, улучшить качество растительного сырья и устойчивость к биотическим и абиотическим стрессирующим факторам. В настоящей работе систематизированы и каталогизированы сведения о генах-мишенях, использованных для улучшения культурных растений. В последнем систематическом обзоре рассмотрены статьи, индексируемые в базе данных Scopus, опубликованные на 17.08.2019 г. В нашей работе охвачен период с 18.08.2019 по 15.03.2022 гг. Поиск по заданному алгоритму позволил выявить 2090 статей, среди которых только 685 содержат результаты редактирования генов 28 видов культурных растений (поиск проведен по 56 культурам). В значительной части этих публикаций рассмотрено либо редактирование генов-мишеней, проведенное ранее в аналогичных работах, либо исследования относились к сфере обратной генетики, и только 136 статей содержат данные о редактировании новых генов-мишеней, модификация которых направлена на улучшение селекционно значимых признаков растений. Всего за весь период применения системы CRISPR/Cas с целью улучшения селекционно значимых свойств редактированию были подвергнуты 287 генов-мишеней культурных растений. В настоящем обзоре представлен подробный анализ редактирования новых генов-мишеней. Чаще всего целью этих работ было повышение урожайности и устойчивости растений к болезням, а также улучшение свойств растительного сырья. Отмечено, удалось ли на момент публикации получить стабильные трансформанты, применялось ли редактирование к немодельным сортам. Существенно расширен спектр модифицированных сортов ряда культур, в частности, пшеницы, риса, сои, томата, картофеля, рапса, винограда, кукурузы. В подавляющем большинстве случаев редактирующие конструкции доставляли с использованием агробактериальной трансформации, реже – биобаллистики, трансфекции протопластов и гаплоиндукторов. Желаемого изменения признаков чаще всего удавалось достичь при помощи нокаута генов. В отдельных случаях осуществляли нокдаун и замены нуклеотидов в гене-мишени. Для получения нуклеотидных замен в генах культурных растений все чаще используют редактирование отдельных оснований (base-editing) и технологию поиска и замены (prime-editing). Появление удобной системы редактирования CRISPR/Cas способствовало развитию молекулярной частной генетики многих культурных видов растений.

Ключевые слова: CRISPR/Cas, биотехнология, гены-мишени, геномное редактирование, культурные растения, направленный мутагенез

Список литературы

  1. Korotkova A.M., Gerasimova S.V., Shumny V.K., Khlestkina E.K. (2017) Crop genes modified using the CRISPR/Cas system. Russ. J. Genet. 7(8), 822–832.https://doi.org/10.1134/S2079059717050124)

  2. Короткова А.М., Герасимова С.В., Хлесткина Е.К. (2019) Текущие достижения в области модификации генов культурных растений с использованием системы CRISPR/Cas. Вавил. журн. генет. cелекции. 23(1), 29–37.

  3. Zegeye W.A., Chen D., Islam M., Wang H., Riaz A., Rani M.H., Hussain K., Liu Q., Zhan X., Cheng S., Cao L., Zhang Y. (2022) OsFBK4, a novel GA insensitive gene positively regulates plant height in rice (Oryza sativa L.). Ecol. Genet. Genom. 23. https://doi.org/10.1016/j.egg.2022.100115

  4. Wu Q., Liu Y., Huang J. (2022) CRISPR-Cas9 mediated mutation in OsPUB43 improves grain length and weight in rice by promoting cell proliferation in spikelet hull. Int. J. Mol. Sci. 23(4), 2347. https://doi.org/10.3390/ijms23042347

  5. Kim C.Y., Park J.Y., Choi G., Kim S., Vo K.T.X., Jeon J.S., Kang S., Lee Y.H. (2022) A rice gene encoding glycosyl hydrolase plays contrasting roles in immunity depending on the type of pathogens. Mol. Plant Pathol. 23(3), 400–416. https://doi.org/10.1111/mpp.13167

  6. Li B., Du X., Fei Y., Wang F., Xu Y., LI X., Li W., Chen Z., Fan F., Wang J., Tao Y., Jiang Y., Zhu Q.‑H., Yang J. (2021) Efficient breeding of early-maturing rice cultivar by editing PHYC via CRISPR/Cas9. Rice. 14, 86. https://doi.org/10.1186/s12284-021-00527-3

  7. Hu J., Huang L., Chen G., Liu H., Zhang Y., Zhang R., Zhang S., Liu J., Hu Q., Hu F., Wang W., Ding Y. (2021) The elite alleles of OsSPL4 regulate grain size and increase grain yield in rice. Rice. 14, 90. https://doi.org/10.1186/s12284-021-00531-7

  8. Duy P.N., Lan D.T., Thu H.P., Thanh H.N., Pham N.P., Auguy F., Thi B.T.H., Manh T.B., Cunnac S., Pham X.H. (2021) Improved bacterial leaf blight disease resistance in the major elite Vietnamese rice cultivar TBR225 via editing of the OsSWEET14 promoter. PLoS One. 16(9), e0255470. https://doi.org/10.1371/journal.pone.0255470

  9. Dong S., Dong X., Han X., Zhang F., Zhu Y., Xin X., Wang Y., Hu Y., Yuan D., Wang J., Huang Z., Niu F., Hu Z., Yan P., Cao L., He H., Fu J., Xin Y., Tan Y., Mao B., Zhao B., Yang J., Yuan L., Luo X. (2021) OsPDCD5 negatively regulates plant architecture and grain yield in rice. Proc. Natl. Acad. Sci. USA. 118(29), e2018799118. https://doi.org/10.1073/pnas.2018799118

  10. Nurhayati, Ardie S.W., Santoso T.J., Sudarsono. (2021) CRISPR/Cas9-mediated genome editing in rice cv. IPB3S results in a semi-dwarf phenotypic mutant. Biodiversitas J. Biol. Diversity. 22(9), 3792–3800. https://doi.org/10.13057/biodiv/d220924

  11. Tao H., Shi X., He F., Wang D., Xiao N., Fang H., Wang R., Zhang F., Wang M., Li A., Liu X., Wang G.L., Ning Y. (2021) Engineering broad-spectrum disease-resistant rice by editing multiple susceptibility genes. J. Integr. Plant Biol. 63(9), 1639–1648. https://doi.org/10.1111/jipb.13145

  12. Nawaz G., Usman B., Peng H., Zhao N., Yuan R., Liu Y., Li R. (2020) Knockout of Pi21 by CRISPR/-Cas9 and iTRAQ-based proteomic analysis of mutants revealed new insights into M. oryzae resistance in elite rice line. Genes. 11, 735. https://doi.org/10.3390/genes11070735

  13. Zheng S., Ye C., Lu J., Liufu J., Lin L., Dong Z., Li J., Zhuang C. (2021) Improving the rice photosynthetic efficiency and yield by editing OsHXK1 via CRISPR/Cas9 system. Int. J. Mol. Sci. 22, 9554. https://doi.org/10.3390/ijms22179554

  14. Zeng Y., Wen J., Zhao W., Wang Q., Huang W. (2020) Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b, GS3, and O-sMYB30 with the CRISPR-Cas9 system. Front. Plant Sci. 10. 1663. https://doi.org/10.3389/fpls.2019.01663

  15. Wu M., Liu H., Lin Y., Chen J., Fu Y., Luo J., Zhang Z., Liang K., Chen S., Wang F. (2020) In-frame and frame-shift editing of the Ehd1 gene to develop japonica rice with prolonged basic vegetative growth periods. Front. Plant Sci. 11, 307. https://doi.org/10.3389/fpls.2020.00307

  16. Honma Y., Adhikari P.B., Kuwata K., Kagenishi T., Yokawa K., Notaguchi M., Kurotani K., Toda E., Bessho-Uehara K., Liu X., Zhu S., Wu X., Kasahara R.D. (2020) High-quality sugar production by osgcs1 rice. Commun. Biol. 3, 617. https://doi.org/10.1038/s42003-020-01329-x

  17. Usman B., Nawaz G., Zhao N., Liu Y., Li R. (2020) Generation of high yielding and fragrant rice (Oryza sativa L.) lines by CRISPR/Cas9 targeted mutagenesis of three homoeologs of cytochrome P450 gene family and OsBADH2 and transcriptome and proteome profiling of revealed changes triggered by mutations. Plants. 9, 788. https://doi.org/10.3390/plants9060788

  18. Wang G., Wang C., Lu G., Wang W., Mao G., Habben J.E., Song C., Wang J., Chen J., Gao Y., Liu J., Greene T.W. (2020) Knockouts of a late flowering gene via CRISPR–Cas9 confer early maturity in rice at multiple field locations. Plant. Mol. Biol. 104, 137–150. https://doi.org/10.1007/s11103-020-01031-w

  19. Zhang A., Liu Y., Wang F., Li T., Chen Z., Kong D., Bi J., Zhang F., Luo X., Wang J., Tang J., Yu X., Liu G., Luo L. (2019) Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol. Breeding. 39(3). 47. https://doi.org/10.1007/s11032-019-0954-y

  20. Kim Y.A., Moon H., Park C.J. (2019) CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. oryzae. Rice. 12, 67. https://doi.org/10.1186/s12284-019-0325-7

  21. Hu X., Cui Y., Dong G., Feng A., Wang D., Zhao C., Zhang Y., Hu J., Zeng D., Guo L., Qian Q. (2019) Using CRISPR-Cas9 to generate semi-dwarf rice lines in elite landraces. Sci. Rep. 9, 19096. https://doi.org/10.1038/s41598-019-55757-9

  22. Yang Q., Ding J., Feng X., Zhong X., Lan J., Tang H., Harwood W., Li Z., Guzmán C., Xu Q., Zhang Y., Jiang Y., Qi P., Deng M., Ma J., Wang J., Chen G., Lan X., Wei Y., Zheng Y., Jiang Q. (2022). Editing of the starch synthase IIa gene led to transcriptomic and metabolomic changes and high amylose starch in barley. Carbohydrate Polymers. 285, 119238. https://doi.org/10.1016/j.carbpol.2022.119238

  23. Galli M., Martiny E., Imani J., Kumar N., Koch A., Steinbrenner J., Kogel K.H. (2022) CRISPR/SpCas9-mediated double knockout of barley microrchidia MORC1 and MORC6a reveals their strong involvement in plant immunity, transcriptional gene silencing and plant growth. Plant Biotechnol. J. 20(1), 89–102. https://doi.org/10.1111/pbi.13697

  24. Lee J.H., Won H.J., Tran P.H.N., Lee S.-Mi, Je H.-Y.K., Jung H. (2021) Improving lignocellulosic biofuel production by CRISPR/Cas9-mediated lignin modification in barley. GCB Bioenergy. 13, 742–752. https://doi.org/10.1111/gcbb.12808

  25. Gerasimova S.V., Hertig C., Korotkova A.M., Kolosovskaya E.V., Otto I., Hiekel S., Kochetov A.V., Khlestkina E.K., Kumlehn J. (2020) Conversion of hulled into naked barley by Cas endonuclease-mediated knockout of the NUD gene. BMC Plant Biol. 20, 255. https://doi.org/10.1186/s12870-020-02454-9

  26. Герасимова С.В., Короткова А.М., Хертинг K., Хикель C., Хоффи Р., Будхагатапалли Н., Отто И., Хензель Г., Шумный В.К., Кочетов А.В., Кумлен Й., Хлесткина Е.К. (2018) Применение РНК-направленной нуклеазы Cas9 для сайт-специфической модификации генома в протопластах cибирского сорта ячменя с высокой способностью к регенерации. Вавил. журн. генет. селекции. 22(8), 1033–1039. https://doi.org/10.18699/VJ18.447

  27. Holubova K., Hensel G., Vojta P., Tarkowski P., Bergougnoux V., Galuszka P. (2018) Modification of barley plant productivity through regulation of cytokinin content by reverse-genetics approaches. Front. Plant. Sci. 9, 1676. https://doi.org/10.3389/fpls.2018.01676

  28. Gasparis S., Przyborowski M., Kała M., Nadolska-Orczyk A. (2019) Knockout of the HvCKX1 or HvCKX3 gene in barley (Hordeum vulgare L.) by RNA-guided Cas9 nuclease affects the regulation of cytokinin metabolism and root morphology. Cells. 8(8), 782. https://doi.org/10.3390/cells8080782

  29. Ibrahim S., Saleem B., Rehman N., Zafar A.S., Naeem M.K., Khan M.R. (2021) CRISPR/Cas9 mediated disruption of inositol pentakisphosphate 2-kinase 1 (TaIPK1) reduces phytic acid and improves iron and zinc accumulation in wheat grains. J. Adv. Res. 1–9. https://doi.org/10.1016/j.jare.2021.07.006

  30. Guo M., Wang Q., Zong Y., Nian J., Li H., Li J., Wang T., Gao C., Zuo J. (2021) Genetic manipulations of TaARE1 boost nitrogen utilization and grain yield in wheat. J. Genet. Genomics. 48(10), 950‒953. https://doi.org/10.1016/j.jgg.2021.07.003

  31. Zhang S., Zhang R., Gao J., Gu T., Song G., Li W., Li D., Li Y., Li G. (2019) Highly efficient and heritable targeted mutagenesis in wheat via the Agrobacterium tumefaciens-mediated CRISPR/Cas9 system. Int. J. Mol. Sci. 20(17), 4257. https://doi.org/10.3390/ijms20174257

  32. Raffan S., Sparks C., Huttly A., Hyde L., Martignago D., Mead A., Hanley S.J., Wilkinson P.A., Barker G., Edwards K.J., Curtis T.Y., Usher S., Kosik O., Halford N.G. (2021) Wheat with greatly reduced accumulation of free asparagine in the grain, produced by CRISPR/Cas9 editing of asparagine synthetase gene TaASN2. Plant Biotechnol. J. 19(8), 1602–1613. https://doi.org/10.1111/pbi.13573

  33. Hahn F., Loures S.L., Sparks C.A., Kanyuka K., Nekrasov V. (2021) Efficient CRISPR/Cas-mediated targeted mutagenesis in spring and winter wheat varieties. Plants. 10, 1481.https://doi.org/10.3390/plants10071481

  34. Li J., Jiao G., Sun Y., Chen J., Zhong Y., Yan L., Jiang D., Ma., Xia, L. (2021) Modification of starch composition, structure and properties through editing of T-aSBEIIa in both winter and spring wheat varieties by CRISPR/Cas9. Plant Biotechnol. J. 19, 937–951. https://doi.org/10.1111/pbi.13519

  35. Tang H., Liu H., Zhou Y., Liu H., Du L., Wang K., Ye X. (2020) Fertility recovery of wheat male sterility controlled by Ms2 using CRISPR/Cas9. Plant Biotechnol. J. 19(2), 224‒226. https://doi.org/10.1111/pbi.13482

  36. Budhagatapalli N., Halbach T., Hiekel S., Büchner H., Müller A.E., Kumlehn J. (2020) Site-directed mutagenesis in bread and durum wheat via pollination by Cas9/guide RNA-transgenic maize used as haploidy inducer. Plant Biotechnol. J. 18(12), 2376–2378.

  37. Wang W., Pan Q., Tian B., He F., Chen Y., Bai G., Akhunov E. (2019) Gene editing of the wheat homologs of TONNEAU1-recruiting motif encoding gene affects grain shape and weight in wheat. Plant J. 100, 251‒264. https://doi.org/10.1111/tpj.14440

  38. Abe F., Haque E., Hisano H., TanakaT., Kamiya Y., Mikami M., Sato K. (2019) Genome-edited triple-recessive mutation alters seed dormancy in wheat. Cell Rep. 28(5), 1362–1369.e4. https://doi.org/10.1016/j.celrep.2019.06.090

  39. Zhang Z., Hua L., Gupta A., Tricoli D., Edwards K.J., Yang B., Li W. (2019) Development of an Agrobacterium-delivered CRISPR/Cas9 system for wheat genome editing. Plant Biotechnol. J. 17, 1623‒1635. https://doi.org/10.1111/pbi.13088

  40. Brauer E.K., Balcerzak M., Rocheleau H., Leung W., Schernthaner J., Subramaniam R., Ouellet T. (2020) Genome editing of a deoxynivalenol-induced transcription factor confers resistance to fusarium graminearum in wheat. Mol. Plant Microbe Interact. 33(3), 553–560. https://doi.org/10.1094/MPMI-11-19-0332-R

  41. Camerlengo F., Frittelli A., Sparks C., Doherty A., Martignago D., Larre C., Lupi R., Sestili F., Masci S. (2020) CRISPR-Cas9 multiplex editing of the α-amylase/trypsin inhibitor genes to reduce allergen proteins in durum wheat. Front. Sustain. Food Syst. 4, 104. https://doi.org/10.3389/fsufs.2020.00104

  42. Guan H., Chen X., Wang K., Liu X., Zhang D., Li Y., Song Y., Shi Y., Wang T., Li C., Li Y. (2022) Genetic variation in ZmPAT7 contributes to tassel branch number in maize. Int. J. Mol. Sci. 23(5), 2586. https://doi.org/10.3390/ijms23052586

  43. Li Y., Lin Z., Yue Y. Zhao H., Fei X., Lizhu E., Liu C., Chen S., Lai J., Song  W. (2021) Loss-of-function alleles of ZmPLD3 cause haploid induction in maize. Nat. Plants. 7, 1579–1588. https://doi.org/10.1038/s41477-021-01037-2

  44. Wang Y., Liu X., Zheng X., Wang W., Yin X., Liu H., Ma C., Niu X., Zhu J.K., Wang F. (2021) Creation of aromatic maize by CRISPR/Cas. J. Integr. Plant. Biol. 63(9), 1664‒1670. https://doi.org/10.1111/jipb.13105

  45. Gao L., Yang G., Li Y., Sun Y., Xu R., Chen Y., Wang Z., Xing J., Zhang Y. (2021) A Kelch-repeat superfamily gene, ZmNL4, controls leaf width in maize (Zea mays L.). Plant J. 107(3), 817‒830. https://doi.org/10.1111/tpj.15348

  46. Liu L., Gallagher J., Arevalo E.D., Chen R., Skopelitis T., Wu Q., Bartlett M., Jackson D. (2021) Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes. Nat. Plants. 7(3), 287‒294. https://doi.org/10.1038/s41477-021-00858-5

  47. Li Q., Wu G., Zhao Y., Wang B., Zhao B., Kong D., Wei H., Chen C., Wang H. (2020) CRISPR/Cas9-mediated knockout and overexpression studies reveal a role of maize phytochrome C in regulating flowering time and plant height. Plant Biotechnol. J. 18(12), 2520‒2532. https://doi.org/10.1111/pbi.13429

  48. Jiang Y.Y., Chai Y.P., Lu M.H., Han X.L., Lin Q., Zhang Y., Zhang Q., Zhou Y., Wang X.C., Gao C., Chen Q.J. (2020) Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize. Genome Biol. 21(1), 257. https://doi.org/10.1186/s13059-020-02170-5

  49. Li Y., Zhu J., Wu H., Liu C., Huang C., Lan J., Zhao Y., Xie C. (2020) Precise base editing of non-allelic acetolactate synthase genes confers sulfonylurea herbicide resistance in maize. Crop J. 8, 449‒456. https://doi.org/10.1016/j.cj.2019.10.001

  50. Qi X., Wu H., Jiang H., Zhu J., Huang C., Zhang X., Liu C., Cheng B. (2020) Conversion of a normal maize hybrid into a waxy version using in vivo CRISPR/Cas9 targeted mutation activity. Crop J. 8, 440‒448. https://doi.org/10.1016/j.cj.2020.01.006

  51. Zhao X., Jayarathna S., Turesson H., Fält A., Nestor G., González M.N., Olsson N., Beganovic M., Hofvander P., Andersson R., Andersson M. (2021) Amylose starch with no detectable branching developed through DNA-free CRISPR-Cas9 mediated mutagenesis of two starch branching enzymes in potato. Sci. Rep. 11, 4311. https://doi.org/10.1038/s41598-021-83462-z

  52. Tuncel A., Corbin K.R., Ahn-Jarvis J., Harris S., Hawkins E., Smedley M.A., Harwood W., Warren F.J., Patron N.J., Smith A.M. (2019) Cas9-mediated mutagenesis of potato starch-branching enzymes generates a range of tuber starch phenotypes. Plant Biotechnol. J. 17, 2259‒2271. https://doi.org/10.1111/pbi.13137

  53. Takeuchi A., Ohnuma M., Teramura H., Asano K., Noda T., Kusano H., Tamura K., Shimada H. (2021) Creation of a potato mutant lacking the starch branching enzyme gene StSBE3 that was generated by genome editing using the CRISPR/dMac3-Cas9 system. Plant Biotechnol. (Tokyo). 38(3), 345‒353. https://doi.org/10.5511/plantbiotechnology.21.0727a

  54. Zheng Z., Ye G., Zhou Y., Pu X., Su W., Wang J. (2021) Editing sterol side chain reductase 2 gene (StSSR2) via CRISPR/Cas9 reduces the total steroidal glycoalkaloids in potato. All Life. 14(1), 401‒413. https://doi.org/10.1080/26895293.2021.1925358

  55. Gonzalez M.N., Massa G.A., Andersson M., Turesson H., Olsson N., Fält A.-S., Storani L., Oneto D.C.A., Hofvander P., Feingold S.E. (2020) Reduced enzymatic browning in potato tubers by specific editing of a polyphenol oxidase gene via ribonucleoprotein complexes delivery of the CRISPR/Cas9 system. Front. Plant Sci. 10, 1649. https://doi.org/10.3389/fpls.2019.01649

  56. Kieu N.P., Lenman M., Wang E.S., Petersen B.L., Andreasson E. (2021) Mutations introduced in susceptibility genes through CRISPR/Cas9 genome editing confer increased late blight resistance in potatoes. Sci. Rep. 11(1), 4487. https://doi.org/10.1038/s41598-021-83972-w

  57. Osakabe Y., Liang Z., Ren C., Nishitani C., Osakabe K., Wada M., Komori S., Malnoy M., Velasco R., Poli M., Jung M.-H., Koo O.-J., Viola R., Kanchiswamy C.N. (2018) CRISPR–Cas9-mediated genome editing in apple and grapevine. Nat. Protoc. 13(12), 2844‒2863. https://doi.org/10.1038/s41596-018-0067-9

  58. Scintilla S., Salvagnin U., Giacomelli L., Zeilmaker T., Malnoy M.A., van der Voort J.R., Moser C. (2021) Regeneration of plants from DNA-free edited grapevine protoplasts.https://doi.org/10.1101/2021.07.16.452503

  59. Olivares F., Loyola R., Olmedo B., Miccono M.D.L.Á., Aguirre C., Vergara R., Riquelme D., Madrid G., Plantat P., Mora R., Espinoza D., Prieto H. (2021) CRISPR/Cas9 targeted editing of genes associated with fungal susceptibility in Vitis vinifera L. cv. Thompson Seedless using geminivirus-derived replicons. Front. Plant Sci. 12, 791030. https://doi.org/10.3389/fpls.2021.791030

  60. Wan D.Y., Guo Y., Cheng Y., Hu Y., Xiao S., Wang Y., Wen Y.Q. (2020) CRISPR/Cas9-mediated mutagenesis of VvMLO3 results in enhanced resistance to powdery mildew in grapevine (Vitis vinifera). Horticulture Res. 7, 116. https://doi.org/10.1038/s41438-020-0339-8

  61. Yang L., Guo Y., Hu Y., Wen Y. (2020) CRISPR/Cas9-mediated mutagenesis of VviEDR2 results in enhanced resistance to powdery mildew in grapevine (Vitis vinifera). Acta Horticulturae Sinica. 47(4), 623‒634. https://doi.org/10.16420/j.issn.0513-353x.2019-0660

  62. Li M., Jiao Y., Wang Y., Zhang N., Wang B., Liu R., Yin X., Xu Y., Liu G. (2020) CRISPR/Cas9-mediated VvPR4b editing decreases downy mildew resistance in grapevine (Vitis vinifera L.). Hortic. Res. 7(1), 149. https://doi.org/10.1038/s41438-020-00371-4

  63. Sunitha S., Rock C.D. (2020) CRISPR/Cas9-mediated targeted mutagenesis of TAS4 and MYBA7 loci in grapevine rootstock 101-14. Transgenic Res. 29(3), 355–367. https://doi.org/10.1007/s11248-020-00196-w

  64. Ren C., Guo Y., Kong J., Lecourieux F., Dai Z., Li S., Liang Z. (2020) Knockout of VvCCD8 gene in grapevine affects shoot branching. BMC Plant Biol. 20(1), 47. https://doi.org/10.1186/s12870-020-2263-3

  65. Tripathi J.N., Ntui, V.O., Shah T., Tripathi L. (2021) CRISPR/Cas9-mediated editing of DMR6 orthologue in banana (Musa spp.) confers enhanced resistance to bacterial disease. Plant Biotechnol. J. 1(7), 1291‒1293. https://doi.org/10.1111/pbi.13614

  66. Hu C., Sheng O., Deng G., He W., Dong T., Yang Q., Dou T., Li C., Gao H., Liu S., Yi G., Bi F. (2021) CRISPR/Cas9-mediated genome editing of MaACO1 (aminocyclopropane-1-carboxylate oxidase 1) promotes the shelf life of banana fruit. Plant Biotechnol. J. 19(4), 654‒656. https://doi.org/10.1111/pbi.13534

  67. Varkonyi-Gasic E., Wang T., Cooney J., Jeon S., Voogd C., Douglas M.J., Pilkington S.M., Akagi T., Allan A.C. (2021) Shy Girl, a kiwifruit suppressor of feminization, restricts gynoecium development via regulation of cytokinin metabolism and signalling. New Phytol. 230, 1461‒1475. https://doi.org/10.1111/nph.17234

  68. Pompili V., Costa L. D., Piazza S., Pindo M., Malnoy M. (2019) Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9-FLP/FRT-based gene editing system. Plant Biotechnol. J. 18(3), 845‒858. https://doi.org/10.1111/pbi.13253

  69. Omori M., Yamane H., Li K., Matsuzaki R., Ebihara S., Li T., Tao R. (2020) Expressional analysis of FT and CEN genes in a continuously flowering highbush blueberry “Blue Muffin”. Acta Hortic. 1280, 197‒201. https://doi.org/10.17660/ActaHortic.2020.1280.27

  70. Jia H., Wang Y., Su H., Huan X., Wang N. (2022) LbCa-s12a-D156R efficiently edits LOB1 effector binding elements to generate canker-resistant citrus plants. Cells. 11(3), 315. https://doi.org/10.3390/cells11030315

  71. Zhou J., Wang G., Liu Z. (2018) Efficient genome editing of wild strawberry genes, vector development and validation. Plant Biotechnol. J. 16(11), 1868‒1877. https://doi.org/10.1111/pbi.12922

  72. Feng J., Dai C., Luo H., Han Y., Liu Z., Kang C. (2019) Reporter gene expression reveals precise auxin synthesis sites during fruit and root development in wild strawberry. J. Exp. Botany. 70(2), 563‒574. https://doi.org/10.1093/jxb/ery384

  73. Bottero E., Gomez C., Stritzler M., Tajima H., Frare R., Pascuan C., Blumwald E., Ayub N., Soto G. (2022) Generation of a multi‑herbicide‑tolerant alfalfa by using base editing. Plant Cell Rep. 41, 493–495. https://doi.org/10.1007/s00299-021-02827-w

  74. Zhang Z., Wang J., Kuang H., Hou Z., Gong P., Bai M., Zhou S., Yao X., Song S., Yan L., Guan Y. (2022) Elimination of an unfavorable allele conferring pod shattering in an elite soybean cultivar by CRISPR/Cas9. ABIOTECH. https://doi.org/10.1007/s42994-022-00071-8

  75. Chen X., Yang S., Zhang Y., Zhu X., Yang X., Zhang C., Li H., Feng X. (2021) Generation of male-sterile soybean lines with the CRISPR/Cas9 system. Crop J. 9(6), 1270–1277. https://doi.org/10.1016/j.cj.2021.05.003

  76. Wang T., Xun H., Wang W., Ding X, Tian H., Hussain S., Dong Q., Li Y., Cheng Y., Wang C., Lin R., Li G., Qian X., Pang J., Feng X., Dong Y., Liu B., Wang S. (2021) Mutation of GmAITR genes by CRISPR/Cas9 genome editing results in enhanced salinity stress tolerance in soybean. Front. Plant Sci. 12, 779598. https://doi.org/10.3389/fpls.2021.779598

  77. Cai Z., Xian P., Cheng Y., Ma Q., Lian T., Nian H., Ge L. (2021) CRISPR/Cas9-mediated gene editing of GmJAGGED1 increased yield in the low-latitude soybean variety Huachun 6. Plant Biotechnol. J. 19(10), 1898‒1900. https://doi.org/10.1111/pbi.13673

  78. Li Z., Cheng Q., Gan Z., Hou Z., Zhang Y., Li Y., Li H., Nan H., Yang C., Chen L., Lu S., Shi W., Chen L., Wang Y., Fang C., Kong L., Su T., Li S., Kou K., Wang L., Kong F., Liu B., Dong L. (2021) Multiplex CRISPR/Cas9-mediated knockout of soybean LNK2 advances flowering time. Crop J. 9(4), 767‒776. https://doi.org/10.1016/j.cj.2020.09.005

  79. Ma J., Sun S., Whelan J., Shou H. (2021) CRISPR/Cas9-mediated knockout of GmFATB1 significantly reduced the amount of saturated fatty acids in soybean seeds. Int. J. Mol. Sci. 22, 3877. https://doi.org/10.3390/ijms22083877

  80. Nguyen C.X., Paddock K.J., Zhang Z., Stacey M.G. (2021) GmKIX8-1 regulates organ size in soybean and is the causative gene for the major seed weight QTL qSw17-1. New Phytol. 229, 920–934. https://doi.org/10.1111/nph.16928

  81. Adachi K., Hirose A., Kanazashi Y., Hibara M., Hirata T., Mikami M., Endo M., Hirose S., Maruyama N., Ishimoto M., Abe J., Yamada T. (2021) Site-directed mutagenesis by biolistic transformation efficiently generates inheritable mutations in a targeted locus in soybean somatic embryos and transgene-free descendants in the T1 generation. Transgenic Res. 30, 77–89. https://doi.org/10.1007/s11248-020-00229-4

  82. Le H., Nguyen N.H., Ta D.T., Le T.N.T., Bui T.P., Le N.T., Nguyen C.X., Rolletschek H., Stacey G., Stacey M.G., Pham N.B., Do P.T., Chu H.H. (2020) CRISPR/Cas9-mediated knockout of galactinol synthase-encoding genes reduces raffinose family oligosaccharide levels in soybean seeds. Front. Plant Sci. 11, 612942. https://doi.org/10.3389/fpls.2020.612942

  83. Sugano S., Hirose A., Kanazashi Y., Adachi K., Hibara M., Itoh T., Mikami M., Endo M., Hirose S., Maruyama N., Abe J., Yamada T. (2020) Simultaneous induction of mutant alleles of two allergenic genes in soybean by using site-directed mutagenesis. BMC Plant Biol. 20, 513. https://doi.org/10.1186/s12870-020-02708-6

  84. Chen L., Nan H., Kong L., Yue L., Yang H., Zhao Q., Fang C., Li H., Cheng Q., Lu S., Kong F., Liu B., Dong L. (2020) Soybean AP1 homologs control flowering time and plant height. J. Integr. Plant Biol. 62, 1868‒1879. https://doi.org/10.1111/jipb.12988

  85. Wang L., Sun S., Wu T., Liu L., Sun X., Cai Y., Li J., Jia H., Yuan S., Chen L., Jiang B., Wu C., Hou W., Han T. (2020) Natural variation and CRISPR/Cas9-mediated mutation in GmPRR37 affect photoperiodic flowering and contribute to regional adaptation of soybean. Plant Biotechnol. J. 18, 1869‒1881. https://doi.org/10.1111/pbi.13346

  86. Zhang P., Du H., Wang J., Pu Y., Yang C., Yan R., Yang H., Cheng H., Yu D. (2020) Multiplex CRISPR/-Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. Plant Biotechnol. J. 18(6), 1384‒1395. https://doi.org/10.1111/pbi.13302

  87. Hou Z.H., Wu Y., Cheng Q., Gan Z.R., Liu B.H. (2019) Creation of high oleic acid soybean mutation plants by CRISPR/Cas9. Acta Agronomica Sinica (China). 45(6), 839‒847.

  88. Do P.T., Nguyen C.X., Bui H.T., Tran L.T.N. Stacey G., Gillman J.D., Zhang Z.J. Stacey M.J. (2019) Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2–1A and GmFAD2–1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean. BMC Plant Biol. 19, 311. https://doi.org/10.1186/s12870-019-1906-8

  89. Wu N., Lu Q., Wang P., Zhang Q., Zhang J., Qu J., Wang N. (2020) Construction and analysis of G-mFAD2-1A and GmFAD2-2A soybean fatty acid desaturase mutants based on CRISPR/Cas9 technology. Int. J. Mol. Sci. 21, 1104. https://doi.org/10.3390/ijms21031104

  90. Cai Y., Wang L., Chen L., W T., Liu L., Sun S., Wu C., Yao W., Jiang B., Yuan S., Han T., Hou W. (2020) Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas9 contributes for expanding the regional adaptability of soybean. Plant Biotechnol. J. 18, 298‒309. https://doi.org/10.1111/pbi.13199

  91. Han J., Guo B., Guo Y., Zhang B., Wang X., Qiu L.-J. (2019) Creation of early flowering germplasm of soybean by CRISPR/Cas9 technology. Front. Plant Sci. 10, 1446. https://doi.org/10.3389/fpls.2019.01446

  92. Bao A., Chen H., Chen L., Chen S., Hao Q., Guo W., Qiu D., Shan Z., Yang Z., Yuan S., Zhang C., Zhang X., Liu B., Kong F., Li X., Zhou X., Trna L.-S.P., Cao D. (2019) CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biol. 19, 131. https://doi.org/10.1186/s12870-019-1746-6

  93. Badhan S., Ball A.S., Mantri N. (2021) First report of CRISPR/Cas9 mediated DNA-free editing of 4CL and RVE7 genes in chickpea protoplasts. Int. J. Mol. Sci. 22, 396. https://doi.org/10.3390/ijms22010396

  94. Dai X., Han H., Huang W., Zhao L., Song M., Cao X., Liu C., Niu X., Lang Z., Ma C., Xie H. (2022) Generating novel male sterile tomatoes by editing respiratory burst oxidase homolog genes. Front. Plant Sci. 12, 817101. https://doi.org/10.3389/fpls.2021.817101

  95. Kawaguchi K., Takei‑Hoshi R., Yoshikawa I., Nishida K., Kobayashi M., Kusano M., Lu Y., Ariizumi T., Ezura H., Otagaki S., Matsumoto S., Shiratake K. (2021) Functional disruption of cell wall invertase inhibitor by genome editing increases sugar content of tomato fruit without decrease fruit weight. Sci. Rep. 11(1), 21534.

  96. Wang B., Li N., Huang S., Hu J., Wang Q., Tang Y., Yang T., Asmutola P., Wang J., Yu Q. (2021) Enhanced soluble sugar content in tomato fruit using CRISPR/Cas9-mediated SlINVINH1 and SlVPE5 gene editing. Peer. J. 9. e12478.  https://doi.org/10.7717/peerj.12478

  97. Bari V.K., Nassar J.A., Aly R. (2021) CRISPR/Cas9 mediated mutagenesis of MORE AXILLARY GROWTH 1 in tomato confers resistance to root parasitic weed Phelipanche aegyptiaca. Sci. Rep. 11, 3905. https://doi.org/10.1038/s41598-021-82897-8

  98. Hanika K., Schipper D., Chinnappa S., Oortwijn M., Schouten H.J., Thomma B.P.H.J., Bai Y. (2021) Impairment of tomato WAT1 enhances resistance to vascular wilt fungi despite severe growth defects. Front. Plant Sci. 12, 721674. https://doi.org/10.3389/fpls.2021.721674

  99. Liu H., Lihong Liu, Liang D., Zhang M., Jia C., Qi M., Liu Y., Shao Z., Meng F., Hu S., Yin Y., Li C., Wang Q. (2021) SlBES1 promotes tomato fruit softening through transcriptional inhibition of PMEU1. Science. 24(8), 102926. https://doi.org/10.1016/j.isci.2021.102926

  100. Thomazella D.P.D.T., Seong K., Mackelprang R., Dahlbeck D., Geng Y., Gill U.S., Qi T., Pham J., Giuseppe P., Lee C.Y., Ortega A., Cho M., Hutton S.F., Staskawicz B. (2021) Loss of function of a DMR6 ortholog in tomato confers broad-spectrum disease resistance, Proc. Natl Acad. Sci. USA. 118(27), e2026152118. https://doi.org/10.1073/pnas.2026152118

  101. Tran M.T., Doan D.T.H., Kim J., Song Y.J., Sung Y.W., Das S., Kim E.J, Son G.H., Kim S.H., Van Vu T., Kim J.Y. (2021) CRISPR/Cas9-based precise excision of SlHyPRP1 domain(s) to obtain salt stress-tolerant tomato. Plant Cell Rep. 40(6), 999–1011. https://doi.org/10.1007/s00299-020-02622-z

  102. Liu J., Wang S., Wang H., Luo B., Cai Y., Li X., Zhang Y., Wang X. (2021) Rapid generation of tomato male-sterile lines with a marker use for hybrid seed production by CRISPR/Cas9 system. Mol. Breed. 41(3), 25. https://doi.org/10.1007/s11032-021-01215-2

  103. Atarashi H., Jayasinghe W.H., Kwon J., Kim H., Taninaka Y., Igarashi M., Ito K., Yamada T., Masuta C., Nakahara K.S. (2020) Artificially edited alleles of the eukaryotic translation initiation factor 4E1 gene differentially reduce susceptibility to cucumber mosaic virus and potato virus Y in tomato. Front. Microbiol. 11, 564310. https://doi.org/10.3389/fmicb.2020.564310

  104. Yoon Y.J., Venkatesh J., Lee J.H., Kim J., Lee H.E., Kim D.S., Kang B.C. (2020) Genome editing of EIF4E1 in tomato confers resistance to pepper mottle virus. Front. Plant Sci. 11, 1‒11. https://doi.org/10.3389/fpls.2020.01098/full

  105. Kuroiwa K., Thenault C., Nogue F., Perrot L., Maziera M., Galloisa J.L. (2022) CRISPR-based knock-out of EIF4E2 in a cherry tomato background successfully recapitulates resistance to pepper veinal mottle virus. Plant Sci. 316, 111160. https://doi.org/10.1016/j.plantsci.2021.111160

  106. Jung Y.J., Kim D.H., Lee H.J., Nam K.H., Bae S., Nou I.S., Cho Y.-G., Kim M.K., Kang K.K. (2020) Knockout of SlMS10 gene (Solyc02g079810) encoding bHLH transcription factor using CRISPR/Cas9 system confers male sterility phenotype in tomato. Plants. 9(9), 1189. https://doi.org/10.3390/plants9091189

  107. Illouz-Eliaz N., Nissan I., Nir I., Ramon U., Shohat H., Weiss D. (2020) Mutations in the tomato gibberellin receptors suppress xylem proliferation and reduce water loss under water-deficit conditions. J. Exp. Botany. 71(12), 3603–3612. https://doi.org/10.1093/jxb/eraa137

  108. Santillán Martínez M.I., Bracuto V., Koseoglou E., Appiano M., Jacobsen E., Visser R.G.F., Wolters A.M.A., Bai Y. (2020) CRISPR/Cas9-targeted mutagenesis of the tomato susceptibility gene PMR4 for resistance against powdery mildew. BMC Plant Biol. 20, 284. https://doi.org/10.1186/s12870-020-02497-y

  109. Faal G.P., Farsi M., Seifi A., Kakhki A.M. (2020) Virus-induced CRISPR-Cas9 system improved resistance against tomato yellow leaf curl virus. Mol. Biol. Rep. 47(5), 3369–3376. https://doi.org/10.1007/s11033-020-05409-3

  110. Bari V.K., Nassar J.A., Kheredin S.M., Gal-On A., Ron M., Britt A., Steele D., Yoder J., Aly R. (2019) CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 8 in tomato provides resistance against the parasitic weed Phelipanche aegyptiaca. Sci. Rep. 9, 11438. https://doi.org/10.1038/s41598-019-47893-z

  111. Ortigosa A., Gimenez-Ibanez S., Leonhardt N., Solano R. (2019) Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2. Plant Biotechnol. J. 17(3), 665–673.https://doi.org/10.1111/pbi.13006

  112. Li X., Wang Y., Chen S., Tian H., Fu D., Zhu B., Luo Y., Zhu H. (2018) Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Front. Plant Sci. 9, 559. https://doi.org/10.3389/fpls.2018.00559

  113. Ahmar S., Zhai Y., Huang H., Yu K., Hafeez M., Khan U., Shahid M., Samad R.A., Khan S.U., Amoo O., Fan C., Zhou Y. (2020) Development of mutants with varying flowering times by targeted editing of multiple SVP gene copies in Brassica napus L. Crop J. 10(1), 67–74. https://doi.org/10.1016/j.cj.2021.03.023

  114. Cao Y., Yan X., Ran S., Ralph J., Smith R.A., Chen X., Qu C., Li J., Liu L. (2022) Knockout of the lignin pathway gene BnF5H decreases the S/G lignin compositional ratio and improves Sclerotinia sclerotiorum resistance in Brassica napus. Plant Cell Environ. 45(1), 248‒261. https://doi.org/10.1111/pce.14208

  115. Fan S., Zhang L., Tang M., Cai Y., Liu J., Liu H., Liu J., Terzaghi W., Wang H., Hua W., Zheng M. (2021) CRISPR/Cas9-targeted mutagenesis of the BnaA03.BP gene confers semi-dwarf and compact architecture to rapeseed (Brassica napus L.). Plant Biotechnol. J. 19(12), 2383–2385. https://doi.org/10.1111/pbi.13703

  116. Zhang X., Cheng J., Lin Y., Fu Y., Xie J., Li B., Bian X., Feng Y., Liang W., Tang Q., Zhang H., Liu X., Zhang Y., Liu C., Jiang D. (2021) Editing homologous copies of an essential gene affords crop resistance against two cosmopolitan necrotrophic pathogens. Plant Biotechnol. J. 19(11), 2349–2361. https://doi.org/10.1111/pbi.13667

  117. Wang Z., Wan L., Xin Q., Zhang X., Song Y., Wang P., Hong D., Fan Z., Yang G. (2021) Optimizing glyphosate tolerance in rapeseed by CRISPR/Cas9-based geminiviral donor DNA replicon system with Csy4-based single-guide RNA processing. J. Exp. Bot. 72(13), 4796–4808. https://doi.org/10.1093/jxb/erab167

  118. Zaman Q.U., Wen C., Yuqin S., Mengyu H., Desheng M., Jacqueline B., Baohong Z., Chao L., Qiong H. (2021) Characterization of SHATTERPROOF homoeologs and CRISPR-Cas9-mediated genome editing enhances pod-shattering resistance in Brassica napus L. CRISPR J. 4(3), 360–370. https://doi.org/10.1089/crispr.2020.0129

  119. Probsting M., Schenke D., Hossain R., Thurau C., Wighardt L., Schuster A., Zhou Z., Ye W., Rietz S., Leckband G., Cai D. (2020) Loss-of-function of CRT1a (calreticulin) reduces susceptibility to Verticillium longisporum in both Arabidopsis thaliana and oilseed rape (Brassica napus). Plant Biotechnol. J. 18, 2328–2344. https://doi.org/10.1111/pbi.13394

  120. Sashidhar N., Harloff H.J., Potgieter L., Jung C. (2020) Gene editing of three BnITPK genes in tetraploid oilseed rape leads to significant reduction of phytic acid in seeds. Plant Biotechnol. J. 18(11), 2241‒2250. https://doi.org/10.1111/pbi.13380

  121. Karunarathna N.L., Wang H., Harloff H.-J., Jiang L., Jung C. (2020) Elevating seed oil content in a polyploid crop by induced mutations in SEED FATTY ACID REDUCER genes. Plant Biotechnol. J. 18(11), 2251–2266. https://doi.org/10.1111/pbi.13381

  122. Wu J., Chen C., Xian G., Liu D., Lin L., Yin S., Sun Q., Fang Y., Zhang H., Wang Y. (2020) Engineering herbicide-resistant oilseed rape by CRISPR/Cas9-mediated cytosine base-editing. Plant Biotechnol. J. 18(9), 1857–1859.https://doi.org/10.1111/pbi.13368

  123. Xie T., Chen X., Guo T., Rong H., Chen Z., Sun Q., Batley J., Jiang J., Wang Y. (2020) Targeted knockout of BnTT2 homologues for yellow-seeded Brassica napus with reduced flavonoids and improved fatty acid composition. J. Agric. Food Chem. 68(20), 5676–5690.https://doi.org/10.1021/acs.jafc.0c01126

  124. Wu J., Yan G., Duan Z., Wang Z., Kang C., Guo L., Liu K., Tu J., Shen J., Yi B., Fu T., Li X., Ma C., Dai C. (2020) Roles of the Brassica napus DELLA protein BnaA6.RGA, in modulating drought tolerance by interacting with the ABA signaling component BnaA10.ABF2, Front. Plant Sci. 11. 577. https://doi.org/10.3389/fpls.2020.00577

  125. Zhai Y., Yu K., Cai S., Hu L., Amoo O., Xu L., Yang Y., Ma B., Jiao Y., Zhang C., Khan M.H.U., Khan S.U. (2020) Targeted mutagenesis of BnTT8 homologs controls yellow seed coat development for effective oil production in Brassica napus L. Plant Biotechnol. J. 18(5), 1153–1168. https://doi.org/10.1111/pbi.13281

  126. Zheng M., Zhang L., Tang M., Liu J., Liu H., Yang H., Fan S., Terzaghi, W., Wang H., Hua W. (2020) Knockout of two Bna MAX 1 homologs by CRISPR/Cas9-targeted mutagenesis improves plant architecture and increases yield in rapeseed (Brassica napus L.). Plant Biotechnol. J. 18(3), 644–654. https://doi.org/10.1111/pbi.13228

  127. Khan M.H.U., Hu L., Zhu M., Zhai Y., Khan S.U., Ahmar S., Amoo O., Zhang K., Fan C., Zhou Y. (2021) Targeted mutagenesis of EOD3 gene in Brassica napus L. regulates seed production. J. Cell. Physiol. 236(3), 1996–2007.https://doi.org/10.1002/jcp.29986

  128. Sun Q., Lin L., Liu D., Wu D., Fang Y., Wu J., Wang Y. (2018) CRISPR/Cas9-mediated multiplex genome editing of the BnWRKY11 and BnWRKY70 genes in Brassica napus L. Int. J. Mol. Sci. 19(9), 2716. https://doi.org/10.3390/ijms19092716

  129. Kim Y.C., Ahn W.S., Cha A., Jie E. Y., Kim S. W., Hwang B‑H., Lee S. (2022) Development of glucoraphanin-rich broccoli (Brassica oleracea var. italica) by CRISPR/Cas9-mediated DNA-free BolMYB28 editing. Plant Biotechnol. Rep. 16, 123–132. https://doi.org/10.1007/s11816-021-00732-y

  130. Jeong S.Y., Ahn H., Ryu J., Oh Y., Sivanandhan G., Won K.‑H., Park Y.D., Kim J.‑S., Kim H., Lim Y.P., Kim S.‑G. (2019) Generation of early-flowering chinese cabbage (Brassica rapa spp. pekinensis) through CRISPR/Cas9-mediated genome editing. Plant Biotechnol. Rep. 13(5), 491–499. https://doi.org/10.1007/s11816-019-00566-9

  131. Neequaye M., Stavnstrup S., Harwood W., Lawrenson T., Hundleby P., Irwin J., Troncoso-Rey P., Saha S., Traka M.H., Mithen R., Østergaard L. (2021) CRISPR-Cas9-mediated gene editing of MYB28 genes impair glucoraphanin accumulation of Brassica oleracea in the field. CRISPR J. 4(3), 416–426. https://doi.org/10.1089/crispr.2021.0007

  132. Cao W., Dong X., Ji J., Yang L., Fang Z., Zhuang M., Zhang Y., Lv H., Wang Y., Sun P., Liu Y., Li Z., Han F. (2021) BoCER1 is essential for the synthesis of cuticular wax in cabbage (Brassica oleracea L. var. capitata). Scientia Horticulturae. 277, 109801. https://doi.org/10.1016/j.scienta.2020.109801

  133. Mishra R., Mohanty J.N., Mahanty B., Joshi R.K. (2021) A single transcript CRISPR/Cas9 mediated mutagenesis of CaERF28 confers anthracnose resistance in chilli pepper (Capsicum annuum L.). Planta. 254(1), 5. https://doi.org/10.1007/s00425-021-03660-x

  134. Lee K.-R., Jeon I., Yu H., Kim S.-G., Kim H.-S., Ahn S.-J., Lee J., Lee S.-K., Kim H.U. (2021) Increasing monounsaturated fatty acid contents in hexaploid Camelina sativa seed oil by FAD2 gene knockout using CRISPR-Cas9. Front. Plant Sci. 12, 702930. https://doi.org/10.3389/fpls.2021.702930

  135. Janga M.R., Pandeya D., Campbell L.M., Konganti K., Villafuerte S.T., Puckhaber L., Pepper A., Stipanovic R.D., Scheffler J.A, Rathore K.S. (2019). Genes regulating gland development in the cotton plant. Plant Biotechnol. J. 17(6), 1142–1153. https://doi.org/10.1111/pbi.13044

  136. Chen Y., Fu M., Li H., Wang L., Liu R., Liu Z., Zhang X., Jin S. (2021) High-oleic acid content, n-ontransgenic allotetraploid cotton (Gossypium hirsutum L.) generated by knockout of GhFAD2 genes with CRISPR/Cas9 system. Plant Biotechnol. J. 19(3), 424–426. https://doi.org/10.1111/pbi.13507

  137. Вавилов Н.И. (1920) Закон гомологических рядов в наследственной изменчивости. Доклад на 3-й Всероссийской встрече селекционеров. Саратов, с. 16.

  138. Li Z., Liu Z. B., Xing A., Moon B.P., Koellhoffer J.P., Huang L., Cigan A.M. (2015). Cas9-guide RNA directed genome editing in soybean. Plant Physiol. 169(2), 960—970.

  139. Butt H., Eid A., Ali Z., Atia M.A., Mokhtar M.M., Hassan N., Mahfouz M.M. (2017) Efficient CRISPR/-Cas9-mediated genome editing using a chimeric single-guide RNA molecule. Front. Plant Sci. 8, 1441.

  140. Shimatani Z., Kashojiya S., Takayama M., Terada R., Arazoe T., Ishii H., Teramura H., Yamamoto T., Komatsu H., Miura K., Ezura H., Nishida K., Ariizumi T., Kondo A. (2017) Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat. Biotechnol. 35, 441–443. https://doi.org/10.1038/nbt.3833

  141. Shimatani Z., Fujikura U., Ishii H., Matsui Y., Suzuki M., Ueke Y., Taoka K., Terada R., Nishida K., Kondo A. (2018) Inheritance of co-edited genes by CRISPR-based targeted nucleotide substitutions in rice. Plant Physiol. Biochem. 131, 78‒83. https://doi.org/. 2018.04.028https://doi.org/10.1016/J.PLAPHY

  142. Shimatani Z., Fujikura U., Ishii H., Terada R., Nishida K., Kondo A. (2018) Herbicide tolerance-assisted multiplex targeted nucleotide substitution in rice. Data Brief. 20, 1325‒1331. https://doi.org/10.1016/J.DIB.2018.08.124

  143. Sun Y., Jiao G., Liu Z., Zhang X., Li J., Guo X., Du W., Du J., Francis F., Zhao Y., Xia L. (2017) Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front. Plant Sci. 8, 298. https://doi.org/10.3389/fpls.2017.00298

  144. Butler N.M., Baltes N.J., Voytas D.F., Douches D.S. (2016) Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Front. Plant Sci. 7, 1045. https://doi.org/10.3389/fpls.2016.01045

  145. Svitashev S., Young J.K., Schwartz C., Gao H., Falco S.C., Cigan A.M. (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol. 169(2), 931–945. https://doi.org/10.1104/pp.15.00793

  146. Braatz J., Harloff H.J., Mascher M., Stein N., Himmelbach A., Jung C. (2017) CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol. 174(2), 935‒942. https://doi.org/10.1104/pp.17.00426

  147. Liu X., Ding Q., Wang W., Pan Y., Tan C., Qiu Y., Chen Y., Li H., Li Y., Ye N., Xu N., Wu X., Ye R., Liu J., Ma C. (2022) Targeted deletion of the first intron of the Wxb allele via CRISPR/Cas9 significantly increases grain amylose content in rice. Rice (N.Y.). 15(1), 1. https://doi.org/10.1186/s12284-021-00548-y

  148. Yunyan F., Jie Y., Fangquan W., Fangjun F., Wenqi L., Jun W., Yang X., Jinyan Z., Weigong Z. (2019) Production of two elite glutinous rice varieties by editing Wx gene. Rice Sci. 26, 118‒124. https://doi.org/10.1016/j.rsci.2018.04.007

  149. Zhang J., Zhang H., Botella J.R., Zhu J.K. (2018) Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. J. Integr. Plant Biol. 60(5), 369‒375. https://doi.org/10.1111/jipb.12620

  150. Veillet F., Chauvin L., Kermarrec M.P., Sevestre F., Chauvin J.E. (2019) The Solanum tuberosum GBSSI gene: a target for assessing gene and base editing in tetraploid potato. Plant Cell Rep. 38, 1065–1080. https://doi.org/10.1007/s00299-019-02426-w

  151. Kusano H., Ohnuma M., Mutsuro-Aoki H., Asahi T., Ichinosawa D., Onodera H., Asano K., Noda T., Horie T., Fukumoto K., Kihira M., Teramura H., Yazaki K., Umemoto N., Muranaka T., Shimada H. (2018) Establishment of a modified CRISPR/Cas9 system with increased mutagenesis frequency using the translational enhancer dMac3 and multiple guide RNAs in potato. Sci. Rep. 8, 13753. https://doi.org/10.1038/s41598-018-32049-2

  152. Andersson M., Turesson H., Nicolia A., Fält A.S., Samuelsson M., Hofvander P. (2017) Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep. 36(1), 117‒128. https://doi.org/10.1007/s00299-016-2062-3

  153. Qi X., Wu H., Jiang H., Zhu J., Huang C., Zhang X., Liu C., Cheng B. (2020) Conversion of a normal maize hybrid into a waxy version using in vivo CRISPR/Cas9 targeted mutation activity. Crop J. 8, 440‒448. https://doi.org/10.1016/j.cj.2020.01.006

  154. Abe K., Araki E., Suzuki Y., Toki S., Saika H. (2018) Production of high oleic/low linoleic rice by genome editing. Plant Physiol. Biochem. 131, 58‒62. https://doi.org/10.1016/J.PLAPHY.2018.04.033

  155. Okuzaki A., Ogawa T., Koizuka C., Kaneko K., Inaba M., Imamura J., Koizuka N. (2018) CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Plant Physiol. Biochem. 131, 63‒69. https://doi.org/10.1016/J.PLAPHY.2018.04.025

  156. Chandrasekaran J., Brumin M., Wolf D., Leibman D., Klap C., Pearlsman M., Gal-On A. (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 17(7), 1140‒1153. https://doi.org/10.1111/mpp.12375

  157. Jia H., Zhang Y., Orbović V., Xu J., White F.F., Jones J.B., Wang N. (2017) Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol. J. 15(7), 817‒823. https://doi.org/10.1111/pbi.12677

  158. Peng A., Chen S., Lei T., Xu L., He Y., Wu L., Yao L., Zou X. (2017) Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol. J. 15(12), 1509‒1519. https://doi.org/10.1111/pbi.12733

  159. Malnoy M., Viola R., Jung M.H., Koo O.J., Kim S., Kim J.S., Nagamangala Kanchiswamy C. (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front. Plant Sci. 7, 1904.

  160. Nekrasov V., Wang C., Win J., Lanz C., Weigel D., Kamoun S. (2017) Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci. Rep. 7(1), 1‒6. https://doi.org/10.1038/s41598017-00578-x

  161. Wang Y., Cheng X., Shan Q., Zhang Y., Liu J., Gao C., Qiu J.L. (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32(9), 947‒951. https://doi.org/10.1038/nbt.2969

  162. Zhang Y., Bai Y., Wu G., Zou S., Chen Y., Gao C., Tang D. (2017) Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J. 91(4), 714‒724. https://doi.org/10.1111/tpj.13599

  163. Hu X., Cui Y., Dong G., Feng A., Wang D., Zhao C., Zhang Y., Hu J., Zeng D., Guo L., Qian Q. (2019) Using CRISPR-Cas9 to generate semi-dwarf rice lines in elite landraces. Sci. Rep. 9, 19096. https://doi.org/10.1038/s41598-019-55757-9

  164. Khlestkina E.K., Shvachko N.A., Zavarzin A.A., Börner A. (2020) Vavilov′s series of the “green revolution” genes. Russ. J. Genetics. 56(11), 1371‒1380. https://doi.org/10.1134/S1022795420110046

  165. Zhang S., Zhang R., Song G., Gao J., Li W., Han X., Chen M., Li Y., Li G. (2018) Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat. BMC Plant Biol. 18, 302. https://doi.org/10.1186/s12870-018-1496-x

  166. Kim C.Y., Park J.Y., Choi G., Kim S., Vo K.T.X., Jeon J.S., Lee Y.H. (2022) A rice gene encoding glycosyl hydrolase plays contrasting roles in immunity depending on the type of pathogens. Mol. Plant Pathol. 23(3), 400‒416. https://doi.org/10.1111/mpp.13167

  167. Carey-Fung O., O’Brien M., Beasley J.T., Johnson A.A.T. (2022) A model to incorporate the bHLH transcription factor OsIRO3 within the rice iron homeostasis regulatory network. Int. J. Mol. Sci. 23, 1635. https://doi.org/10.3390/ijms23031635

  168. Takeda Y., Tobimatsu Y., Karlen S.D., Koshiba T., Suzuki S., Yamamura M., Murakami S., Mukai M., Hattori T., Osakabe K., Ralph J., Sakamoto M., Umezawa T. (2018) Downregulation of p-COUMAROYL ESTER 3-HYDROXYLASE in rice leads to altered cell wall structures and improves biomass saccharification. Plant J. 95(5), 796‒811. https://doi.org/10.1111/tpj.13988

Дополнительные материалы отсутствуют.