Молекулярная биология, 2023, T. 57, № 6, стр. 1150-1174

Ишемически-реперфузионные поражения: молекулярные механизмы патогенеза и способы их коррекции

Р. Г. Гончаров a, М. Г. Шарапов a*

a Институт биофизики клетки Российской академии наук “Федеральный исследовательский центр “Пущинский научный центр биологических исследований Российской академии наук”
142290 Пущино, Московская обл., Россия

* E-mail: sharapov.mg@yandex.ru

Поступила в редакцию 10.04.2023
После доработки 09.05.2023
Принята к публикации 10.05.2023

Аннотация

Ишемия-реперфузия – каскад сложных и взаимосвязанных патологических процессов, лежащих в основе многих заболеваний человека, в том числе таких социально-значимых, как инсульт, инфаркт миокарда, острая почечная недостаточность и др. В представленном обзоре рассмотрены современные представления об основных биохимических и сигнально-регуляторных процессах, протекающих в клетке в условиях ишемии-реперфузии. Рассмотрены как общепринятые, так и новые способы коррекции ишемических-реперфузионных поражений, направленные на разные этапы этого патологического процесса.

Ключевые слова: ишемия, реперфузия, окислительный стресс, внутриклеточная сигнализация, HIF-1a, NRF2, NF-κB, PI3K/AKT/mTOR, гипотермия, ингибиторы оксидаз, H2S, антиоксиданты, селен, ферменты-антиоксиданты

Список литературы

  1. Hardev Ramandeep Singh Girn., Ahilathirunayagam S., Mavor A.I.D., Homer-Vanniasinkam S. (2007) Reperfusion syndrome: cellular mechanisms of microvascular dysfunction and potential therapeutic strategies. Vasc. Endovasc. Surg. 41, 277–293.

  2. Soares R.O.S., Losada D.M., Jordani M.C., Évora P., Castro-E-Silva O. (2019) Ischemia/reperfusion injury revisited: an overview of the latest pharmacological strategies. Int. J. Mol. Sci. 20, 5034.

  3. Dar W.A., Sullivan E., Bynon J.S., Eltzschig H., Ju C. (2019) Ischaemia reperfusion injury in liver transplantation: cellular and molecular mechanisms. Liver Int. 39, 788–801.

  4. Chen Z., Tian R., She Z., Cai J., Li H. (2020) Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic. Biol. Med. 152, 116–141.

  5. Wu M.Y., Yiang G.T., Liao W.T., Tsai A.P.Y., Cheng Y.L., Cheng P.W., Li C.Y., Li C.J. (2018) Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol. Biochem. 46, 1650–1667.

  6. Eltzschig H.K., Eckle T. (2011) Ischemia and reperfusion – from mechanism to translation. Nat. Med. 17, 1391–1401.

  7. Mishra P.K., Adameova A., Hill J.A., Baines C.P., Kang P.M., Downey J.M., Narula J., Takahashi M., Abbate A., Piristine H.C., Kar S., Su S., Higa J.K., Kawasaki N.K., Matsui T. (2019) Guidelines for evaluating myocardial cell death. Am. J. PhysiolHeart Circ. Physiol. 317, H891–H922.

  8. Bauer T.M., Murphy E. (2020) Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ. Res. 126, 280–293.

  9. van Golen R.F., Reiniers M.J., Marsman G., Alles L.K., van Rooyen D.M., Petri B., Van der Mark V.A., van Beek A.A., Meijer B., Maas M.A., Zeerleder S., Verheij J., Farrell G.C., Luken B.M., Teoh N.C., van Gulik T.M., Murphy M.P., Heger M. (2019) The damage-associated molecular pattern HMGB1 is released early after clinical hepatic ischemia/reperfusion. Biochim. Biophys. ActaMol. Basis Dis. 1865, 1192–1200.

  10. Gong L., Pan Q., Yang N. (2020) Autophagy and inflammation regulation in acute kidney injury. Front. Physiol. 11, 576 463.

  11. Воробьева Н.В. (2020) Нейтрофильные внеклеточные ловушки: новые аспекты. Вест. Моск. ун-та Сер. 16 Биология. 75, 210–225.

  12. Kim S.W., Lee H., Lee H.K., Kim I.D., Lee J.K. (2019) Neutrophil extracellular trap induced by HMGB1 exacerbates damages in the ischemic brain. Acta Neuropathol. Commun. 7, 94.

  13. Raedschelders K., Ansley D.M., Chen D.D.Y. (2012) The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion. Pharmacol. Ther. 133, 230–255.

  14. Zhou T., Chuang C.C., Zuo L. (2015) Molecular characterization of reactive oxygen species in myocardial ischemia-reperfusion injury. Biomed. Res. Int. 2015, 864946.

  15. Bugger H., Pfeil K. (2020) Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochim. Biophys. ActaMol. Basis Dis. 1866, 165768.

  16. Matsushima S., Sadoshima J. (2022) Yin and Yang of NADPH oxidases in myocardial ischemia–reperfusion. Antioxidants. 11, 1069.

  17. Lambeth J.D., Krause K.H., Clark R.A. (2008) NOX enzymes as novel targets for drug development. Semin. Immunopathol. 30, 339–363.

  18. Loukogeorgakis S.P., Van Den Berg M.J., Sofat R., Nitsch D., Charakida M., Haiyee B., De Groot E., MacAllister R.J., Kuijpers T.W., Deanfield J.E. (2010) Role of NADPH oxidase in endothelial ischemia/reperfusion injury in humans. Circulation. 121, 2310–2316.

  19. Nakagiri A., Sunamoto M., Murakami M. (2007) NADPH oxidase is involved in ischaemia/reperfusion-induced damage in rat gastric mucosa via ROS production – role of NADPH oxidase in rat stomachs. Inflammopharmacology. 15, 278–281.

  20. Förstermann U., Sessa W.C. (2012) Nitric oxide synthases: regulation and function. Eur. Heart J. 33, 829–837.

  21. Xu F., Mack C.P., Quandt K.S., Shlafer M., Massey V., Hultquist D.E. (1993) Pyrroloquinoline quinone acts with flavin reductase to reduce ferryl myoglobin in vitro and protects isolated heart from reoxygenation injury. Biochem. Biophys. Res. Commun. 193, 434–439.

  22. McLeod L.L., Alayash A.I. (1999) Detection of a ferrylhemoglobin intermediate in an endothelial cell model after hypoxia-reoxygenation. Am. J. PhysiolHeart Circ. Physiol. 277, H92–H99.

  23. Ruan Y., Zeng J., Jin Q., Chu M., Ji K., Wang Z., Li L. (2020) Endoplasmic reticulum stress serves an important role in cardiac ischemia/reperfusion injury (Review). Exp. Ther. Med. 20, 260.

  24. Zhou H., Toan S. (2020) Pathological roles of mitochondrial oxidative stress and mitochondrial dynamics in cardiac microvascular ischemia/reperfusion injury. Biomolecules. 10, 85.

  25. Lipskaia L., Keuylian Z., Blirando K., Mougenot N., Jacquet A., Rouxel C., Sghairi H., Elaib Z., Blaise R., Adnot S., Hajjar R.J., Chemaly E.R., Limon I., Bobe R. (2014) Expression of Sarco (Endo) plasmic reticulum calcium ATPase (SERCA) system in normal mouse cardiovascular tissues, heart failure and atherosclerosis. Biochim. Biophys. Acta. 1843, 2705.

  26. Wang R., Wang M., He S., Sun G., Sun X. (2020) Targeting calcium homeostasis in myocardial ischemia/reperfusion injury: an overview of regulatory mechanisms and therapeutic reagents. Front. Pharmacol. 11, 1–14.

  27. Adams C.J., Kopp M.C., Larburu N., Nowak P.R., Ali M.M.U. (2019) Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1. Front. Mol. Biosci. 6, 1–12.

  28. Kaul S., Methner C., Cao Z., Mishra A. (2022) Mechanisms of the “No-Reflow” phenomenon after acute myocardial infarction. JACC Basic to Transl. Sci. 8, 204–220.

  29. Edwards N.J., Hwang C., Marini S., Pagani C.A., Spreadborough P.J., Rowe C.J., Yu P., Mei A., Visser N., Li S., Hespe G.E., Huber A.K., Strong A.L., Shelef M.A., Knight J.S., Davis T.A., Levi B. (2020) The role of neutrophil extracellular traps and TLR signaling in skeletal muscle ischemia reperfusion injury. FASEB J. 34, 15753–15770.

  30. Arlati S. (2019) Pathophysiology of acute illness and injury. In Operative Techniques and Recent Advances in Acute Care and Emergency Surgery. Cham: Springer Internat. Publ., 11–42.

  31. Granger D.N., Kvietys P.R. (2015) Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 6, 524–551.

  32. Tennant D., Howell N.J. (2014) The role of HIFs in ischemia-reperfusion injury. Hypoxia. 2, 107–115.

  33. Silva-Islas C.A., Maldonado P.D. (2018) Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol. Res. 134, 92–99.

  34. Toth R., Warfel N. (2017) Strange bedfellows: nuclear factor, erythroid 2-like 2 (Nrf2) and hypoxia-inducible factor 1 (HIF-1) in tumor hypoxia. Antioxidants. 6, 27.

  35. Gallagher B.M., Phelan S.A. (2007) Investigating transcriptional regulation of Prdx6 in mouse liver cells. Free Radic. Biol. Med. 42, 1270–1277.

  36. Park Y.-H., Kim S.-U., Kwon T.-H., Kim J.-M., Song I.-S., Shin H.-J., Lee B.-K., Bang D.-H., Lee S.-J., Lee D.-S., Chang K.-T., Kim B.-Y., Yu D.-Y. (2016) Peroxiredoxin II promotes hepatic tumorigenesis through cooperation with Ras/Forkhead box M1 signaling pathway. Oncogene. 35, 3503–3513.

  37. Guo Q.J., Mills J.N., Bandurraga S.G., Nogueira L.M., Mason N.J., Camp E.R., Larue A.C., Turner D.P., Findlay V.J. (2013) MicroRNA-510 promotes cell and tumor growth by targeting peroxiredoxin1 in breast cancer. Breast Cancer Res. 15, R70.

  38. Hopkins B.L., Nadler M., Skoko J.J., Bertomeu T., Pelosi A., Shafaei P.M., Levine K., Schempf A., Pennarun B., Yang B., Datta D., Bucur O., Ndebele K., Oesterreich S., Yang D., Rizzo M.G., Khosravi-Far R., Neumann C.A. (2018) A peroxidase peroxiredoxin 1-specific redox regulation of the novel FOXO3 microRNA target let-7. Antioxid. Redox Signal. 28, 62–77.

  39. Joris V., Gomez E.L., Menchi L., Lobysheva I., Di Mauro V., Esfahani H., Condorelli G., Balligand J.-L., Catalucci D., Dessy C. (2018) MicroRNA-199a-3p and microRNA-199a-5p take part to a redundant network of regulation of the NOS (NO synthase)/NO pathway in the endothelium. Arterioscler. Thromb. Vasc. Biol. 38, 2345–2357.

  40. Zheng J., Chen P., Zhong J., Cheng Y., Chen H., He Y., Chen C. (2021) HIF‑1α in myocardial ischemia‑reperfusion injury (Review). Mol. Med. Rep. 23, 1–9.

  41. Schellinger I.N., Cordasic N., Panesar J., Buchholz B., Jacobi J., Hartner A., Klanke B., Jakubiczka-Smorag J., Burzlaff N., Heinze E., Warnecke C., Raaz U., Will-am C., Tsao P.S., Eckardt K.U., Amann K., Hilgers K.F. (2017) Hypoxia inducible factor stabilization improves defective ischemia-induced angiogenesis in a rodent model of chronic kidney disease. Kidney Int. 91, 616–627.

  42. Wigerup C., Påhlman S., Bexell D. (2016) Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol. Ther. 164, 152–169.

  43. Koyasu S., Kobayashi M., Goto Y., Hiraoka M., Harada H. (2018) Regulatory mechanisms of hypoxia-inducible factor 1 activity: two decades of knowledge. Cancer Sci. 109, 560–571.

  44. BelAiba R.S., Bonello S., Zahringer C., Schmidt S., Hess J., Kietzmann T., Gorlach A. (2007) Hypoxia up-regulates hypoxia-inducible factor-1 transcription by involving phosphatidylinositol 3-kinase and nuclear factor B in pulmonary artery smooth muscle cells. Mol. Biol. Cell. 18, 4691–4697.

  45. van Uden P., Kenneth N.S., Webster R., Müller H.A., Mudie S., Rocha S. (2011) Evolutionary conserved regulation of HIF-1β by NF-κB. PLoS Genet. 7, e1001285.

  46. Zhang C., Liu J., Wang J., Zhang T., Xu D., Hu W., Feng Z. (2021) The interplay between tumor suppressor p53 and hypoxia signaling pathways in cancer. Front. Cell Dev. Biol. 9, 648808.

  47. Potteti H.R., Noone P.M., Tamatam C.R., Ankireddy A., Noel S., Rabb H., Reddy S.P. (2021) Nrf2 mediates hypoxia-inducible HIF1a activation in kidney tubular epithelial cells. Am. J. Physiol. Am. J. PhysiolHeart Circ. Physiol. Ren. Physiol. 320, F464–F474.

  48. Cai S.J., Liu Y., Han S., Yang C. (2019) Brusatol, an NRF2 inhibitor for future cancer therapeutic. Cell Biosci. 9, 9–11.

  49. Burgos R.A., Alarcón P., Quiroga J., Manosalva C., Hancke J. (2021) Andrographolide, an anti-inflammatory multitarget drug: all roads lead to cellular metabolism. Molecules. 26, 5.

  50. Lin J., Fan L., Han Y., Guo J., Hao Z., Cao L., Kang J., Wang X., He J., Li J. (2021) The mTORC1/eIF4E/HIF-1α pathway mediates glycolysis to support brain hypoxia resistance in the Gansu Zokor, Eospalax cansus. Front. Physiol. 12, 626240.

  51. Zang H., Mathew R.O., Cui T. (2020) The dark side of Nrf2 in the heart. Front. Physiol. 11, 1–8.

  52. He F., Ru X., Wen T. (2020) NRF2, a transcription factor for stress response and beyond. Int. J. Mol. Sci. 21, 1–23.

  53. Calvert J.W., Jha S., Gundewar S., Elrod J.W., Ramachandran A., Pattillo C.B., Kevil C.G., Lefer D.J. (2009) Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ. Res. 105, 365–374.

  54. Howden R. (2013) Nrf2 and cardiovascular defense. Oxid. Med. Cell Longev. 2013, 1–10.

  55. Chen Q.M. (2021) Nrf2 for cardiac protection: pharmacological options against oxidative stress. Trends Pharmacol. Sci. 42, 729–744.

  56. Bardallo G.R., Panisello-Roselló A., Sanchez-Nuno S., Alva N., Roselló-Catafau J., Carbonell T. (2022) Nrf2 and oxidative stress in liver ischemia/reperfusion injury. FEBS J. 289, 5463–5479.

  57. Arfin S., Jha N.K., Jha S.K., Kesari K.K., Ruokolainen J., Roychoudhury S., Rathi B., Kumar D. (2021) Oxidative stress in cancer cell metabolism. Antioxidants. 10, 167–197.

  58. Saha S., Buttari B., Panieri E., Profumo E., Saso L. (2020) An overview of Nrf2 signaling pathway and its role in inflammation. Molecules. 25, 1–31.

  59. Wu J., Sun X., Jiang Z., Jiang J., Xu L., Tian A., Sun X., Meng H., Li Y., Huang W., Jia Y., Wu H. (2020) Protective role of NRF2 in macrovascular complications of diabetes. J. Cell. Mol. Med. 24, 8903–8917.

  60. Ganner A., Pfeiffer Z.C., Wingendorf L., Kreis S., Klein M., Walz G., Neumann-Haefelin E. (2020) The acetyltransferase p300 regulates NRF2 stability and localization. Biochem. Biophys. Res. Commun. 524, 895–902.

  61. Kim M.J., Jeon J.H. (2022) Recent advances in understanding Nrf2 agonism and its potential clinical application to metabolic and inflammatory diseases. Int. J. Mol. Sci. 23, 2846.

  62. Zhang J., Pan W., Zhang Y., Tan M., Yin Y., Li Y., Zhang L., Han L., Bai J., Jiang T., Li H. (2022) Comprehensive overview of Nrf2-related epigenetic regulations involved in ischemia-reperfusion injury. Theranostics. 12, 6626–6645.

  63. Ngo K.A., Kishimoto K., Davis-Turak J., Pimplaskar A., Cheng Z., Spreafico R., Chen E.Y., Tam A., Ghosh G., Mitchell S., Hoffmann A. (2020) Dissecting the regulatory strategies of NF-κB RelA target genes in the inflammatory response reveals differential transactivation logics. Cell Rep. 30, 2758–2775. e6.

  64. Naguib S., Backstrom J.R., Gil M., Calkins D.J., Rex T.S. (2021) Retinal oxidative stress activates the NRF2/ARE pathway: an early endogenous protective response to ocular hypertension. Redox Biol. 42, 101883.

  65. Lu J., Wu T., Zhang B., Liu S., Song W., Qiao J., Ruan H. (2021) Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Commun. Signal. 19, 1–10.

  66. Mulero M.C., Wang V.Y., Huxford T., Ghosh G. (2019) Genome reading by the NF-ⱪB transcription factors. Nucl. Acids Res. 47, 9967–9989.

  67. Albensi B.C. (2019) What is nuclear factor kappa B (NF-κB) Doing in and to the mitochondrion? Front. Cell. Dev. Biol. 7, 1–7.

  68. Oeckinghaus A., Hayden M.S., Ghosh S. (2011) Crosstalk in NF-κB signaling pathways. Nat. Immunol. 12, 695–708.

  69. Jarvis R.M., Hughes S.M., Ledgerwood E.C. (2012) Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells. Free Radic. Biol. Med. 53, 1522–1530.

  70. Howell J.A., Bidwell G.L. (2020) Targeting the NF-κB pathway for therapy of ischemic stroke. Ther. Deliv. 11, 113–123.

  71. Hasan A.A., Kalinina E., Tatarskiy V., Shtil A. (2022) The thioredoxin system of mammalian cells and its modulators. Biomedicines. 10, 1757.

  72. Ghosh R., Samanta P., Sarkar R., Biswas S., Saha P., Hajra S., Bhowmik A. (2022) Targeting HIF-1α by natural and synthetic compounds: a promising approach for anti-cancer therapeutics development. Molecules. 27, 1–37.

  73. Shi T., Dansen T.B. (2020) Reactive oxygen species induced p53 activation: DNA damage, redox signaling, or both? Antioxidants Redox Signal. 33, 839–859.

  74. Eriksson S.E., Ceder S., Bykov V.J.N., Wiman K.G. (2019) P53 as a hub in cellular redox regulation and therapeutic target in cancer. J. Mol. Cell. Biol. 11, 330–341.

  75. Konrath F., Mittermeier A., Cristiano E., Wolf J., Loewer A. (2020) A systematic approach to decipher crosstalk in the p53 signaling pathway using single cell dynamics. PLoS Comput. Biol. 16, 1–27.

  76. Pan M., Blattner C. (2021) Regulation of P53 by E3S. Cancers (Basel). 13, 1–43.

  77. Ghoneum A., Said N. (2019) PI3K-AKT-mTOR and NFkB pathways in ovarian cancer: implications for targeted therapeutics. Cancers (Basel). 11, 1757.

  78. Xu F., Na L., Li Y., Chen L. (2020) Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci. 10, 1–12.

  79. Yoshioka K. (2021) Class II phosphatidylinositol 3-kinase isoforms in vesicular trafficking. Biochem. Soc. Trans. 49, 893–901.

  80. Khan H., Singh A., Thapa K., Garg N., Grewal A.K., Singh T.G. (2021) Therapeutic modulation of the phosphatidylinositol 3-kinases (PI3K) pathway in cerebral ischemic injury. Brain Res. 1761, 147399.

  81. Walkowski B., Kleibert M., Majka M., Wojciechowska M. (2022) Insight into the role of the PI3K/Akt pathway in ischemic injury and post-infarct left ventricular remodeling in normal and diabetic heart. Cells. 11, 1553.

  82. Tsai P.J., Lai Y.H., Manne R.K., Tsai Y.S., Sarbassov D., Lin H.K. (2022) Akt: a key transducer in cancer. J. Biomed. Sci. 29, 1–17.

  83. Li D., Qu Y., Mao M., Zhang X., Li J., Ferriero D., Mu D. (2009) Involvement of the PTEN–AKT–FOXO3a pathway in neuronal apoptosis in developing rat brain after hypoxia–ischemia. J. Cereb. Blood Flow Metab. 29, 1903–1913.

  84. Yang S., Pang L., Dai W., Wu S., Ren T., Duan Y., Zheng Y., Bi S., Zhang X., Kong J. (2021) Role of forkhead box O proteins in hepatocellular carcinoma biology and progression (Review). Front. Oncol. 11, 1–15.

  85. Wu P., Du Y., Xu Z., Zhang S., Liu J., Aa N., Yang Z. (2019) Protective effects of sodium tanshinone IIA sulfonate on cardiac function after myocardial infarction in mice. Am. J. Transl. Res. 11, 351–360.

  86. Zhang Z., Yao L., Yang J., Wang Z., Du G. (2018) PI3K/Akt and HIF-1 signaling pathway in hypoxia-ischemia (Review). Mol. Med. Rep. 18, 3547–3554.

  87. Yang X.M., Wang Y.S., Zhang J., Li Y., Xu J.F., Zhu J., Zhao W., Chu D.K., Wiedemann P. (2009) Role of PI3K/Akt and MEK/ERK in mediating hypoxia-induced expression of HIF-1α and VEGF in laser-induced rat choroidal neovascularization. Investig. Ophthalmol. Vis. Sci. 50, 1873–1879.

  88. Karar J., Cerniglia G.J., Lindsten T., Koumenis C., Maity A. (2012) Dual PI3K/mTOR inhibitor NVP-BEZ235 suppresses hypoxia-inducible factor (HIF)-1α expression by blocking protein translation and increases cell death under hypoxia. Cancer Biol. Ther. 13, 1102–1111.

  89. Deng H., Chen Y., Li P., Hang Q., Zhang P., Jin Y., Chen M. (2023) PI3K/AKT/mTOR pathway, hypoxia, and glucose metabolism: potential targets to overcome radioresistance in small cell lung cancer. Cancer Pathog. Ther. 1, 56–66.

  90. Bouyahya A., El Allam A., Aboulaghras S., Bakrim S., El Menyiy N., Alshahrani M.M., Al Awadh A.A., Benali T., Lee L.-H., El Omari N., Goh K.W., Ming L.C., Mubarak M.S. (2022) Targeting mTOR as a cancer therapy: recent advances in natural bioactive compounds and immunotherapy. Cancers (Basel). 14, 5520.

  91. Kierans S.J., Taylor C.T. (2021) Regulation of glycolysis by the hypoxia-inducible factor (HIF): implications for cellular physiology. J. Physiol. 599, 23–37.

  92. Fu W., Hall M.N. (2020) Regulation of MTORC2 signaling. Genes (Basel). 11, 1–19.

  93. Huu T.N., Park J., Zhang Y., Park I., Yoon H.J., Woo H.A., Lee S.R. (2021) Redox regulation of PTEN by peroxiredoxins. Antioxidants. 10, 1–14.

  94. Wang Y., Zhang X., ling B., He C., Xia Q., Chen F., Miyamori I., Yang Z., Fan C. (2013) Molecular detection of trisomy 21 by bicolor competitive fluorescent PCR. J. Clin. Lab. Anal. 27, 245–248.

  95. Olthof P.B., Reiniers M.J., Dirkes M.C., Van Gulik T.M., Heger M., Van Golen R.F. (2015) Protective mechanisms of hypothermia in liver surgery and transplantation. Mol. Med. 21, 833–846.

  96. Jaeschke H., Woolbright B.L. (2012) Current strategies to minimize hepatic ischemia-reperfusion injury by targeting reactive oxygen species. Transplant. Rev. 26, 103–114.

  97. Deng H., Han H.S., Cheng D., Sun G.H., Yenari M.A. (2003) Mild hypothermia inhibits inflammation after experimental stroke and brain inflammation. Stroke. 34, 2495–2501.

  98. Sangaletti R., Tamames I., Yahn S.L., Choi J.S., Lee J.K., King C., Rajguru S.M. (2023) Mild therapeutic hypothermia protects against inflammatory and proapoptotic processes in the rat model of cochlear implant trauma. Hear Res. 428, 108680.

  99. Yanamoto H., Hong S.C., Soleau S., Kassell N.F., Lee K.S. (1996) Mild postischemic hypothermia limits cerebral injury following transient focal ischemia in rat neocortex. Brain Res. 718, 207–211.

  100. Polderman K.H. (2008) Induced hypothermia and fever control for prevention and treatment of neurological injuries. Lancet. 371, 1955–1969.

  101. Chen-Yoshikawa T.F. (2021) Ischemia–reperfusion injury in lung transplantation. Cells. 10, 1333.

  102. Edelman J.J.B., Seco M., Dunne B., Matzelle S.J., Murphy M., Joshi P., Yan T.D., Wilson M.K., Bannon P.G., Vallely M.P., Passage J. (2013) Custodiol for myocardial protection and preservation: a systematic review. Ann. Cardiothorac. Surg. 2, 717–728.

  103. Kurtz C.C., Lindell S.L., Mangino M.J., Carey H.V. (2006) Hibernation confers resistance to intestinal ischemia-reperfusion injury. Am. J. Physiol.Gastrointest. Liver Physiol. 291, 895–901.

  104. Dark J. (2005) Annual lipid cycles in hibernators: Integration of physiology and behavior. Annu. Rev. Nutr. 25, 469–497.

  105. Andrews M.T. (2007) Advances in molecular biology of hibernation in mammals. BioEssays. 29, 431–440.

  106. Zingarelli B., Hake P.W., O’Connor M., Burroughs T.J., Wong H.R., Solomkin J.S., Lentsch A.B. (2009) Lung injury after hemorrhage is age dependent: role of peroxisome proliferator-activated receptor γ. Crit. Care Med. 37, 1978–1987.

  107. Plotnikov E.Y. (2021) Ischemic preconditioning of the kidney. Bull. Exp. Biol. Med. 171, 567–571.

  108. Kloner R.A., Jennings R.B. (2001) Consequences of brief ischemia: stunning, preconditioning, and their clinical implications. Part 1. Circulation. 104, 2981–2989.

  109. Yoon Y.E., Lee K.S., Choi K.H., Kim K.H., Yang S.C., Han W.K. (2015) Preconditioning strategies for kidney ischemia reperfusion injury: implications of the “time-window” in remote ischemic preconditioning. PLoS One. 10, e0124130.

  110. Lang J.A., Kim J. (2022) Remote ischaemic preconditioning – translating cardiovascular benefits to humans. J. Physiol. 600, 3053–3067.

  111. Zhao Z.Q., Corvera J.S., Halkos M.E., Kerendi F., Wang N.P., Guyton R.A., Vinten-Johansen J. (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am. J. Physiol.Heart Circ. Physiol. 285, 579–588.

  112. Sengul D. (2021) Connection of reactive oxygen species as an essential actor for the mechanism of phenomena; ischemic preconditioning and postconditioning: come to age or ripening? North Clin. Istanbul. 8, 644–649.

  113. Khan H., Kashyap A., Kaur A., Singh T.G. (2020) Pharmacological postconditioning: a molecular aspect in ischemic injury. J. Pharm. Pharmacol. 72, 1513–1527.

  114. Terada L.S., Guidot D.M., Leff J.A., Willingham I.R., Hanley M.E., Piermattei D., Repine J.E. (1992) Hypoxia injures endothelial cells by increasing endogenous xanthine oxidase activity. Proc. Natl. Acad. Sci. USA. 89, 3362–3366.

  115. Cantu-Medellin N., Kelley E.E. (2013) Xanthine oxidoreductase-catalyzed reactive species generation: a process in critical need of reevaluation. Redox Biol. 1, 353–358.

  116. Bredemeier M., Lopes L.M., Eisenreich M.A., Hickmann S., Bongiorno G.K., D’Avila R., Morsch A.L.B., da Silva Stein F., Campos G.G.D. (2018) Xanthine oxidase inhibitors for prevention of cardiovascular events: a systematic review and meta-analysis of randomized controlled trials. BMC Cardiovasc. Disord. 18, 1–11.

  117. Rastogi R., Geng X., Li F., Ding Y. (2017) NOX activation by subunit interaction and underlying mechanisms in disease. Front. Cell Neurosci. 10, 1–13.

  118. Brandes R.P., Weissmann N., Schröder K. (2014) Nox family NADPH oxidases: molecular mechanisms of activation. Free Radic. Biol. Med. 76, 208–226.

  119. Waghela B.N., Vaidya F.U., Agrawal Y., Santra M.K., Mishra V., Pathak C. (2021) Molecular insights of NADPH oxidases and its pathological consequences. Cell Biochem. Funct. 39, 218–234.

  120. Csányi G., Cifuentes-Pagano E., Al Ghouleh I., Ranayhossaini D.J., Egaña L., Lopes L.R., Jackson H.M., Kelley E.E., Pagano P.J. (2011) Nox2 B-loop peptide, Nox2ds, specifically inhibits Nox2 oxidase. Free Radic. Biol. Med. 51, 1116–1125.

  121. Altenhöfer S., Radermacher K.A., Kleikers P.W.M., Wingler K., Schmidt H.H.H.W. (2015) Evolution of NADPH oxidase inhibitors: selectivity and mechanisms for target engagement. Antioxid. Redox Signal. 23, 406–427.

  122. Kaludercic N., Mialet-Perez J., Paolocci N., Parini A., Di Lisa F. (2014) Monoamine oxidases as sources of oxidants in the heart. J. Mol. Cell Cardiol. 73, 34–42.

  123. Duicu O.M., Lighezan R., Sturza A., Ceausu R.A., Borza C., Vaduva A., Noveanu L., Gaspar M., Ionac A., Feier H., Muntean D.M., Mornos C. (2015) Monoamine oxidases as potential contributors to oxidative stress in diabetes: time for a study in patients undergoing heart surgery. Biomed. Res. Int. 2015, 515437.

  124. Duarte P., Cuadrado A., León R. (2021) Monoamine oxidase inhibitors: from classic to new clinical approaches. Handb Exp. Pharmacol. 264, 229–259.

  125. Stein A., Bailey S.M. (2013) Redox biology of hydrogen sulfide: Implications for physiology, pathophysiology, and pharmacology. Redox Biol. 1, 32.

  126. Kamoun P., Belardinelli M.-C., Chabli A., Lallouchi K., Chadefaux-Vekemans B. (2003) Endogenous hydrogen sulfide overproduction in Down syndrome. Am. J. Med. Genet. A. 116A, 310–311.

  127. Szabo C., Ransy C., Módis K., Andriamihaja M., Murghes B., Coletta C., Olah G., Yanagi K., Bouillaud F. (2014) Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms. Br. J. Pharmacol. 171, 2099.

  128. Wu D., Wang J., Li H., Xue M., Ji A., Li Y. (2015) Role of hydrogen sulfide in ischemia-reperfusion injury. Oxid. Med. Cell Longev. 2015, 1–16.

  129. Szabo C., Papapetropoulos A. (2017) International union of basic and clinical pharmacology. CII: pharmacological modulation of H2S levels: H2s donors and H2S biosynthesis inhibitors. Pharmacol. Rev. 69, 497–564.

  130. Meng W., Pei Z., Feng Y., Zhao J., Chen Y., Shi W., Xu Q., Lin F., Sun M., Xiao K. (2017) Neglected role of hydrogen sulfide in sulfur mustard poisoning: Keap1 S-sulfhydration and subsequent Nrf2 pathway activation. Sci. Rep. 7, 9433.

  131. Jiang B., Tang G., Cao K., Wu L., Wang R. (2010) Molecular mechanism for H(2)S-induced activation of K(ATP) channels. Antioxid. Redox Signal. 12, 1167–1178.

  132. Ge S.N., Zhao M.M., Wu D.D., Chen Y., Wang Y., Zhu J.H., Cai W.J., Zhu Y.Z., Zhu Y.C. (2014) Hydrogen sulfide targets EGFR Cys797/Cys798 residues to induce Na(+)/K(+)-ATPase endocytosis and inhibition in renal tubular epithelial cells and increase sodium excretion in chronic salt-loaded rats. Antioxid. Redox Signal. 21, 2061–2082.

  133. Tao B.B., Liu S.Y., Zhang C.C., Fu W., Cai W.J., Wang Y., Shen Q., Wang M.J., Chen Y., Zhang L.J., Zhu Y.Z., Zhu Y.C. (2013) VEGFR2 functions as an H2S-targeting receptor protein kinase with its novel Cys1045-Cys1024 disulfide bond serving as a specific molecular switch for hydrogen sulfide actions in vascular endothelial cells. Antioxid. Redox Signal. 19, 448–464.

  134. Kai S., Tanaka T., Daijo H., Harada H., Kishimoto S., Suzuki K., Takabuchi S., Takenaga K., Fukuda K., Hirota K. (2012) Hydrogen sulfide inhibits hypoxia-but not anoxia-induced hypoxia-inducible factor 1 activation in a von Hippel-Lindau-and mitochondria-dependent manner. Antioxid. Redox Signal. 16, 203–216.

  135. Wang D., Ma Y., Li Z., Kang K., Sun X., Pan S., Wang J., Pan H., Liu L., Liang D., Jiang H. (2012) The role of AKT1 and autophagy in the protective effect of hydrogen sulphide against hepatic ischemia/reperfusion injury in mice. Autophagy. 8, 954–962.

  136. Wolfschmitt E.M., Hogg M., Vogt J.A., Zink F., Wachter U., Hezel F., Zhang X., Hoffmann A., Gröger M., Hartmann C., Gässler H., Datzmann T., Merz T., Hellmann A., Kranz C., Calzia E., Radermacher P., Messerer D.A.C. (2023) The effect of sodium thiosulfate on immune cell metabolism during porcine hemorrhage and resuscitation. Front. Immunol. 14, 1–16.

  137. Zorov D.B., Juhaszova M., Sollott S.J. (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 94, 909–950.

  138. Kent A.C., El Baradie K.B.Y., Hamrick M.W. (2021) Targeting the mitochondrial permeability transition pore to prevent age-associated cell damage and neurodegeneration. Oxid. Med. Cell. Longev. 2021, 6626484.

  139. Белослудцев К.Н., Дубинин М.В., Белослудцева Н.В., Миронова Г.Д. (2019) Транспорт ионов Са2+ митохондриями: механизмы, молекулярные структуры и значение для клетки. Биохимия. 84, 759–775.

  140. Briston T., Selwood D.L., Szabadkai G., Duchen M.R. (2019) Mitochondrial permeability transition: a molecular lesion with multiple drug targets. Trends Pharmacol. Sci. 40, 50–70.

  141. Piot C., Croisille P., Staat P., Thibault H., Rioufol G., Mewton N., Elbelghiti R., Cung T.T., Bonnefoy E., Angoulvant D., Macia C., Raczka F., Sportouch C., Gahide G., Finet G., André-Fouët X., Revel D., Kirkorian G., Monassier J.-P., Derumeaux G., Ovize M. (2008) Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N. Engl. J. Med. 359, 473–481.

  142. Rottenberg H., Hoek J.B. (2021) The mitochondrial permeability transition: nexus of aging, disease and longevity. Cells. 10, 1–23.

  143. Zweier J.L., Flaherty J.T., Weisfeldt M.L. (1987) Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc. Natl. Acad. Sci. USA. 84, 1404–1407.

  144. Шарапов М.Г., Гудков С.В., Ланкин В.З. (2021) Гидропероксид-восстанавливающие ферментные системы в регуляции свободнорадикальных процессов. Биохимия. 86, 1479–1501.

  145. Гудков С.В., Попова Н.Р., Брусков В.И. (2015) Радиозащитные вещества: история, тенденции и перспективы. Биофизика. 60, 801–811.

  146. Orhan G., Yapici N., Yuksel M., Sargin M., Şenay Ş., Yalçin A.S., Aykaç Z., Aka S.A. (2006) Effects of N-acetylcysteine on myocardial ischemia-reperfusion injury in bypass surgery. Heart Vessels. 21, 42–47.

  147. Prabhu A., Sujatha D.I., Kanagarajan N., Vijayalakshmi M.A., Ninan B. (2009) Effect of N-acetylcysteine in attenuating ischemic reperfusion injury in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass. Ann. Vasc. Surg. 23, 645–651.

  148. Karmanova E.E., Chernikov A.V., Popova N.R., Sharapov M.G., Ivanov V.E., Bruskov V.I. (2023) Metformin mitigates radiation toxicity exerting antioxidant and genoprotective properties. Naunyn Schmiedebergs Arch. Pharmacol. AOP, 1–12.

  149. Mohsin A.A., Chen Q., Quan N., Rousselle T., Maceyka M.W., Samidurai A., Thompson J., Hu Y., Li J., Lesnefsky E.J. (2019) Mitochondrial complex I inhibition by metformin limits reperfusion injury. J. Pharmacol. Exp. Ther. 369, 282–290.

  150. Bu Y., Peng M., Tang X., Xu X., Wu Y., Chen A.F., Yang X. (2022) Protective effects of metformin in various cardiovascular diseases: clinical evidence and AMPK-dependent mechanisms. J. Cell. Mol. Med. 26, 4886–4903.

  151. Liu W., Wang L., Liu C., Dai Z., Li T., Tang B. (2022) Edaravone ameliorates cerebral ischemia-reperfusion injury by downregulating ferroptosis via the Nrf2/FPN pathway in rats. Biol. Pharm. Bull. 45, 1269–1275.

  152. Bailly C. (2019) Potential use of edaravone to reduce specific side effects of chemo-, radio- and immuno-therapy of cancers. Int. Immunopharmacol. 77, 105967.

  153. Kassab A.A., Aboregela A.M., Shalaby A.M. (2020) Edaravone attenuates lung injury in a hind limb ischemia-reperfusion rat model: a histological, immunohistochemical and biochemical study. Ann. Anat. 228, 151 433.

  154. Chen C., Li M., Lin L., Chen S., Chen Y., Hong L. (2021) Clinical effects and safety of edaravone in treatment of acute ischaemic stroke: a meta-analysis of randomized controlled trials. J. Clin. Pharm. Ther. 46, 907–917.

  155. Fock E.M., Parnova R.G. (2021) Protective effect of mitochondria-targeted antioxidants against inflammatory response to lipopolysaccharide challenge: a review. Pharmaceutics. 13, 1–24.

  156. Skulachev V.P. (2013) Cationic antioxidants as a powerful tool against mitochondrial oxidative stress. Biochem. Biophys. Res. Commun. 441, 275–279.

  157. Plotnikov E.Y., Chupyrkina A.A., Jankauskas S.S., Pevzner I.B., Silachev D.N., Skulachev V.P., Zorov D.B. (2011) Mechanisms of nephroprotective effect of mitochondria-targeted antioxidants under rhabdomyolysis and ischemia/reperfusion. Biochim. Biophys. ActaMol. Basis. Dis. 1812, 77–86.

  158. Silachev D.N., Isaev N.K., Pevzner I.B., Zorova L.D., Stelmashook E.V., Novikova S.V., Plotnikov E.Y., Skulachev V.P., Zorov D.B. (2012) The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk. PLoS One. 7, e51553.

  159. Plotnikov E.Y., Zorov D.B. (2019) Pros and cons of use of mitochondria-targeted antioxidants. Antioxidants. 8, 4–9.

  160. Venardos K., Kaye D. (2007) Myocardial ischemia-reperfusion injury, antioxidant enzyme systems, and selenium: a review. Curr. Med. Chem. 14, 1539–1549.

  161. Turovsky E.A., Mal’tseva V.N., Sarimov R.M., Simakin A.V., Gudkov S.V., Plotnikov E.Y. (2022) Features of the cytoprotective effect of selenium nanoparticles on primary cortical neurons and astrocytes during oxygen-glucose deprivation and reoxygenation. Sci. Rep. 12, 1710.

  162. Schanne G., Zoumpoulaki M., Gazzah G., Vincent A., Preud’Homme H., Lobinski R., Demignot S., Seksik P., Delsuc N., Policar C. (2022) Inertness of superoxide dismutase mimics Mn(ii) complexes based on an open-chain ligand, bioactivity, and detection in intestinal epithelial cells. Oxid. Med. Cell Longev. 2022, 3858122.

  163. Batinic-Haberle I., Tovmasyan A., Spasojevic I. (2015) An educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins – from superoxide dismutation to H2O2-driven pathways. Redox Biol. 5, 43–65.

  164. Ching H.Y.V., Kenkel I., Delsuc N., Mathieu E., Ivanović-Burmazović I., Policar C. (2016) Bioinspired superoxide-dismutase mimics: the effects of functionalization with cationic polyarginine peptides. J. Inorg. Biochem. 160, 172–179.

  165. Policar C., Bouvet J., Bertrand H.C., Delsuc N. (2022) SOD mimics: from the tool box of the chemists to cellular studies. Curr. Opin. Chem. Biol. 67, 102109.

  166. Wang J., Wang P., Dong C., Zhao Y., Zhou J., Yuan C., Zou L. (2020) Mechanisms of ebselen as a therapeutic and its pharmacology applications. Future Med. Chem. 12, 2123–2142.

  167. Azad G.K., Tomar R.S. (2014) Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways. Mol. Biol. Rep. 41, 4865–4879.

  168. Santi C., Scimmi C., Sancineto L. (2021) Ebselen and analogues: pharmacological properties and synthetic strategies for their preparation. Molecules. 26, 4230.

  169. Ge X., Cao Z., Chu L. (2022) The antioxidant effect of the metal and metal-oxide nanoparticles. Antioxidants. 11, 791.

  170. Friedel F.C., Lieb D., Ivanović-Burmazović I. (2012) Comparative studies on manganese-based SOD mimetics, including the phosphate effect, by using global spectral analysis. J. Inorg. Biochem. 109, 26–32.

  171. Yoshikawa T., Naito Y., Ueda S., Oyamada H., Takemura T., Yoshida N., Sugino S., Kondo M. (1990) Role of oxygen-derived free radicals in the pathogenesis of gastric mucosal lesions in rats. J. Clin. Gastroenterol. 12 (Suppl 1), S65–S71.

  172. Ambrosio G., Flaherty J.T. (1992) Effects of the superoxide radical scavenger superoxide dismutase, and of the hydroxyl radical scavenger mannitol, on reperfusion injury in isolated rabbit hearts. Cardiovasc. Drugs Ther. 6, 623–632.

  173. Morpurgo E., Cadrobbi R., Morpurgo M., Rigotti P., Schiavon F., Schiavon O., Caliceti P., Ancona E., Veronese F.M. (1996) Protective effect of superoxide dismutase and polyethylene glycol-linked superoxide dismutase against renal warm ischemia/reperfusion injury. Transplantation. 62, 1221–1223.

  174. Kinouchi H., Epstein C.J., Mizui T., Carlson E., Chen S.F., Chan P.H. (1991) Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. Proc. Natl. Acad. Sci. USA. 88, 11158–11162.

  175. Valdivia A., Pérez-Álvarez S., Aroca-Aguilar J.D., Ikuta I., Jordán J. (2009) Superoxide dismutases: a physiopharmacological update. J. Physiol. Biochem. 65, 195–208.

  176. Giardino R., Giavaresi G., Fini M., Torricelli P., Guzzardella G.A. (2002) The role of different chemical modifications of superoxide dismutase in preventing a prolonged muscular ischemia/reperfusion injury. Artif. Cells Blood Substit. Immobil. Biotechnol. 30, 189–198.

  177. Galinanes M., Qiu Y., Ezrin A., Hearse D.J. (1992) PEG-SOD and myocardial protection. Studies in the blood- and crystalloid-perfused rabbit and rat hearts. Circulation. 86, 672–682.

  178. Muizelaar J.P. (1993) Cerebral ischemia-reperfusion injury after severe head injury and its possible treatment with polyethyleneglycol-superoxide dismutase. Ann. Emerg. Med. 22, 1014–1021.

  179. Jiang Y., Arounleut P., Rheiner S., Bae Y., Kabanov A.V., Milligan C., Manickam D.S. (2016) SOD1 nanozyme with reduced toxicity and MPS accumulation. J. Control. Release. 231, 38–49.

  180. Cosenza C., Wu G.H., Tuso P.J., Cramer D.V., Makowka L. (1993) Protective effect of polyethylene glycol-conjugated superoxide dismutase for cold ischemia-reperfusion damage in isolated pig livers. Transplant. Proc. 25, 1881–1882.

  181. Pisani A., Sabbatini M., Riccio E., Rossano R., Andreucci M., Capasso C., De Luca V., Carginale V., Bizzarri M., Borrelli A., Schiattarella A., Santangelo M., Mancini A. (2014) Effect of a recombinant manganese superoxide dismutase on prevention of contrast-induced acute kidney injury. Clin. Exp. Nephrol. 18, 424–431.

  182. Bonetta R. (2018) Potential therapeutic applications of MnSODs and SOD-mimetics. Chem. – A Eur. J. 24, 5032–5041.

  183. Ambrioso G., Weisfeldt M.L., Jacobus W.E., Flaherty J.T. (1987) Evidence for a reversible oxygen radical-mediated component of reperfusion injury: reduction by recombinant human superoxide dismutase administered at the time of reflow. Circulation. 75, 282–291.

  184. Maksimenko A.V., Vavaev A.V. (2012) Antioxidant enzymes as potential targets in cardioprotection and treatment of cardiovascular diseases. enzyme antioxidants: the next stage of pharmacological counterwork to the oxidative stress. Heart Int. 7, hi.2012.e3.

  185. Шарапов М.Г., Гудков С.В., Ланкин В.З., Новоселов В.И. (2021) Роль глутатионпероксидаз и пероксиредоксинов при свободнорадикальных патологиях. Биохимия. 86, 1635–1653.

  186. Sharapov M.G., Goncharov R.G., Parfenyuk S.B., Glushkova O.V., Novoselov V.I. (2022) The role of phospholipase activity of peroxiredoxin 6 in its transmembrane transport and protective properties. Int. J. Mol. Sci. 23, 15265.

  187. Шарапов М.Г., Новоселов В.И., Равин В.К. (2016) Получение химерного фермента, совмещающего активность супероксиддисмутазы и пероксидазы. Биохимия. 81, 571–579.

  188. Карадулева Е.В., Мубаракшина Э.К., Шарапов М.Г., Волкова А.Е., Пименов О.Ю., Равин В.К., Кокоз Ю.М., Новоселов В.И. (2015) Кардиопротективный эффект модифицированных пероксиредоксинов при ретроградной перфузии изолированного сердца крысы в условиях окислительного стресса. Бюлл. Эксп. Биол. Мед. 160, 584–588.

  189. Грудинин Н.В., Богданов В.К., Шарапов М.Г., Буненков Н.С., Можейко Н.П., Гончаров Р.Г., Фесенко Е.Е., Новоселов В.И. (2020) Применение пероксиредоксина для прекондиционирования трансплантата сердца крысы. Вестн. трансплантологии и искусственных органов. 22, 158–164.

  190. Палутина О.А., Шарапов М.Г., Темнов А.А., Новоселов В.И. (2015) Нефропротективный эффект экзогенных ферментов-антиоксидантов при ишемически-реперфузионном повреждении тканей почки. Бюлл. Эксп. Биол. Мед. 160, 305–310.

  191. Goncharov R.G., Rogov K.A., Temnov A.A., Novoselov V.I., Sharapov M.G. (2019) Protective role of exogenous recombinant peroxiredoxin 6 under ischemia-reperfusion injury of kidney. Cell Tissue Res. 378, 319–332.

  192. Sharapov M.G., Goncharov R.G., Filkov G.I., Trofimenko A.V., Boyarintsev V.V., Novoselov V.I. (2020) Comparative study of protective action of exogenous 2-Cys peroxiredoxins (Prx1 and Prx2) under renal ischemia-reperfusion injury. Antioxidants. 9, 1–23.

  193. Gordeeva A.E., Temnov A.A., Charnagalov A.A., Sharapov M.G., Fesenko E.E., Novoselov V.I. (2015) Protective effect of peroxiredoxin 6 in ischemia/reperfusion-induced damage of small intestine. Dig. Dis. Sci. 60, 3610–3619.

  194. Шарапов М.Г., Гордеева А.Е., Гончаров Р.Г., Тихонова И.В., Равин В.К., Темнов А.А., Фесенко Е.Е., Новоселов В.И. (2017) Влияние экзогенного пероксиредоксина 6 на состояние мезентеральных сосудов и тонкого кишечника при ишемически-реперфузионном поражении. Биофизика. 62, 1208–1220.

  195. Новоселов В.И., Равин В.К., Шарапов М.Г., Софин А.Д., Кукушкин Н.И., Фесенко Е.Е. (2011) Модифицированные пероксиредоксины как прототипы лекарственных препаратов мощного антиоксидантного действия. Биофизика. 56, 873–880.

  196. Simone E.A., Dziubla T.D., Arguiri E., Vardon V., Shuvaev V.V., Christofidou-Solomidou M., Muzykantov V.R. (2009) Loading PEG-catalase into filamentous and spherical polymer nanocarriers. Pharm. Res. 26, 250–260.

  197. Li Z., Wang F., Roy S., Sen C.K., Guan J. (2009) Injectable, highly flexible, and thermosensitive hydrogels capable of delivering superoxide dismutase. Biomacromolecules. 10, 3306–3316.

  198. Gil D., Rodriguez J., Ward B., Vertegel A., Ivanov V., Reukov V. (2017) Antioxidant activity of SOD and catalase conjugated with nanocrystalline ceria. Bioengineering. 4, 18.

  199. Lacramioara L., Diaconu A., Butnaru M., Verestiuc L. (2016) Biocompatible SPIONs with superoxid dismutase/catalase immobilized for cardiovascular applications. IFMBE Proc. 55, 323–326.

Дополнительные материалы отсутствуют.