Молекулярная биология, 2023, T. 57, № 6, стр. 1175-1187

Регуляция метаболизма и роль редокс-факторов в энергетическом контроле покоя и пролиферации кроветворных клеток

М. В. Калашникова a, Н. С. Полякова a, А. В. Белявский a*

a Институт молекулярной биологии им. В.А. Энгельгардта Российской академии наук
119991 Москва, Россия

* E-mail: abelyavs@yahoo.com

Поступила в редакцию 26.04.2023
После доработки 13.06.2023
Принята к публикации 21.06.2023

Аннотация

Клеточный метаболизм относится к ключевым регуляторам поддержания гемопоэтических стволовых клеток (ГСК). Анаэробный гликолиз используется как основной источник энергии у покоящихся ГСК. При экспансии и дифференцировке в условиях стационарного гемопоэза энергетические потребности активированных ГСК многократно возрастают. Для удовлетворения увеличившихся запросов клетки переходят к митохондриальному окислительному фосфорилированию, при этом возрастает производство активных форм кислорода (АФК). В обзоре рассмотрены молекулярные механизмы поддержания гликолиза в ГСК, а также факторы, определяющие увеличение метаболической активности и переход к митохондриальному биогенезу при активации ГСК. Мы останавливаемся на роли белков HIF (hypoxia-inducible factor) как ключевых медиаторов клеточного ответа на гипоксию, а также рассматриваем явление экстрафизиологического кислородного шока/стресса (EPHOSS), приводящего к форсированной дифференцировке ГСК, и методы его преодоления. Наконец, обсуждается роль окисления жирных кислот (FAO) в гемопоэзе. Понимание метаболических потребностей нормальных ГСК и предшественников имеет решающее значение для разработки новых методов лечения заболеваний, связанных с кроветворной и иммунной системами.

Ключевые слова: кроветворение, гемопоэтические стволовые клетки, анаэробный гликолиз, стрессовый гемопоэз, митохондриальный биогенез, окисление жирных кислот, HIF, окислительный стресс, редокс-факторы, активные формы кислорода

Список литературы

  1. Kaushansky K. (2006) Lineage-specific hematopoietic growth factors. N. Engl. J. Med. 354(19), 2034–2045.

  2. Doulatov S., Notta F., Laurenti E., Dick J.E. (2012) Hematopoiesis: a human perspective. Cell Stem Cell. 10(2), 120–136.

  3. Watson C.J., Papula A.L., Poon G.Y.P., Wong W.H., Young A.L., Druley T.E., Fisher D.S., Blundell J.R. (2020) The evolutionary dynamics and fitness landscape of clonal hematopoiesis. Science. 367(6485), 1449–1454.

  4. Cheshier S.H., Morrison S.J., Liao X., Weissman I.L. (1999) In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc. Natl. Acad. Sci. USA. 96(6), 3120–3125.

  5. Cheng T., Rodrigues N., Shen H., Yang Y.G., Dombkowski D., Sykes M., Scadden D.T. (2000) Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science. 287(5459), 1804–1809.

  6. Yamamoto R., Morita Y., Ooehara J., Hamanaka S., Onodera M., Rudolph K.L., Ema H., Nakauchi H. (2013) Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell. 154(5).

  7. Höfer T., Rodewald H.R. (2018) Differentiation-based model of hematopoietic stem cell functions and lineage pathways. Blood. 132(11), 1106–1113.

  8. Sun J., Ramos A., Chapman B., Johnnidis J.B., Le L., Ho Y.J., Klein A., Hofmann O., Camargo F.D. (2014) Clonal dynamics of native haematopoiesis. Nature. 514(7522), 322–327.

  9. Jang Y.Y., Sharkis S.J. (2007) A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood. 110(8), 3056–3063.

  10. Chen Y., Fang S., Ding Q., Jiang R., He J., Wang Q., Jin Y., Huang X., Liu S., Capitano M.L., Trinh T., Teng Y., Meng Q., Wan J., Broxmeyer H.E., Guo B. (2021) ADGRG1 enriches for functional human hematopoietic stem cells following ex vivo expansion-induced mitochondrial oxidative stress. J. Clin. Invest. 131(20).

  11. D’Souza L.C., Kuriakose N., Raghu S.V., Kabekkodu S.P., Sharma A. (2022) ROS-directed activation of Toll/NF-κB in the hematopoietic niche triggers benzene-induced emergency hematopoiesis. Free Radic. Biol. Med. 193(Pt. 1), 190–201.

  12. Jakubison B.L., Sarkar T., Gudmundsson K.O., Singh S., Sun L., Morris H.M., Klarmann K.D., Keller J.R. (2022) ID2 and HIF-1α collaborate to protect quiescent hematopoietic stem cells from activation, differentiation, and exhaustion. J. Clin. Invest. 132(13), e152599.

  13. Guan B., Li C., Yang Y., Lu Y., Sun Y., Su L., Shi G., Bai L., Liu J., Meng A. (2023) Effect of spermidine on radiation-induced long-term bone marrow cell injury. Int. Immunopharmacol. 114, 109557.

  14. Aires R., Porto M.L., de Assis L.M., Pereira P.A.N., Carvalho G.R., Côco L.Z., Vasquez E.C., Pereira T.M.C., Campagnaro B.P., Meyrelles S.S. (2021) DNA damage and aging on hematopoietic stem cells: impact of oxidative stress in ApoE−/− mice. Exp. Gerontol. 156, 111607.

  15. Spencer J.A., Ferraro F., Roussakis E., Klein A., Wu J., Runnels J.M., Zaher W., Mortensen L.J., Alt C., Turcotte R., Yusuf R., Côté D., Vinogradov S.A., Scadden D.T., Lin C.P. (2014) Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 508(7495), 269.

  16. Simsek T., Kocabas F., Zheng J., Deberardinis R.J., Mahmoud A.I., Olson E.N., Schneider J.W., Zhang C.C., Sadek H.A. (2010) The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell. 7(3), 380–390.

  17. Suda T., Takubo K., Semenza G.L. (2011) Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell. 9(4), 298–310.

  18. Semenza G.L. (2001) Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol. Med. 7(8), 345–350.

  19. Gonzalez-Flores A., Aguilar-Quesada R., Siles E., Pozo S., Rodríguez-Lara M.I., López-Jiménez L., López-Rodríguez M., Peralta-Leal A., Villar D., Martín-Oliva D., Del Peso L., Berra E., Oliver F.J. (2014) Interaction between PARP-1 and HIF-2α in the hypoxic response. Oncogene. 33(7), 891–898.

  20. Zhang P., Yao Q., Lu L., Li Y., Chen P.J., Duan C. (2014) Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia. Cell Rep. 6(6), 1110–1121.

  21. Semenza G.L., Wang G.L. (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell Biol. 12(12), 5447–5454.

  22. Wang G.L., Semenza G.L. (1993) Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J. Biol. Chemistry. 268(29), 21513–21518.

  23. Wang G.L., Jiang B.H., Rue E.A., Semenza G.L. (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA. 92(12), 5510–5514.

  24. Semenza G.L. (2004) Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda). 19(4), 176–182.

  25. Schödel J., Ratcliffe P.J. (2019) Mechanisms of hypoxia signalling: new implications for nephrology. Nat. Rev. Nephrol. 15(10), 641–659.

  26. Jaakkola P., Mole D.R., Tian Y.M., Wilson M.I., Gielbert J., Gaskell S.J., Von Kriegsheim A., Hebestreit H.F., Mukherji M., Schofield C.J., Maxwell P.H., Pugh C.W., Ratcliffe P.J. (2001) Targeting of HIF-α to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 292(5516), 468–472.

  27. Schödel J., Klanke B., Weidemann A., Buchholz B., Bernhardt W., Bertog M., Amann K., Korbmacher C., Wiesener M., Warnecke C., Kurtz A., Eckardt K.U., Willam C. (2009) HIF-prolyl hydroxylases in the rat kidney: physiologic expression patterns and regulation in acute kidney injury. Am. J. Pathol. 174(5), 1663–1674.

  28. Appelhoffl R.J., Tian Y.M., Raval R.R., Turley H., Harris A.L., Pugh C.W., Ratcliffe P.J., Gleadle J.M. (2004) Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J. Biol. Chem. 279(37), 38 458–38 465.

  29. Lando D., Peet D.J., Whelan D.A., Gorman J.J., Whitelaw M.L. (2002) Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Scie-nce. 295(5556), 858–861.

  30. Koivunen P., Hirsilä M., Günzler V., Kivirikko K.I., Myllyharju J. (2004) Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J. Biol. Chem. 279(11), 9899–9904.

  31. Kaelin W.G., Ratcliffe P.J. (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell. 30(4), 393–402.

  32. Arany Z., Huang L.E., Eckner R., Bhattacharya S., Jiang C., Goldberg M.A., Bunn H.F., Livingston D.M. (1996) An essential role for p300/CBP in the cellular response to hypoxia. Proc. Natl. Acad. Sci. USA. 93(23), 12969–12973.

  33. Kietzmann T., Mennerich D., Dimova E.Y. (2016) Hypoxia-inducible factors (HIFs) and phosphorylation: impact on stability, localization, and transactivity. Front. Cell Dev. Biol. 4, 11.

  34. Mottet D., Dumont V., Deccache Y., Demazy C., Ninane N., Raes M., Michiels C. (2003) Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3β pathway in HepG2 cells. J. Biol. Chem. 278(33), 31277–31285.

  35. Du S.C., Zhu L., Wang Y.X., Liu J., Zhang D., Chen Y.L., Peng Q., Liu W., Liu B. (2019) SENP1-mediated deSUMOylation of USP28 regulated HIF-1α accumulation and activation during hypoxia response. Cancer Cell Int. 19, 4.

  36. Xu D., Yao Y., Lu L., Costa M., Dai W. (2010) Plk3 functions as an essential component of the hypoxia regulatory pathway by direct phosphorylation of HIF-1α. J. Biol. Chem. 285(50), 38944–38950.

  37. Li C., Park S., Zhang X., Dai W., Xu D. (2017) Mutual regulation between Polo-like kinase 3 and SIAH2 E3 ubiquitin ligase defines a regulatory network that fine-tunes the cellular response to hypoxia and nickel. J. Biol. Chem. 292(27), 11431–11444.

  38. Aquino Perez C., Palek M., Stolarova L., von Morgen P., Macurek L. (2020) Phosphorylation of PLK3 is controlled by protein phosphatase 6. Cells. 9(6), 1506.

  39. Warfel N.A., Dolloff N.G., Dicker D.T., Malysz J., El-Deiry W.S. (2013) CDK1 stabilizes HIF-1α via direct phosphorylation of Ser668 to promote tumor growth. Cell Cycle. 12(23), 3689–3701.

  40. Neckers L. (2022) Oxygen-independent, CDK4/CDK6-dependent degradation of hypoxia-inducible factor-1α takes cancers’ breath away. Oncotarget. 13, 16–17.

  41. Bullen J.W., Tchernyshyov I., Holewinski R.J., Devine L., Wu F., Venkatraman V., Kass D.L., Cole R.N., Van Eyk J., Semenza G.L. (2016) Protein kinase A-dependent phosphorylation stimulates the transcriptional activity of hypoxia-inducible factor 1. Sci. Signal. 9(430), ra56.

  42. Lucia K., Wu Y., Garcia J.M., Barlier A., Buchfelder M., Saeger W., Renner U., Stalla G.K., Theodoropoulou M. (2020) Hypoxia and the hypoxia inducible factor 1α activate protein kinase A by repressing RII beta subunit transcription. Oncogene. 39(16), 3367–3380.

  43. Jeong J.W., Bae M.K., Ahn M.Y., Kim S.H., Sohn T.K., Bae M.H., Yoo M.A., Song E.J., Lee K.J., Kim K.W. (2002) Regulation and destabilization of HIF-1α by ARD1-mediated acetylation. Cell. 111(5), 709–720.

  44. Zhang J., Niu C., Ye L., Huang H., He X., Tong W.G., Ross J., Haug J., Johnson T., Feng J.Q., Harris S., Wiedemann L.M., Mishina Y., Li L. (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 425(6960), 836–841.

  45. Calvi L.M., Adams G.B., Weibrecht K.W., Weber J.M., Olson D.P., Knight M.C., Martin R.P., Schipani E., Divieti P., Bringhurst F.R., Milner L.A., Kronenberg H.M., Scadden D.T. (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 425(6960), 841–846.

  46. Mohyeldin A., Garzón-Muvdi T., Quiñones-Hinojosa A. (2010) Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell. 7(2), 150–161.

  47. Nombela-Arrieta C., Pivarnik G., Winkel B., Canty K.J., Harley B., Mahoney J.E., Park S.Y., Lu J., Protopopov A., Silberstein L.E. (2013) Quantitative imaging of hematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat. Cell Biol. 15(5), 533.

  48. Parmar K., Mauch P., Vergilio J.A., Sackstein R., Down J.D. (2007) Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Natl. Acad. Sci. USA. 104(13), 5431–5436.

  49. Kunisaki Y., Bruns I., Scheiermann C., Ahmed J., Pinho S., Zhang D., Mizoguchi T., Wei Q., Lucas D., Ito K., Mar J.C., Bergman A., Frenette P.S. (2013) Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 502(7473), 637–643.

  50. Méndez-Ferrer S., Michurina T. V., Ferraro F., Mazloom A.R., MacArthur B.D., Lira S.A., Scadden D.T., Ma’ayan A., Enikolopov G.N., Frenette P.S. (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. N-ature. 466(7308), 829–834.

  51. Takubo K., Goda N., Yamada W., Iriuchishima H., Ikeda E., Kubota Y., Shima H., Johnson R.S., Hirao A., Suematsu M., Suda T. (2010) Regulation of the HIF-1α level is essential for hematopoietic stem cells. Cell Stem Cell. 7(3), 391–402.

  52. Takubo K., Nagamatsu G., Kobayashi C.I., Nakamura-Ishizu A., Kobayashi H., Ikeda E., Goda N., Rahimi Y., Johnson R.S., Soga T., Hirao A., Suematsu M., Suda T. (2013) Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell. 12(1), 49–61.

  53. Ito K., Suda T. (2014) Metabolic requirements for the maintenance of self-renewing stem cells. Nat. Rev. Mol. Cell Biol. 15(4), 243.

  54. Yu W.M., Liu X., Shen J., Jovanovic O., Pohl E.E., Gerson S.L., Finkel T., Broxmeyer H.E., Qu C.K. (2013) Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell. 12(1), 62–74.

  55. Ito K., Hirao A., Arai F., Matsuoka S., Takubo K., Hamaguchi I., Nomiyama K., Hosokawa K., Sakurada K., Nakagata N., Ikeda Y., Mak T.W., Suda T. (2004) Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature. 431(7011), 997–1002.

  56. Norddahl G.L., Pronk C.J., Wahlestedt M., Sten G., Nygren J.M., Ugale A., Sigvardsson M., Bryder D. (2011) Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging. Cell Stem Cell. 8(5), 499–510.

  57. Piccoli C., D’Aprile A., Scrima R., Ripoli M., Boffoli D., Tabilio A., Capitanio N. (2007) Role of reactive oxygen species as signal molecules in the pre-commitment phase of adult stem cells. Ital. J. Biochem. 56(4), 295‒301.

  58. Inoue S.I., Noda S., Kashima K., Nakada K., Hayashi J.I., Miyoshi H. (2010) Mitochondrial respiration defects modulate differentiation but not proliferation of hematopoietic stem and progenitor cells. FEBS Lett. 584(15), 3402–3409.

  59. Vannini N., Girotra M., Naveiras O., Nikitin G., Campos V., Giger S., Roch A., Auwerx J., Lutolf M.P. (2016) Specification of haematopoietic stem cell fate via modulation of mitochondrial activity. Nat. Commun. 7, 13125.

  60. Mistry J.J., Bowles K., Rushworth S.A. (2023) HSC-derived fatty acid oxidation in steady-state and stressed hematopoiesis. Exp. Hematol. 117, 1–8.

  61. Kim J.W., Tchernyshyov I., Semenza G.L., Dang C.V. (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3(3), 177–185.

  62. Guitart A.V., Subramani C., Armesilla-Diaz A., Smith G., Sepulveda C., Gezer D., Vukovic M., Dunn K., Pollard P., Holyoake T.L., Enver T., Ratcliffe P.J., Kranc K.R. (2013) Hif-2α is not essential for cell-autonomous hematopoietic stem cell maintenance. Blood. 122(10), 1741–1745.

  63. Vukovic M., Sepulveda C., Subramani C., Guitart A.V., Mohr J., Allen L., Panagopoulou T.I., Paris J., Lawson H., Villacreces A., Armesilla-Diaz A., Gezer D., Holyoake T.L., Ratcliffe P.J., Kranc K.R. (2016) Adult hematopoietic stem cells lacking Hif-1α self-renew normally. Blood. 127(23), 2841–2846.

  64. Kocabas F., Zheng J., Thet S., Copeland N.G., Jenkins N.A., DeBerardinis R.J., Zhang C., Sadek H.A. (2012) Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells. Blood. 120(25), 4963–4972.

  65. Wang Y.H., Israelsen W.J., Lee D., Yu V.W.C., Jeanson N.T., Clish C.B., Cantley L.C., Vander Heiden M.G., Scadden D.T. (2014) Cell-state-specific metabolic dependency in hematopoiesis and leukemogenesis. Cell. 158(6), 1309–1323.

  66. Morganti C., Cabezas-Wallscheid N., Ito K. (2022) Metabolic regulation of hematopoietic stem cells. H-emasphere. 6(7), e740.

  67. Motohashi H., Yamamoto M. (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol. Med. 10(11), 549–557.

  68. Okawa H., Motohashi H., Kobayashi A., Aburatani H., Kensler T.W., Yamamoto M. (2006) Hepatocyte-specific deletion of the keap1 gene activates Nrf2 and confers potent resistance against acute drug toxicity. B-iochem. Biophys. Res. Commun. 339(1), 79–88.

  69. Goto M., Kitamura H., Alam M.M., Ota N., Haseba T., Akimoto T., Shimizu A., Takano-Yamamoto T., Yamamoto M., Motohashi H. (2015) Alcohol dehydrogenase 3 contributes to the protection of liver from nonalcoholic steatohepatitis. Genes Cells. 20(6), 464–480.

  70. Honkura Y., Matsuo H., Murakami S., Sakiyama M., Mizutari K., Shiotani A., Yamamoto M., Morita I., Shinomiya N., Kawase T., Katori Y., Motohashi H. (2016) NRF2 is a key target for prevention of noise-induced hearing loss by reducing oxidative damage of cochlea. Sci. Rep. 6, 19329.

  71. Murakami S., Suzuki T., Harigae H., Romeo P.-H., Yamamoto M., Motohashi H. (2017) NRF2 activation impairs quiescence and bone marrow reconstitution capacity of hematopoietic stem cells. Mol. Cell Biol. 37(19), e00086-17.

  72. Mantel C.R., O’Leary H.A., Chitteti B.R., Huang X., Cooper S., Hangoc G., Brustovetsky N., Srour E.F., Lee M.R., Messina-Graham S., Haas D.M., Falah N., Kapur R., Pelus L.M., Bardeesy N., Fitamant J., Ivan M., Kim K.S., Broxmeyer H.E. (2015) Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell. 161(7), 1553–1565.

  73. Baines C.P., Kaiser R.A., Purcell N.H., Blair N.S., Osinska H., Hambleton M.A., Brunskill E.W., Sayen M.R., Gottlieb R.A., Dorn G.W., Bobbins J., Molkentin J.D. (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 434(7033), 658–662.

  74. Broxmeyer H.E., O’Leary H.A., Huang X., Mantel C. (2015) The importance of hypoxia and extra physiologic oxygen shock/stress for collection and processing of stem and progenitor cells to understand true physiology/pathology of these cells ex vivo. Curr. Opin. Hematol. 22(4), 273–278. https://doi.org/10.1097/MOH.0000000000000144

  75. Broxmeyer H.E. (2016) Enhancing the efficacy of engraftment of cord blood for hematopoietic cell transplantation. Transfus. Apher. Sci. 54(3), 364.

  76. Aljoufi A., Cooper S., Broxmeyer H.E. (2020) Collection and processing of mobilized mouse peripheral blood at lowered oxygen tension yields enhanced numbers of hematopoietic stem cells. Stem Cell Rev. Rep. 16(5), 946.

  77. Broxmeyer H.E., Capitano M.L., Cooper S., Potchanant E.S., Clapp D.W. (2021) Numbers of long-term hematopoietic stem cells from bone marrow of fanca and fancc knockout mice can be greatly enhanced by their collection and processing in physioxia conditions. Blood Cells Mol. Dis. 86, 102492.

  78. Aljoufi A., Zhang C., Ropa J., Chang W., Palam L.R., Cooper S., Ramdas B., Capitano M.L., Broxmeyer H.E., Kapur R. (2022) Physioxia-induced downregulation of Tet2 in hematopoietic stem cells contributes to enhanced self-renewal. Blood. 140(11), 1263–1277.

  79. Broxmeyer H.E., Ropa J., Capitano M.L., Cooper S., Racioppi L., Sankar U. (2022) CaMKK2 knockout bone marrow cells collected/processed in low oxygen (Physioxia) suggests CaMKK2 as a hematopoietic stem to progenitor differentiation fate determinant. Stem Cell Rev. Rep. 18(7), 2513.

  80. Capitano M.L., Mohamad S.F., Cooper S., Guo B., Huang X., Gunawan A.M., Sampson C., Ropa J., Srour E.F., Orschell C.M., Broxmeyer H.E. (2021) Mitigating oxygen stress enhances aged mouse hematopoietic stem cell numbers and function. J. Clin. I-nvest. 131(1), e140177.

  81. Cai Q., Capitano M., Huang X., Guo B., Cooper S., Broxmeyer H.E. (2018) Combinations of antioxidants and/or of epigenetic enzyme inhibitors allow for enhanced collection of mouse bone marrow hematopoietic stem cells in ambient air. Blood Cells Mol. Dis. 71, 23.

  82. Mohrin M., Widjaja A., Liu Y., Luo H., Chen D. (2018) The mitochondrial unfolded protein response is activated upon hematopoietic stem cell exit from quiescence. Aging Cell. 17(3), e12756.

  83. Mohrin M., Shin J., Liu Y., Brown K., Luo H., Xi Y., Haynes C.M., Chen D. (2015) Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science. 347(6228), 1374.

  84. Zhang H., Ryu D., Wu Y., Gariani K., Wang X., Luan P., D’Amico D., Ropelle E.R., Lutolf M.P., Aebersold R., Schoonjans K., Menzies K.J., Auwerx J. (2016) NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science. 352(6292), 1436–1443.

  85. Naka K., Muraguchi T., Hoshii T., Hirao A. (2008) Regulation of reactive oxygen species and genomic stability in hematopoietic stem cells. Antioxid. Redox Signal. 10(11), 1883–1894.

  86. Chen C., Liu Y., Liu R., Ikenoue T., Guan K.L., Liu Y., Zheng P. (2008) TSC‒mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J. Exp. Med. 205(10), 2397–2408.

  87. Qian P., He X.C., Paulson A., Li Z., Tao F., Perry J.M., Guo F., Zhao M., Zhi L., Venkatraman A., Haug J.S., Parmely T., Li H., Dobrowsky R.T., Ding W.X., Kono T., Ferguson-Smith A.C., Li L. (2016) The Dlk1‒Gtl2 locus preserves LT-HSC function by inhibiting the PI3K‒mTOR pathway to restrict mitochondrial metabolism. Cell Stem Cell. 18(2), 214–228.

  88. Boettcher S., Manz M.G. (2017) Regulation of inflammation- and infection-driven hematopoiesis. Trends Immunol. 38(5), 345–357.

  89. Silberstein L., Goncalves K.A., Kharchenko P. V., Turcotte R., Kfoury Y., Mercier F., Baryawno N., Severe N., Bachand J., Spencer J.A., Papazian A., Lee D., Chitteti B.R., Srour E.F., Hoggatt J., Tate T., Lo Celso C., Ono N., Nutt S., Heino J., Sipilä K., Shioda T., Osawa M., Lin C.P., Hu G.F., Scadden D.T. (2016) Proximity-based differential single-cell analysis of the niche to identify stem/progenitor cell regulators. Cell Stem Cell. 19(4), 530–543.

  90. Ziegler P., Boettcher S., Takizawa H., Manz M.G., Brümmendorf T.H. (2016) LPS-stimulated human bone marrow stroma cells support myeloid cell development and progenitor cell maintenance. Ann. Hema-tol. 95(2), 173–178.

  91. Mistry J.J., Marlein C.R., Moore J.A., Hellmich C., Wojtowicz E.E., Smith J.G.W., Macaulay I., Sun Y., Morfakis A., Patterson A., Horton R.H., Divekar D., Morris C.J., Haestier A., Palma F. Di, Beraza N., Bowles K.M., Rushworth S.A. (2019) ROS-mediated PI3K activation drives mitochondrial transfer from stromal cells to hematopoietic stem cells in response to infection. Proc. Natl. Acad. Sci. USA. 116(49), 24610–24619.

  92. Kiel M.J., Yilmaz Ö.H., Iwashita T., Yilmaz O.H., Terhorst C., Morrison S.J. (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 121(7), 1109–1121.

  93. Luo S.T., Zhang D.M., Qin Q., Lu L., Luo M., Guo F.C., Shi H.S., Jiang L., Shao B., Li M., Yang H.S., Wei Y.Q. (2017) The promotion of erythropoiesis via the regulation of reactive oxygen species by lactic acid. Sci. Rep. 7(1), 38105.

  94. Horton E.S, Beisel W.R (1994) The metabolic responses to stress and physical activity. In: Food Components to Enhance Performance: An Evaluation of Potential Performance-Enhancing Food Components for Operational Rations. Ed. Marriott B.M. Washington: Natl. Acad. Press, p. 529.

  95. Pearce E.L., Pearce E.J. (2013) Metabolic pathways in immune cell activation and quiescence. Immunity. 38(4), 633–643.

  96. Pfeiffer T., Schuster S., Bonhoeffer S. (2001) Cooperation and competition in the evolution of ATP-producing pathways. Science. 292(5516), 504–507.

  97. Ito K., Carracedo A., Weiss D., Arai F., Ala U., Avigan D.E., Schafer Z.T., Evans R.M., Suda T., Lee C.H., Pandolfi P.P. (2012) A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat. Med. 18(9), 1350–1358.

  98. Ito K., Turcotte R., Cui J., Zimmerman S.E., Pinho S., Mizoguchi T., Arai F., Runnels J.M., Alt C., Teruya-Feldstein J., Mar J.C., Singh R., Suda T., Lin C.P., Frenette P.S., Ito K. (2016) Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance. Science. 354(6316), 1156.

  99. Mistry J.J., Hellmich C., Moore J.A., Jibril A., Macaulay I., Moreno-Gonzalez M., Di Palma F., Beraza N., Bowles K.M., Rushworth S.A. (2021) Free fatty-acid transport via CD36 drives β-oxidation-mediated hematopoietic stem cell response to infection. Nat. Commun. 12(1), 7130.

  100. Takakuwa T., Nakashima Y., Koh H., Nakane T., Nakamae H., Hino M. (2019) Short-term fasting induces cell cycle arrest in immature hematopoietic cells and increases the number of naïve T cells in the bone marrow of mice. Acta Haematol. 141(3), 189–198.

  101. Tiwari S.K., Toshniwal A.G., Mandal S., Mandal L. (2020) Fatty acid β-oxidation is required for the differentiation of larval hematopoietic progenitors in Drosophila. Elife. 9, e53247.

Дополнительные материалы отсутствуют.