Журнал неорганической химии, 2023, T. 68, № 11, стр. 1537-1545

Взаимодействие высокодисперсных металлических порошков никеля с водными растворами Pd(II) в гидротермальных условиях

Р. В. Борисов ab*, О. В. Белоусов ab, М. Н. Лихацкий a, А. М. Жижаев a

a Институт химии и химической технологии СО РАН
660036 Красноярск, Академгородок, 50/24, Россия

b Сибирский федеральный университет
660041 Красноярск, пр-т Свободный, 79, Россия

* E-mail: roma_boris@list.ru

Поступила в редакцию 06.04.2023
После доработки 15.06.2023
Принята к публикации 16.06.2023

Аннотация

Исследованы процессы контактного взаимодействия металлических порошков никеля с размером агрегированных частиц 300–400 нм с водными растворами палладия(II) в автоклавах при повышенных температурах в кислых и щелочных средах. Установлено, что при контакте металлического никеля с водными растворами хлорида палладия(II) в 0.01 М соляной кислоте при температурах 100 и 130°С в течение 15 мин концентрация ионов двухвалентного палладия снижается до нуля; процесс сопровождается частичным переходом никеля в раствор. Осадки представляют собой смесь металлических частиц никеля и палладия переменного состава. В случае контакта металлического никеля с растворами хлорида тетраамминпалладия(II) при температурах 160 и 170°С в среде 0.1 М гидроксида калия образуются металлические частицы палладия размером 5–25 нм на поверхности более крупных частиц никеля. Рентгеновской фотоэлектронной микроскопией установлено строение биметаллических частиц.

Ключевые слова: нанопорошки, никель, палладий, биметаллы, гидротермальный синтез

Список литературы

  1. Jia M., Choi C., Wu T.S. et al. // Chem. Sci. 2018. V. 9. № 47. P. 8775. https://doi.org/10.1039/C8SC03732A

  2. Ali S., Sharma A.S., Ahmad W. et al. // Crit. Rev. Anal. Chem. 2021. V. 51. № 5. P. 454. https://doi.org/10.1080/10408347.2020.1743964

  3. Jamila N., Khan N., Bibi A. et al. // J. Chem. 2020. V. 13. № 8. P. 6425. https://doi.org/10.1016/j.arabjc.2020.06.001

  4. Gour A., Jain N.K. // Artificial Cells, Nanomedicine, Biotechnol. 2019. V. 47. № 1. P. 844. https://doi.org/10.1080/21691401.2019.1577878

  5. Liu C.H., Liu R.H., Sun Q.J., Chang J.B. et al. // Nanoscale. 2015. V. 7. № 14. P. 6356. https://doi.org/10.1039/C4NR06855F

  6. Soloveva A.Y., Eremenko N.K., Obraztsova I.I. et al. // Russ. J. Inorg. Chem. 2018. V. 63. P. 444. https://doi.org/10.1134/S0036023618040204

  7. Schnedlitz M., Fernandez-Perea R., Knez D. et al. // J. Phys. Chem. C. 2019. V. 123. № 32. P. 20037. https://doi.org/10.1021/acs.jpcc.9b05765

  8. Chen D., Liu S., Li J., Zhao N. et al. // J. Alloys Compoun. 2009. V. 475. P. 494. https://doi.org/10.1016/j.jallcom.2008.07.115

  9. Almeida C.V., Tremiliosi-Filho G., Eguiluz K.I., Salazar-Banda G.R. // J. Catalysis. 2020. V. 391. P. 175. https://doi.org/10.1016/j.jcat.2020.08.024

  10. Spasova M., Salgueiriño-Maceira V., Schlachter A. et al. // J. Mater. Chem. 2005. V. 15. № 21. P. 2095. https://doi.org/10.1039/B502065D

  11. Correa-Duarte M.A., Grzelczak M., Salgueiriño-Maceira V. et al. // J. Phys. Chem. B. 2005. V.109. № 41. P. 19060–19063. https://doi.org/10.1021/jp0544890

  12. Yin W., Venderbosch R.H., Yakovlev V.A. et al. // Energies. 2020. V. 13. № 1. P. 285. https://doi.org/10.3390/en13010285

  13. Bumagin N.A. // Russ. J. Gen. Chem. 2022. V. 92. P. 832. https://doi.org/10.1134/S1070363222050127

  14. Srinoi P., Chen Y.-T., Vittur V., Marquez M., Lee T. // Appl. Sci. 2018. V. 8. P. 1106. https://doi.org/10.3390/app8071106

  15. Maduraiveeran G., Rasik R., Sasidharan M., Jin W. // J. Electroanal. Chem. 2018. V. 808. P. 259. https://doi.org/10.1016/j.jelechem.2017.12.027

  16. Šuljagić M., Stanković D., Mirković M. et al. // Russ. J. Inorg. Chem. 2022. V. 67. Suppl. 1. P. S13. https://doi.org/10.1134/S003602362260201X

  17. Sun J., Yang F., Zhao D. et al. // ACS Appl. Mater. Interfaces. 2015. V. 7. P. 6860. https://doi.org/10.1021/acsami.5b00434

  18. Sopoušek J., Kryštofová A., Premović M. et al. // Calphad. 2017. V. 58. P. 25. https://doi.org/10.1016/j.calphad.2017.05.002

  19. Fedorov P.P., Popov A.A., Shubin Y.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 2018. https://doi.org/10.1134/S0036023622601453

  20. Jia F.L., Zhang L.Z., Shang X.Y., Yang Y. // Adv. Mater. 2008. V. 20. № 5. P. 1050. https://doi.org/10.1002/adma.200702159

  21. Senapati S., Srivastava S.K., Singh S.B., Mishra H.N. // J. Mater. Chem. 2012. V. 22. № 14. P. 6899. https://doi.org/10.1039/C2JM00143H

  22. Egorysheva A.V., Ellert O.G., Liberman E.Y. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 2127. https://doi.org/10.1134/S0036023622601349

  23. Ioni Y.V., Chentsov, S.I., Sapkov I.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1711. https://doi.org/10.1134/S0036023622601076

  24. Vorobyev A.M., Titkov A.I., Logutenko O.A. // Russ. J. Gen. Chem. 2022. V. 92. P. 430. https://doi.org/10.1134/S1070363222030100

  25. Yousefi S.R., Ghanbari D., Salavati-Niasari M. et al. // J. Mater. Sci.: Mater. Electron. 2016. V. 27. P. 1244. https://doi.org/10.1007/s10854-015-3882-6

  26. Gubin S.P., Koksharov Y.A., Khomutov G.B. et al. // Russ. Chem. Rev. 2005. V. 74. № 6. P. 489.

  27. Zakharov Y.A., Pugachev V.M., Bogomyakov A.S. et al. // J. Phys. Chem. C. 2020. V. 124. № 1. P. 1008. https://doi.org/10.1021/acs.jpcc.9b07897

  28. Shafique M.K., Muhmood T., Lin S. et al. // Mater. Res. Express. 2019. V.6. № 10. P. 108001.

  29. Belousov O.V., Borisov R.V., Belousova N.V. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1463. https://doi.org/10.1134/S003602362110003X

  30. Fesik E.V., Buslaeva T.M., Mel’nikova T.I. et al. // Inorg. Mater. 2018. V. 54. № 12. P. 1299. https://doi.org/10.1134/S0020168518120038

  31. Du H., Wang Y., Yuan H. et al. // Electrochim. Acta. 2016. V. 196. P. 84. https://doi.org/10.1016/j.electacta.2016.02.190

  32. Zhang F., Chen Y., Zhao J. et al. // Chem. Lett. 2004. V. 33. № 2. P. 146. https://doi.org/10.1246/cl.2004.146

  33. Kashid S. B., Raut R.W., Malghe, Y.S. // Maters. Chem. Phys. 2016. V. 170. P. 24. https://doi.org/10.1016/j.matchemphys.2015.12.014

  34. Borisov R.V., Belousov O.V., Zhizhaev A.M. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 3. P. 308. https://doi.org/10.1134/S0036023618030038

  35. Borisov R.V., Belousov O.V., Zhizhaev A.M. et al. // Russ. Chem. Bull. 2021. V. 70. P. 1474. https://doi.org/10.1007/s11172-021-3242-z

  36. Borisov R.V., Belousov O.V., Zhizhaev A.M. // Russ. J. Inorg. Chem. 2020. V. 65. № 10. P. 1623. https://doi.org/10.1134/S0036023620100034

  37. Borisov R.V., Belousov O.V., Likhatski M.N. et al. // Russ. Chem. Bull. 2022. V. 71. P. 1164. https://doi.org/10.1007/s11172-022-3517-z

  38. Belousov O.V., Belousova N.V., Sirotina A.V. et al. // Langmuir. 2011. V. 27. P. 11697. https://doi.org/10.1021/la202686x

  39. Grosvenor A.P., Biesinger M.C., Smart R.S. et al. // Surf. Sci. 2006. V. 600. № 9. P. 1771. https://doi.org/10.1016/j.susc.2006.01.041

  40. Lenglet M., Hochu F., Durr J., Tuilier M.H. // Sol. St. Comm. 1997. V. 104. P. 793. https://doi.org/10.1016/S0038-1098(97)00273-1

  41. Jenks C.J., Chang S.L., Anderegg J.W. et al. // Phys. Rev. B. 1996. V. 54. P. 6301. https://doi.org/10.1103/PhysRevB.54.6301

  42. Patterson A.L. // Phys. Rev. 1939. V. 56. P. 978. https://doi.org/10.1103/PhysRev.56.978

Дополнительные материалы отсутствуют.