Журнал неорганической химии, 2023, T. 68, № 7, стр. 930-938

Спектральные исследования процесса координации 1-метил-2-(пиридин-4-ил)-3,4-фуллеро[60]пирролидина высокозамещенным порфирином кобальта(II)

Н. Г. Бичан a*, В. А. Мозгова a, Е. Н. Овченкова a, М. С. Груздев a, Т. Н. Ломова a

a Институт химии растворов им. Г.А. Крестова РАН
153045 Иваново, Россия

* E-mail: bng@isc-ras.ru

Поступила в редакцию 19.01.2023
После доработки 20.03.2023
Принята к публикации 20.03.2023

Аннотация

При взаимодействии (5,15-бис[3,5-бис(трет-бутил)фенил]-10,20-бис{4,6-бис[3,5-бис(3,6-ди-трет-бутилкарбазол-9-ил)фенокси]пиримидин-5-ил}порфина с Co(AcO)2 · 4H2O получен новый дендримерный комплекс кобальта(II) CoP. Процесс двухступенчатой двухсторонней координации 1-метил-2-(пиридин-4'-ил)-3,4-фуллеро[60]пирролидина (PyC60) кобальт(II)порфирином, полное кинетическое описание которого получено с помощью методов УФ-видимой и флуоресцентной спектроскопии, заканчивается образованием устойчивого комплекса 1 : 2, триады состава (PyC60)2CoP. Константа устойчивости (K) координационного комплекса равна (9.9 ± 2.4) × 108 л2 моль–2 (lgK = = 9.0). Химическое строение триады установлена методами УФ-, видимой, 1H ЯМР- и ИК-спектроскопии. Обнаружен и изучен эффект тушения флуоресценции PyC60 в составе триады и обоснован статический механизм процесса тушения. Результат может быть использован в оптоэлектронике при оптимизации структур донорно-акцепторных систем со свойством фотоиндуцированного переноса электрона.

Ключевые слова: порфирин кобальта(II), фуллеро[60]пирролидин, донорно-акцепторная триада, химическое строение, кинетика образования, фотофизические свойства

Список литературы

  1. Sutton L.R., Scheloske M., Pirner K.S. et al. // J. Am. Chem. Soc. 2004. V. 126. № 33. P. 10370. https://doi.org/10.1021/ja048983d

  2. D'Souza F., Ito O. // Coord. Chem. Rev. 2005. V. 249. № 13. P. 1410. https://doi.org/10.1016/j.ccr.2005.01.002

  3. Миронов А.Ф. // Макрогетероциклы. 2011. Т. 4. № 3. С. 186.

  4. Nikolaou V., Charisiadis A., Stangel C. et al. // J. Carbon Res. 2019. V. 5. № 3. P. 57. https://doi.org/10.3390/c5030057

  5. Лебедева В.С., Миронова Н.А., Рузиев Р.Д. и др. // Макрогетероциклы. 2018. Т. 11. № 4. С. 339. https://doi.org/10.6060/mhc180690l

  6. Моторина Е.В., Климова И.А., Бичан Н.Г. и др. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1779. https://doi.org/10.31857/S0044457X22600712

  7. Цивадзе А.Ю., Чернядьев А.Ю. // Журн. неорган. химии. 2020. Т. 65. № 11. С. 1469. https://doi.org/10.31857/S0044457X20110197

  8. Loiseau F., Campagna S., Hameurlaine A. et al. // J. Am. Chem. Soc. 2005. V. 127. № 32. P. 11352. https://doi.org/10.1021/ja0514444

  9. Organista-Mateos U., Martínez-Klimov M.E., Pedro-Hernández L.D. et al. // J. Photochem. Photobiol. A: Chemistry. 2017. V. 343. P. 58. https://doi.org/10.1016/j.jphotochem.2017.04.020

  10. Maes W., Dehaen W. // Eur. J. Org. Chem. 2009. V. 2009. № 28. P. 4719. https://doi.org/10.1002/ejoc.200900512

  11. Albrecht K., Kasai Y., Kuramoto Y. et al. // Chem. Commun. 2013. V. 49. № 9. P. 865. https://doi.org/10.1039/c2cc36451d

  12. Bichan N.G., Ovchenkova E.N., Ksenofontov A.A. et al. // Dyes Pigm. 2022. V. 204. P. 110470. https://doi.org/10.1016/j.dyepig.2022.110470

  13. Gruzdev M.S., Chervonova U.V., Ksenofontov A.A. et al. // Opt. Mater. 2021. V. 122. P. 111661. https://doi.org/10.1016/j.optmat.2021.111661

  14. Сюткин Р.В., Абашев Г.Г., Шкляева Е.В. и др. // Журн. орг. химии. 2011. Т. 47. № 4. С. 532.

  15. Груздев М.С., Червонова У.В., Венедиктов Е.А. и др. // Журн. общ. химии. 2015. Т. 85. № 6. С. 964.

  16. Staderini M., Vanni S., Baldeschi A.C. et al. // Eur. J. Med. Chem. 2023. V. 245. P. 114923. https://doi.org/10.1016/j.ejmech.2022.114923

  17. Banerjee A., Kundu S., Bhattacharyya A. et al. // Org. Chem. Frontiers. 2021. V. 8. № 11. P. 2710. https://doi.org/10.1039/d1qo00092f

  18. Çelik F., Aydın A., Bektaş K.İ. et al. // Russ. J. Gen. Chem. 2022. V. 92. № 10. P. 2145. https://doi.org/10.1134/s1070363222100279

  19. Скрылькова А.С., Егоров Д.М., Тарабанов Р.В. // Журн. общ. химии. 2021. Т. 91. № 91. С. 1627. https://doi.org/10.31857/S0044460X21100206

  20. Devi E.R., Sreenivasulu R., Rao M.V.B. et al. // Russ. J. Gen. Chem. 2021. V. 91. № 6. P. 1105. https://doi.org/10.1134/s1070363221060189

  21. Xu T., Lu R., Liu X. et al. // Org. Lett. 2007. V. 9. № 5. P. 797. https://doi.org/10.1021/ol062979k

  22. El-Khouly M.E., Kang E.S., Kay K.-Y. et al. // Chem. Eur. J. 2007. V. 13. № 10. P. 2854. https://doi.org/10.1002/chem.200601254

  23. Guo Q., Chen L., Pan S. et al. // Dalton Trans. 2018. V. 47. № 37. P. 13164. https://doi.org/10.1039/c8dt02275e

  24. Ovchenkova E.N., Bichan N.G., Gruzdev M.S. et al. // New J. Chem. 2021. V. 45. № 20. P. 9053. https://doi.org/10.1039/d1nj00980j

  25. Subedi D.R., Jang Y., Ganesan A. et al. // J. Porphyrins Phthalocyanines. 2021. V. 25. № 05–06. P. 533. https://doi.org/10.1142/s1088424621500449

  26. Ovchenkova E.N., Motorina E.V., Bichan N.G. et al. // J. Organomet. Chem. 2022. V. 977. P. 122458. https://doi.org/10.1016/j.jorganchem.2022.122458

  27. Бичан Н.Г., Овченкова Е.Н., Груздев М.С. и др. // Журн. структур. химии. 2018. Т. 59. № 3. С. 734. https://doi.org/10.26902/JSC20180332

  28. Бичан Н.Г., Овченкова Е.Н., Мозгова В.А. и др. // Журн. неорган. химии. 2019. Т. 64. № 5. С. 490. https://doi.org/10.1134/S0044457X19050027

  29. Бичан Н.Г., Овченкова Е.Н., Мозгова В.А. и др. // Журн. физ. химии. 2020. Т. 94. № 6. С. 873.

  30. Bichan N.G., Ovchenkova E.N., Kudryakova N.O. et al. // J. Coord. Chem. 2017. V. 70. № 14. P. 2371. https://doi.org/10.1080/00958972.2017.1335867

  31. Bichan N.G., Ovchenkova E.N., Ksenofontov A.A. et al. // J. Mol. Liq. 2021. V. 326. P. 115306. https://doi.org/10.1016/j.molliq.2021.115306

  32. Bichan N.G., Ovchenkova E.N., Mozgova V.A. et al. // Polyhedron. 2021. V. 203. P. 115223. https://doi.org/10.1016/j.poly.2021.115223

  33. Bichan N.G., Ovchenkova E.N., Mozgova V.A. et al. // Molecules. 2022. V. 27. P. 8900. https://doi.org/10.3390/molecules27248900

  34. Lomova T.N., Motorina E.V., Klyuev M.V. // Macroheterocycles. 2013. V. 6. № 4. P. 327. https://doi.org/10.6060/mhc130644l

  35. Liu Y., Bian Y., Zhang Y. et al. // J. Phys. Chem. Lett. 2021. V. 12. № 22. P. 5349. https://doi.org/10.1021/acs.jpclett.1c01123

  36. Ma B., Sun Y.-P. // J. Chem. Soc., Perkin Trans. 2. 1996. № 10. P. 2157. https://doi.org/10.1039/p29960002157

  37. Brites M.J., Santos C., Nascimento S. et al. // New J. Chem. 2006. V. 30. № 7. P. 1036. https://doi.org/10.1039/b601649a

  38. Luo C., Fujitsuka M., Watanabe A. et al. // J. Chem. Soc., Faraday Trans. 1998. V. 94. № 4. P. 527. https://doi.org/10.1039/a706672d

  39. Ovchenkova E.N., Bichan N.G., Tsaturyan A.A. et al. // J. Phys. Chem. C. 2020. V. 124. P. 4010. https://doi.org/10.1021/acs.jpcc.9b11661

  40. Thornton D.A., Verhoeven P.F.M. // Spectrosc. Lett. 1995. V. 28. № 4. P. 587. https://doi.org/10.1080/00387019508009902

  41. Martin M.C., Du X., Kwon J. et al. // Phys. Rev. B. 1994. V. 50. № 1. P. 173. https://doi.org/10.1103/PhysRevB.50.173

Дополнительные материалы отсутствуют.