Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 2023, № 6, стр. 67-73

Замещение в структуре гидроксиапатита, допированного катионами железа, при механохимическом синтезе

Д. Д. Исаев abc*, В. В. Кривенцов d, С. А. Петров a, В. С. Быстров c, Н. В. Булина ac**

a Институт химии твердого тела и механохимии Сибирского отделения РАН
630090 Новосибирск, Россия

b Новосибирский национальный исследовательский государственный университет
630090 Новосибирск, Россия

c Институт математических проблем биологии РАН – ФИЦ Институт прикладной математики им. М.В. Келдыша РАН
142290 Пущино, Россия

d ФИЦ Институт катализа им. Г.К. Борескова Сибирского отделения РАН
630090 Новосибирск, Россия

* E-mail: isaev@solid.nsc.ru
** E-mail: bulina@solid.nsc.ru

Поступила в редакцию 14.10.2022
После доработки 18.12.2022
Принята к публикации 18.12.2022

Аннотация

Гидроксиапатит, являющийся минералом группы апатитов, обладает важным и полезным свойством – склонностью к разного рода замещениям, что позволяет модифицировать его свойства и расширять возможности применения синтетического материала. Свойства синтезируемого вещества зависят от способа его получения, так как условия синтеза оказывают влияние на структурные и морфологические характеристики формирующихся частиц. В настоящей работе показано, что при механохимическом способе синтеза с введением катионов железа формируется структура гидроксиапатита, в которой допирующий элемент занимает позицию катиона кальция. Такой тип замещения сопровождается уменьшением параметров кристаллической решетки гидроксиапатита. Установлено, что в синтезированных соединениях катионы железа преимущественно имеют заряд 3+ вне зависимости от заряда исходного реагента – носителя катиона железа. Также установлено, что в процессе механохимического синтеза при определенных условиях может одновременно происходить частичное замещение катионов кальция катионами железа и фосфатных групп карбонатными группами. Полученные механохимическим способом синтеза порошковые материалы охарактеризованы такими методами, как рентгеновская дифрактометрия, инфракрасная спектроскопия, спектроскопия тонкой структуры вблизи края поглощения рентгеновского излучения, а также ядерный гамма-резонанс.

Ключевые слова: гидроксиапатит, железо, замещение, механохимия, порошковая дифракция, спектроскопия рентгеновского поглощения, ИК-спектроскопия, ядерный гамма-резонанс.

Список литературы

  1. Hughes J.M., Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, Chapter 3: Hydroxyapatite and Nonstoichiometric Apatites / Ed. Elliot J.C. Studies in Inorganic Chemistry: Elsevier, 1994. V. 18. P. 111. https://www.doi.org/10.1016/B978-0-444-81582-8.50008-0

  2. Šupová M. // Ceram. Int. 2015. V. 41. № 8. P. 9203. https://www.doi.org/10.1016/j.ceramint.2015.03.316

  3. Tite T., Popa A.C., Balescu L.M., Bogdan I.M., Pasuk I., Ferreira J.M., Stan G.E. // Materials. 2018. V. 11. № 11. P. 2081. https://www.doi.org/10.3390/ma11112081

  4. Kolmas J., Groszyk E., Kwiatkowska-Różycka D. // BioMed Res. Int. 2014. V. 2014. P. 178123. https://www.doi.org/10.1155/2014/178123

  5. Hadagalli K., Shenoy S., Shakya K.R., Tarafder K., Mandal S., Basu B. // Int. J. Appl. Ceram. Technol. 2021. V. 18. № 2. P. 332. https://www.doi.org/10.1111/ijac.13674

  6. Figueroa-Rosales E.X., Martínez-Juárez J., García-Díaz E., Hernández-Cruz D., Sabinas-Hernández S.A., Robles-Águila M.J. // Crystals. 2021. V. 11. № 7. P. 832. https://www.doi.org/10.3390/cryst11070832

  7. Bystrov V.S., Piccirillo C., Tobaldi D.M., Castro P.M.L., Coutinho J., Kopyl S., Pullar R.C. // Appl. Catal. B: Environmental. 2016. V. 196. P. 100. https://www.doi.org/10.1016/j.apcatb.2016.05.014

  8. Ho C.M.B., Ng S.H., Yoon Y.J. // Int. J. Precision Engineer. Manufacturing. 2015. V. 16. № 5. P. 1035. https://www.doi.org/10.1007/s12541-015-0134-x

  9. Chen Z., Li Z., Li J., Liu C., Lao C., Fu Y., Liu C., Li Y., Wang P., He Y. // J. Europ. Ceram. Soc. 2019. V. 39. № 4. P. 661. https://www.doi.org/10.1016/j.jeurceramsoc.2018.11.013

  10. Zafar M.J., Zhu D., Zhang Z. // Materials. 2019. V. 12. № 20. P. 3361. https://www.doi.org/10.3390/ma12203361

  11. Sadat-Shojai M., Khorasani M.T., Dinpanah-Khoshdargi E., Jamshidi A. // Acta Biomaterialia. 2013. V. 9. № 8. P. 7591. https://www.doi.org/10.1016/j.actbio.2013.04.012

  12. Suchanek W., Yoshimura M. // J. Mater. Res. 1998. V. 13. № 1. P. 94. https://www.doi.org/10.1557/JMR.1998.0015

  13. Fathi M.H., Zahrani E.M. // J. Crystal Growth. 2009. V. 311. № 5. P. 1392. https://www.doi.org/10.1016/j.jcrysgro.2008.11.100

  14. Yeong B., Junmin X., Wang J. // J. Am. Ceram. Soc. 2001. V. 84. № 2. P. 465. https://www.doi.org/10.1111/j.1151-2916.2001.tb00681.x

  15. Bulina N.V., Baev S.G., Makarova S.V., Vorobyev A.M., Titkov A.I., Bessmeltsev V. P., Lyakhov N.Z. // Materials. 2021. V. 14. № 18. P. 5425. https://www.doi.org/10.3390/ma14185425

  16. Tampieri A., D’Alessandro T., Sandri M., Sprio S., Landi E., Bertinetti L., Panseri S., Pepponi G., Goettlicher J., Bañobre-López M., Rivas J. // Acta Biomaterialia. 2012. V. 8. № 2. P. 843. https://www.doi.org/10.1016/j.actbio.2011.09.032

  17. Laranjeira M.S., Moço A., Ferreira J., Coimbra S., Costa E., Santos-Silva A., Ferreira P.J., Monteiro F.J. // Colloids Surf. B: Biointerfaces. 2016. V. 146. P. 363. https://www.doi.org/10.1016/j.colsurfb.2016.06.042

  18. Kandori K., Oda S., Tsuyama S. // The J. Physical Chemistry B. 2008. V. 112. № 8. P. 2542. https://www.doi.org/10.1021/jp076421l

  19. Renaudin G., Gome S., Nedelec J.M. // Materials. 2017. V. 10. № 1. P. 92. https://www.doi.org/10.3390/ma10010092

  20. Avakyan L., Paramonova E., Bystrov V., Coutinho J., Gomes S., Renaudin G. // Nanomaterials. 2021. V. 11. № 11. P. 2978. https://www.doi.org/10.3390/nano11112978

  21. Powder Diffraction File, PDF-4+ (2011) International Centre for Diffraction Data. https://www.icdd.com

  22. Coelho A.A. // J. Appl. Cryst. 2018. V. 51. P. 210. https://www.doi.org/10.1107/S1600576718000183

  23. Piminov P.A., Baranov G.N., Bogomyagkov A.V., Berkaev D.E., Borin V.M., Dorokhov V.L., Karnaev S.E., Kiselev V.A., Levichev E.B., Meshkov O.I., Mishnev S.I. // Phys. Procedia. 2011. V. 84. P. 19. https://www.doi.org/10.1016/j.phpro.2016.11.005

  24. Klementev K.V. // Nucl. Instrum. Methods Phys. Res. A. 2000. V. 448. №1–2. P. 299. https://www.doi.org/10.1016/S0168-9002(99)00710-X

  25. Sheikh L., Sinha S., Singhababu Y.N., Verma V., Tripathy S., Nayar S. // RSC Advances. 2018. V. 8. № 35. P. 19389. https://www.doi.org/10.1039/C8RA01539B

  26. Antonakos A., Liarokapis E., Leventouri T. // Biomaterials. 2007. V. 28. № 19. P. 3043. https://www.doi.org/10.1016/j.biomaterials.2007.02.028

  27. Bulina N.V., Makarova S.V., Baev S.G., Matvienko A.A., Gerasimov K.B., Logutenko O.A., Bystrov V.S. // Minerals. 2021. V. 11. № 12. P. 1310. https://www.doi.org/10.3390/min11121310

  28. Gomes S., Kaur A., Greneche J.M., Nedelec J.M., Renaudin G. // Acta Biomaterialia. 2017. V. 50. P. 78. https://www.doi.org/10.1016/j.actbio.2016.12.011

  29. Bazin T., Duttine M., Julien I., Champion E., Demourgues A., Gaudon M. // Inorg. Chem. 2022. V. 61. № 36. P. 14377. https://www.doi.org/10.1021/acs.inorgchem.2c02212

  30. Makshakova O.N., Shurtakov D.V., Vakhin A.V., Grishin P.O., Gafurov M.R. // Crystals. 2021. V. 11. № 10. P. 1219. https://www.doi.org/10.3390/cryst11101219

Дополнительные материалы отсутствуют.