Радиотехника и электроника, 2023, T. 68, № 9, стр. 879-883

Активизация нового оползневого процесса на Бурее по данным интерферометрических измерений радаром PALSAR-2

Л. Н. Захарова a*, А. И. Захаров a, С. А. Никитов b

a Фрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН
141190 Фрязино, Московской обл., пл. Введенского, 1, Российская Федерация

b Институт радиотехники и электроники им. В.А. Котельникова РАН
125009 Москва, ул. Моховая, 11, стр. 7, Российская Федерация

* E-mail: ludmila@sunclass.ire.rssi.ru

Поступила в редакцию 22.05.2023
После доработки 24.05.2023
Принята к публикации 25.05.2023

Аннотация

По результатам обработки интерферометрической пары снимков радара с синтезированной апертурой (РСА) L-диапазона PALSAR-2, сделанных по территории Бурейского оползня в мае 2019 и мае 2020 гг. со спутника ALOS-2, обнаружена новая нестабильная область поверхности. Оценена среднемесячная скорость смещения грунта до 1 см/мес вдоль поверхности склона в месте формирования новой стенки отрыва. Отмечено, что материалы интерферометрической обработки архивных данных не выявили ранее каких-либо подвижек поверхности склона в этом месте. Названа наиболее возможная причина активизации оползневого процесса на новом участке: нарушение устойчивости в результате схода в декабре 2018 г. нижележащего тела оползня.

Список литературы

  1. Rosen P.A., Hensley S., Joughin I.R. et al. // Proc. IEEE. 2000. V. 88. № 3. P. 333. https://doi.org/10.1109/5.838084

  2. Chang W., Wang C., Chu C., Kao J. // Proc. IEEE. 2012. V. 100. P. 2835. https://doi.org/10.1109/JPROC.2012.2194629

  3. Goldstein R.M., Engelhardt H., Frolich M. // Science. 1993. V. 262. № 5139. P. 1525. https://doi.org/10.1126/science.262.5139.1525

  4. Wang C., Zhang H., Zhang B. et al. // Proc. IEEE IGARSS, Milan, 26–31 July 2015. N.Y.: IEEE, 2015. P. 1634. https://doi.org/10.1109/IGARSS.2015.7326098

  5. Massonnet D., Rossi M., Carmona C. et al. // Nature. 1993. V. 364. P. 138. https://doi.org/10.1038/364138a0

  6. Kursah M.B., Wang Y. // Proc. IEEE IGARSS, Yokohama, 28 July–2 August 2019. N.Y.: IEEE, 2019. P. 939. https://doi.org/10.1109/IGARSS.2019.8898702

  7. Wang Z., Liu G., Chen T. et al. // Proc. 2nd Int. Conf. Comp. Eng. Tech., Chengdu, 16–18 April 2010. N.Y.: IEEE, 2010. V. 3. P. 222. https://doi.org/10.1109/ICCET.2010.5485843

  8. Perissin D., Wang Z., Lin H. // ISPRS J. Photogrammetry and Remote Sens. 2012. V. 73. P. 58. https://doi.org/10.1016/j.isprsjprs.2012.07.002

  9. Остроухов А.В., Ким В.И., Махинов А.Н. // Совр. пробл. дистанц. зондирования Земли из космоса. 2019. Т. 16. № 1. С. 254. https://doi.org/10.21046/2070-7401-2019-16-1-254-258

  10. Зеркаль О.В., Махинов А.Н., Кудымов А.В. и др. // ГеоРиск. 2019. Т. 13. № 4. С. 18. https://doi.org/10.25296/1997-8669-2019-13-4-18-30

  11. Захарова Л.Н., Захаров А.И., Митник Л.М. // Совр. пробл. дистанц. зондирования Земли из космоса. 2019. Т. 16. № 2. С. 69. https://doi.org/10.21046/2070-7401-2019-16-2-69-74

  12. Захарова Л.Н., Захаров А.И. // Совр. пробл. дистанц. зондирования Земли из космоса. 2019. Т. 16. № 2. С. 273. https://doi.org/10.21046/2070-7401-2019-16-2-273-277

  13. Бондур В.Г., Захарова Л.Н., Захаров А.И. и др. // Совр. пробл. дистанц. зондирования Земли из космоса. 2019. Т. 16. № 5. С. 113. https://doi.org/10.21046/2070-7401-2019-16-5-113-119

  14. Бондур В.Г., Захарова Л.Н., Захаров А.И. и др. // Исслед. Земли из космоса. 2019. № 5. С. 3. https://doi.org/10.31857/S0205-9614201953-14

  15. Zakharov A., Zakharova L. // Remote Sens. 2022. V. 14. № 20. Article No. 5218. https://doi.org/10.3390/rs14205218

  16. Бондур В.Г., Захарова Л.Н., Захаров А.И. // Исслед. Земли из космоса. 2019. № 6. С. 26. https://doi.org/10.31857/S0205-96142019626-35

  17. Bondur V., Chimitdorzhiev T., Dmitriev A., Dagurov P. // Remote Sens. 2021. V. 13. Article No. 5136. https://doi.org/10.3390/rs13245136

Дополнительные материалы отсутствуют.