Записки Российского минералогического общества, 2021, T. 150, № 5, стр. 103-114

${{{\mathbf{K}}}_{{\mathbf{4}}}}{\mathbf{C}}{{{\mathbf{u}}}^{{{\mathbf{2}} + }}}{\mathbf{Cu}}_{{\mathbf{2}}}^{ + }{\mathbf{C}}{{{\mathbf{l}}}_{{\mathbf{8}}}} \cdot {\mathbf{2}}{{{\mathbf{H}}}_{{\mathbf{2}}}}{\mathbf{O}}$: a Novel Non-Centrosymmetric Mixed-Valent Copper Compound and Its Relation to Minerals

I. V. Kornyakov 12, S. V. Krivovichev 12*

1 Nanomaterials Research Centre, Kola Science Centre RAS
184209 Apatity, Fersmana str., 14, Russia

2 Saint Petersburg State University
199034 Saint Petersburg, University Emb., 7/9, Russia

* E-mail: s.krivovichev@ksc.ru

Поступила в редакцию 22.06.2021
После доработки 28.06.2021
Принята к публикации 15.08.2021

Полный текст (PDF)

Аннотация

Reddish-brown crystals of ${{K}_{4}}{\text{C}}{{{\text{u}}}^{{2 + }}}{\text{Cu}}_{2}^{ + }{\text{C}}{{{\text{l}}}_{8}} \cdot 2{{{\text{H}}}_{2}}{\text{O}}$ were prepared by chemical transport reactions. The crystal structure was solved using single-crystal diffraction data (a = 9.0472(5), b = 11.5591(4), c = 9.1786(5) Å, β = 118.692(7)°, V = 842.01(9) Å3) and refined to R1 = = 0.039 for 4369 independent observed reflections. The crystal structure consists of the ${{\left[ {{\text{C}}{{{\text{u}}}^{{2 + }}}{\text{Cu}}_{2}^{ + }{\text{C}}{{{\text{l}}}_{8}}} \right]}^{{4 - }}}$ anionic chains extended along the a axis and linked through the K+ ions and H2O molecules. There are three Cu sites in the title compound. The Cu1 and Cu3 sites are occupied by monovalent Cu+ ions and coordinated tetrahedrally by four Cl atoms each with the Cu–Cl bond lengths in the range 2.309–2.441 Å. The (Cu1Cl4) and (Cu3Cl4) tetrahedra share ClCl edge to form a (Cu2Cl6) dimer with relatively short CuCu intermetallic distance of 2.585 Å. However, the theoretical analysis of the electron-density distribution shows the absence of bonding interaction between the adjacent Cu centers. The dimers are linked into 1D chains through the Cu2 atoms in an octahedral coordination. According to its coordination geometry and bond-valence calculations, the Cu2 site is occupied by Cu2+ ions. The K1 and K2 sites are coordinated by seven Cl atoms each to form (KCl7) capped trigonal prisms. In contrast, the K3 and K4 sites have a bicapped trigonal prismatic coordination by six Cl atoms and two H2O groups. The ${{\left[ {{\text{C}}{{{\text{u}}}^{{2 + }}}{\text{Cu}}_{2}^{ + }{\text{C}}{{{\text{l}}}_{{\text{8}}}}} \right]}^{{4 - }}}$ chains are linked via K–Cl and K–H2O interactions as well as by H2OCl hydrogen bonds. The non-centrosymmetricity of the overall structure is the result of the shift of the adjacent chains relative to each other in the direction parallel to the a axis. The title compound is chemically close to avdoninite, K2Cu5Cl8(OH)4 · 2H2O, mitscherlichite, K2CuCl4 · 2H2O, and romanorlovite, K11Cu9Cl25(OH)4 ⋅ 2H2O. However, it differs from them in its mixed-valence character. The title compound possesses neither unusually high or unusually low complexity and thus its formation as a secondary phase in fumaroles corresponds to the typical level of complexity observed in this geochemical environment.

Keywords: copper, mixed valence, non-centrosymmetric compounds, volcanic fumaroles, structural complexity

1. INTRODUCTION

In the recent years, there have been an explosive interest to structural chemistry and pro-perties of copper oxysalt minerals and their synthetic analogues, mostly due to the whole range of new mineralogical discoveries and continuing exploration of natural copper-based – compounds in solid state physics and material sciences (Botana et al., 2018; Inosov, 2018; Volkova, Marinin, 2018; Winiarski et al., 2019; Dey, Botana, 2020, etc.). The Tolbachik eruptions in the Kamchatka Peninsula, Far East, Russia, provided an unprecedented paragenetic suite of unique and variable copper mineralization with many new copper mineral species that have no analogues in synthetic material chemistry (Pekov et al., 2018). The K–Cu–Cl–H2O system is of particular interest. Kahlenberg (2004) reported the synthesis of a new compound, K2Cu5Cl8(OH)4 · 2H2O, prepared as a by-product in a hydrothermal experiment. The compound showed a remarkable similarity to avdoninite, a technogenic phase found in oxidation zones of sulfide deposits in Ural (Bushmakin, Bazhenova, 1998). In 2006, N.V. Chukanov and co-authors established the status of avdoninite as a separate mineral species based on its findings in Tolbachik fumaroles (Chukanov et al., 2006), whereas Pekov et al. (2015) demonstrated that the mineral is indeed a natural analogue of synthetic phase K2Cu5Cl8(OH)4 · 2H2O first reported by Kahlenberg (2004). Owing to its unique structural architecture, avdoninite attracted attention as an interesting magnetic material (Volkova, Marinin, 2018). There are two other minerals in the K–Cu–Cl–H2O system: mitscherlichite, K2CuCl4 · 2H2O (Zambonini, Carobbi, 1925; Chidambaram et al., 1970), and romanorlovite, K11Cu9Cl25(OH)4 ⋅ 2H2O (Pekov et al., 2016), both having a fumarolic origin. Herein we report the synthesis and structural characterization of ${{{\text{K}}}_{4}}{\text{C}}{{{\text{u}}}^{{2 + }}}{\text{Cu}}_{2}^{ + }{\text{C}}{{{\text{l}}}_{8}}\,\,\cdot\,\,2{{{\text{H}}}_{2}}{\text{O}}$, a new compound in the K–Cu–Cl–H2O system, which remarkably contains Cu ions in two oxidation states, Cu+ and Cu2+. It is worthy to note that the only known mineral with well-defined Cu+ and Cu2+ ions is allochalcoselite, ${\text{C}}{{{\text{u}}}^{ + }}{\text{Cu}}_{5}^{{2 + }}$PbO2(SeO3)2Cl5, which was also disco-vered in Tolbachik fumaroles (Vergasova et al., 2005; Krivovichev et al., 2006).

The mixed-valence Cu+/Cu2+ systems are of particular attention in metal-organic chemistry, due to their interesting electrical, magnetic, luminescent, and catalytic properties (Tanaka et al., 2013; Nakatani et al., 2015; Vinogradova et al., 2016). 1D and 2D polymeric complexes of Cu+ and Cu2+ ions are of special interest due to the possibility of delocalized electron density and cuprophillic Cu–Cu interactions. The title compound is indeed based upon 1D copper chains consisting of alternating Cu+ and Cu2+ ions that may well communicate with each other along the extension of the chain.

2. EXPERIMENTAL

Single crystals of title compound were obtained as a by-product in our experiments using chemical vapor transport reactions (Binnewies et al., 2013) in the course of our study of the KCl–CuO–V2O5 system. Copper oxide (0.0397 g), vanadium oxide (0.0910 g) and potassium chloride (0.0370 g) in a 1 : 1 : 1 molar ration were ground in an agate mortar with further annealing of the mixture at 250 °C for 16 h in air. The mixture was loaded into a fused silica ampule (ca. 16 cm), which was evacuated to 10–2 mbar before sealing. The ampule was placed horizontally into two-zone furnace and heated to 675 °C within 4 h. The temperature gradient between the source and deposition zones of the ampule was ~50 °C. After 2 days the ampule was cooled to 200 °C over a period of 64 h and then the furnace was switched off. Reddish brown single crystals of the title compound were found in the deposition zone covered by bluish transparent crystals of synthetic analogue of eriochalcite, CuCl2 ∙ 2H2O, in association with crystals of α- and β-Cu2V2O7 phases. The probable cause for the presence of H2O molecules in the title compound is a hygroscopic nature of potassium chloride used as a reagent in the synthesis.

Diffraction data for K4Cu2+${\text{Cu}}_{2}^{ + }$Cl8(H2O)2 were collected using a using a Rigaku XtaLAB Synergy S X-ray diffractometer operated with monochromated microfocus MoKα tube (λ = = 0.71073 Å) at 50 kV and 1.0 mA, and equipped with a CCD HyPix 6000 detector. The frame width was 1.0° in ω, and a 190 s count time for each frame. A CrysAlisPro software (Agilent, 2014) was used for integration and correction of diffraction data for polarization, background and Lorentz effects. A Gaussian absorption correction was performed using a CrysAlisPro software on the basis of multifaceted crystal model. The unit-cell parameters were refined using the least-squares teсhniques. The structure was solved by a dual-space algorithm and refined as an inversion twin using the SHELX programs (Sheldrick, 2015a, b) incorporated in the OLEX2 program package (Dolomanov et al., 2009). The H atoms of H2O molecules were located from the inspection of difference Fourier maps and were included in the refinement with Uiso(H) set to 1.5 Ueq(O) and an O–H bond length restrain of 0.98 Å. The final model includes coordinates and anisotropic displacement parameters.

The crystal data and experimental parameters of the X-ray diffraction experiment are given in Table 1, atom coordinates, and isotropic displacement parameters are provided in Table 2. Table 3 contains selected interatomic distances, whereas Table 4 provides information on the geometry of the hydrogen bonding system. Table 5 contains results of the bond-valence analysis (the bond-valence parameters for the Cu+–Cl, Cu2+–Cl, and K-ϕ bonds (ϕ = Cl, H2O) were taken from Shields et al. (2000), Brese and O’Keeffe (1991), and Brown and Altermatt (1985), respectively.

Table 1.  

Crystal parameters, data collection and structure refinement parameters for K4Cu2+${\text{Cu}}_{2}^{ + }$Cl8 · 2H2O Таблица 1. Кристаллографические данные и экспериментальные параметры для K4Cu2+${\text{Cu}}_{2}^{ + }$Cl8 · 2H2O

Crystal data
Crystal system, space group Monoclinic, P21
Temperature, K 296
a, b, c, Å 9.0472(5), 11.5591(4), 9.1786(5)
β, ° 118.692(7)
V, Å3 842.01(9)
Z 2
Radiation type MoKα
µ, mm−1 5.99
Crystal size, mm 0.03 × 0.02 × 0.02
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix 6000
Absorption correction Gaussian
Tmin, Tmax 0.887, 0.922
No. of measured, independent and observed [I > 2σ(I)] reflections 12 136, 5975, 4369
Rint 0.028
(sin θ/λ)max−1) 0.822
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.071, 0.99
No. of reflections 5975
No. of parameters 168
No. of restraints 10
H-atom treatment Only H-atom coordinates refined
Δρmax, Δρmin, e Å−3 0.67, −0.88
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.16(2)
Table 2.  

Fractional atomic coordinates and isotropic displacement parameters (Å2) for K4Cu2+${\text{Cu}}_{2}^{ + }$Cl8 · 2H2O Таблица 2. Координаты и изотропные параметры смещения атомов (Å2) для кристаллической структуры K4Cu2+${\text{Cu}}_{2}^{ + }$Cl8 · 2H2O

Atom x y z
Cu1 0.74117(8) 0.49791(9) 0.77334(9)
Cu2 0.37857(8) 0.50456(7) 0.74706(8)
Cu3 –0.00166(8) 0.50831(8) 0.72279(8)
K1 0.07086(17) 0.80483(11) 0.63697(17)
K2 0.17752(18) 0.19545(11) 0.86180(17)
K3 0.32459(16) 0.67572(12) 0.15181(18)
K4 0.42644(17) 0.33561(11) 0.34474(18)
Cl1 0.74272(16) 0.43600(12) 1.01326(15)
Cl2 0.47748(14) 0.56320(11) 0.56863(14)
Cl3 0.43029(18) 0.68574(12) 0.85923(18)
Cl4 0.32874(18) 0.32184(12) 0.63716(18)
Cl5 0.27224(14) 0.45195(10) 0.92242(14)
Cl6 0.00847(15) 0.56290(11) 0.48192(15)
Cl7 –0.17460(18) 0.33933(12) 0.65841(19)
Cl8 –0.07767(18) 0.66796(13) 0.84151(19)
O1 0.5959(4) 0.5097(5) 0.2709(5)
H1A 0.614(7) 0.466(6) 0.193(6)
H1B 0.708(3) 0.532(6) 0.349(6)
O2 0.1534(4) 0.4946(5) 0.2217(5)
H2A 0.139(6) 0.500(6) 0.319(4)
H2B 0.045(4) 0.472(6) 0.139(5)
Table 3.  

Selected interatomic distances (Å) for K4Cu2+${\text{Cu}}_{2}^{ + }$Cl8 · 2H2O Таблица 3. Избранные межатомные расстояния (Å) для K4Cu2+${\text{Cu}}_{2}^{ + }$Cl8 · 2H2O

Cu1—Cl1 2.3091(15) K2—Cl1v 3.168(2)
Cu1—Cl2 2.3425(13) K2—Cl3v 3.230(2)
Cu1—Cl7i 2.4136(17) K2—Cl4 3.312(2)
Cu1—Cl8i 2.4407(18) K2—Cl5 3.0622(19)
❬Cu1—Cl❭ 2.377 K2—Cl6vi 3.1677(19)
    K2—Cl7 3.269(2)
Cu2—Cl2 2.3129(14) K2—Cl8 3.270(2)
Cu2—Cl3 2.2809(18) ❬K2—Cl❭ 3.211
Cu2—Cl4 2.2901(17)    
Cu2—Cl5 2.3179(14) K3—Cl1vii 3.291(2)
Cu2—Cl1 3.118(2) K3—Cl2 3.6277(19)
Cu2—Cl6 3.125(2) K3—Cl3viii 3.257(2)
❬Cu2—Cl> 2.574 K3—Cl4vii 3.257(2)
    K3—Cl5viii 3.2234(19)
Cu3—Cl5 2.3586(13) K3—Cl7iv 3.2745(18)
Cu3—Cl6 2.3429(14) K3—Cl8viii 3.378(2)
Cu3—Cl7 2.3926(17) K3—O1 2.885(5)
Cu3—Cl8 2.4053(17) K3—O2 2.854(5)
❬Cu2—Cl❭ 2.375    
    K4—Cl2ix 3.262(2)
K1—Cl1iii 3.2017(19) K4—Cl2 3.2321(19)
K1—Cl3 3.203(2) K4—Cl3ix 3.2429(19)
K1—Cl4iv 3.272(2) K4—Cl4 3.208(2)
K1—Cl6iv 3.1389(19) K4—Cl5viii 3.6862(18)
K1—Cl6 3.0647(19) K4—Cl7i 3.368(2)
K1—Cl7iv 3.291(2) K4—Cl8vi 3.3845(19)
K1—Cl8 3.202(2) K4—O1 2.804(6)
<K1—Cl> 3.196 K4—O2 2.842(5)

Symmetry code(s): (i) x + 1, y, z; (ii) x − 1, y, z; (iii) −x + 1, y + 1/2, −z + 2; (iv) −x, y + 1/2, −z + 1; (v) −x + 1, y − 1/2, −+ 2; (vi) −x, y − 1/2, −z + 1; (vii) −x + 1, y + 1/2, −z + 1; (viii) x, y, z − 1; (ix) −x + 1, y − 1/2, −z + 1; (x) x, y, z + 1; (xi) −x, y + 1/2, −z + 2.

Table 4.  

Geometrical parameters of hydrogen bonding system for K4Cu2+${\text{Cu}}_{2}^{ + }$Cl8 · 2H2O* Таблица 4. Геометрические параметры системы водородных связей для K4Cu2+${\text{Cu}}_{2}^{ + }$Cl8 · 2H2O**

D–H D–H [Å] H···A [Å] D–H···A [°] D···A [Å] A
O1–H1A 0.96 2.42 156 3.325 Cl1
O1–H1B 0.95 2.41 162 3.335 Cl6
O2–H2A 0.96 2.42 156 3.325 Cl6
O2–H2B 0.94 2.44 157 3.331 Cl1

* D = donor; A = acceptor ** D = donor; A = acceptor

Table 5.  

Bond-valence analysis for K4Cu2+${\text{Cu}}_{2}^{ + }$Cl8 · 2H2O Таблица 5. Анализ распределения валентностей связей для K4Cu2+${\text{Cu}}_{2}^{ + }$Cl8 · 2H2O

  Cu1 Cu2 Cu3 K1 K2 K3 K4 H1A H1B H2A H2B Σ
Cl1 0.30 0.05   0.16 0.17 0.12   0.2     0.2 1.20
Cl2 0.27 0.43       0.05 0.13 + 0.15         1.03
Cl3   0.47   0.16 0.15 0.14 0.14         1.05
Cl4   0.46   0.13 0.12 0.14 0.16         1.00
Cl5   0.24 0.26   0.23 0.15 0.04         1.10
Cl6   0.06 0.27 0.19 + 0.23 0.17       0.2 0.2   1.31
Cl7 0.22   0.24 0.12 0.13 0.13 0.10         0.94
Cl8 0.21   0.23 0.16   0.10 0.10         0.79
O1           0.13 0.16 0.8 0.8     1.89
O2           0.14 0.15     0.8 0.8 1.89
Σ 1.00 1.87 0.99 1.14 0.97 1.10 1.13 1 1 1 1  

In order to investigate electron-density distribution, the CRYSTAL14 software package was used to perform the solid-state DFT calculations (Dovesi et al., 2014). The Peintinger–Oliveira–Bredow split-valence triple-ζ (pob-TZVP) basis sets (Peintinger et al., 2013) were used for all atoms, along with the hybrid Becke-3–Lee–Yang–Parr (B3LYP) functional. The electron-density distribution function was calculated using experimentally observed geometries for each structure and analysed using the TOPOND14 software (Gatti, Casassa, 2013) with respect to the properties of the bond critical points in electron density distributions and scalar fields of the electron-density Laplacian (Gatti et al., 1994).

3. RESULTS

The crystal structure of K4Cu2+${\text{Cu}}_{2}^{ + }$Cl8 · 2H2O is shown in Fig. 1. It consists of the [Cu2+${\text{Cu}}_{2}^{ + }$Cl8]4– anionic chains extended along the a axis and linked through the K+ ions and H2O molecules. The atomic structure of the chain is depicted in Fig. 2. There are three Cu sites in the title compound. The Cu1 and Cu3 sites are coordinated tetrahedrally by four Cl atoms each with the Cu–Cl bond lengths in the range 2.309–2.441 Å. The bond-valence calculations (Table 5) provide the bond-valence sums of 1.00 and 0.99 valence units (v. u.) for the Cu1 and Cu3 sites, respectively. The tetrahedral (Cu+Cl4) is quite typical for Cu+ chloride compounds and was observed, for instance, in nantokite, CuCl (Pfitzner, Lutz, 1993), and synthetic CsCu2Cl3 (Meyer, 1984). The (Cu1Cl4) and (Cu3Cl4) tetrahedra share ClCl edge to form a (Cu2Cl6) dimer with relatively short Cu⋅⋅⋅Cu intermetallic distance of 2.585 Å. The dimers are linked into 1D chains through the Cu2 atoms in an octahedral coordination (Fig. 2). The coordination is [4 + 2] distorted in accord with the Jahn-Teller effect (Jahn, Teller, 1937): there are four short (2.281–2.318 Å) and two long (3.118–3.125 Å) Cu2–Cl bonds. The bond-valence calculations indicate that the Cu2 site is occupied by Cu2+ ions.

Fig. 1.

The crystal structure of K4Cu2+${\text{Cu}}_{2}^{ + }$Cl8 · 2H2O in projection along the a axis. Рис. 1. Кристаллическая структура K4Cu2+${\text{Cu}}_{2}^{ + }$Cl8 · 2H2O в проекции вдоль оси a.

Fig. 2.

The copper chloride [Cu+2Cu2+Cl8] chain in the crystal structure of K4Cu2+Cu+2Cl8 · 2H2O. Рис. 2. Медь-хлоридная цепочка [Cu+2Cu2+Cl8] в кристаллической структуре K4Cu2+Cu+2Cl8 · 2H2O.

There are four K sites in the crystal structure of K4Cu2+${\text{Cu}}_{2}^{ + }$Cl8 · 2H2O (Fig. 3). The K1 and K2 sites are coordinated by seven Cl atoms each to form (KCl7) capped trigonal prisms. This type of coordination is one of the most common sevenfold coordination geometries in inorganic chemistry (Hoffmann et al., 1977). In contrast, the K3 and K4 sites have a bicapped trigonal prismatic coordination by six Cl atoms and two H2O groups. The latter are arranged at the corners of a vertical edge of the (KCl4(H2O)2) trigonal prism with two tetragonal faces capped by Cl atoms (Fig. 3). This type of an eightfold coordination is again quite common for inorganic and metal-organic compounds (Burdett et al., 1978).

Fig. 3.

The coordination of K+ ions in the crystal structure of K4Cu2+${\text{Cu}}_{2}^{ + }$Cl8 · 2H2O. Рис. 3. Координация ионов K+ в кристаллической структуре K4Cu2+${\text{Cu}}_{2}^{ + }$Cl8 · 2H2O.

The [Cu2+${\text{Cu}}_{2}^{ + }$Cl8]4– chains are linked via K–Cl and K–H2O interactions as well as by H2OCl hydrogen bonds. Each H2O group is coordinated by two K+ ions and donates two hydrogen bonds to two adjacent Cl ions. As a result, the H2O groups, K+ and Cl ions form chains running parallel to the a axis (Fig. 4 ).

Fig. 4.

The chain of H2O molecules, Cl anions and K+ cations in the crystal structure of K4Cu2+${\text{Cu}}_{2}^{ + }$Cl8 · 2H2O. Рис. 4 . Цепочка из молекул H2O и ионов Cl и K+ в кристаллической структуре K4Cu2+${\text{Cu}}_{2}^{ + }$Cl8 · 2H2O.

4. DISCUSSION

The crystal structure of K4Cu2+${\text{Cu}}_{2}^{ + }$Cl8 · 2H2O was solved and refined in the non-centrosymmetric space group P21. It is remarkable that each [Cu2+${\text{Cu}}_{2}^{ + }$Cl8]4– chain is itself centrosymmetric with inversion centers located in each Cu3 site and in the midpoints of the ClCl edges shared between the (Cu1Cl4) and (Cu3Cl4) tetrahedra. The non-centrosymmetricity of the overall structure is the result of the shift of the adjacent chains relative to each other in the direction parallel to the a axis.

Another interesting aspect of the crystal structure is the arrangement of Cu ions along the extension of the chains. As it was noted above, the Cu1Cu3 distance across the shared ClCl edge is remarkably short (2.585 Å). The Cl–Cu1–Cl and Cl–Cu3–Cl3 valence angles are 114.2 and 116.2°, respectively. This is in drastic contrast with usual values of angles opposite to the shared edges in tetrahedral dimers: as a rule, they are shortened with respect to the “ideal” tetrahedral value of 109.5° (see, e.g., Krivovichev et al., 1998). The possible explanation for the existence of such a short Cu+⋅⋅⋅Cu+ contact in the observed coordination geometry would the presence of attractive interaction between the adjacent Cu+ centers, i.e. a cuprophillic interaction (Jansen, 1987; Carvajal et al., 2004). However, the analysis of the electron-density distribution shows that the midpoint Cu1Cu3 distance (the point with the coordinates x = –0.1248, y = –0.4793, z = –0.2419) is a (3, +1) critical point, which is a ring critical point that indicates the absence of bonding interactions between the adjacent Cu centers.

In terms of chemistry, the title compound is close to avdoninite, K2Cu5Cl8(OH)4 · 2H2O, mitscherlichite, K2CuCl4 · 2H2O, and romanorlovite, K11Cu9Cl25(OH)4 ⋅ 2H2O. However, it differs from them in its mixed-valence character. However, since mixed-valent copper compounds can exist in volcanic fumaroles, and K4Cu2+${\text{Cu}}_{2}^{ + }$Cl8 · 2H2O was prepared by means of chemical transport reactions, its formation under natural conditions is likely. The analysis of the structural and chemical complexity parameters (Krivovichev, 2013; Krivovichev S.V., Krivovichev V.G., 2020) listed in Table 6 shows that K4Cu2+${\text{Cu}}_{2}^{ + }$Cl8 · 2H2O possesses neither unusually high nor unusually low complexity and thus its possible formation as a secondary phase in fumaroles does correspond to the typical level of complexity observed in this geochemical environment.

Table 6.  

Chemical and structural complexity parameters of minerals and synthetic phases in the K–Cu–Cl–H2O system Таблица 6. Параметры химической и структурной сложности минералов и синтетических фаз в системе K–Cu–Cl–H2O

Mineral name Chemical formula chemIG strIG chemIG,total strIG,total
Avdoninite K2Cu5Cl8(OH)4 · 2H2O 2.211 3.892 57.484 225.763
Romanorlovite K11Cu2+9Cl25(OH)4 · 2H2O 2.117 3.755 124.889 364.192
Mitscherlichite K2CuCl4 · 2H2O 2.162 2.470 28.106 64.211
K4Cu2+Cu+2Cl8 · 2H2O 2.017 4.392 36.304 184.477

We are grateful to D.Yu. Pushcharovsky for the useful comments on the manuscript. The reported study was funded by the Russian Science Foundation, project number 19-17-00038.

Список литературы

  1. Agilent. CrysAlis PRO. 2014. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.

  2. Binnewies M., Glaum R., Schmidt M., Schmidt P. Chemical Vapor Transport Reactions – A Histo-rical Review. Z. Anorg. Allg. Chem. 2013. Vol. 639. P. 219–229.

  3. Botana A.S., Zheng H., Lapidus S.H., Mitchell J.F., Norman M.R. Averievite: A copper oxide kagome antiferromagnet. Phys. Rev. B. 2018. Vol. 98. P. 054421.

  4. Brese N.E., O’Keeffe M. Bond-valence parameters for solids. Acta Crystallogr. 1991. Vol. B47. P. 192–197.

  5. Brown I.D., Altermatt D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr. 1985. Vol. B41. P. 244–247.

  6. Burdett J.K., Hoffmann R., Fay R.C. Eight-Coordination. Inorg. Chem. 1978. Vol. 17. P. 2553–2568.

  7. Bushmakin A.F., Bazhenova L.F. Avdoninite, new mineral from technogene zone of Urals pyrite deposits. Ural’skiy Mineralogicheskiy Sbornik. 1998. Vol. 8. P. 32–39.

  8. Carvajal M.A., Alvarez S., Novoa J.J. The Nature of Intermolecular CuI⋅⋅⋅CuI Interactions: A Combined Theoretical and Structural Database Analysis. Chem. Eur. J. 2004. Vol. 10. P. 2117–2132.

  9. Chidambaram R., Navarro Q.O., Garcia A., Linggoatmodjo K., Shi-Chien L., Suh I.H., Sequeira A., Srikanta S. Neutron diffraction refinement of the crystal structure of potassium copper chloride dihydrate, K2CuCl4 · 2H2O. Acta Crystallogr. 1970. Vol. B26. P. 827–830.

  10. Chukanov N.V., Murashko M.N., Zadov A.E., Bushmakin A.F. Avdoninite, K2Cu5Cl3(OH)4 · H2O, a new mineral from volcanic exhalations and from the zone of technogenesis at massive sulfide ore deposits. Zapiski RMO (Proc. Russian Miner. Soc.). 2006. Vol. 135(3). P. 38–42.

  11. Dey D., Botana A.S. Role of chemical pressure on the electronic and magnetic properties of the spin-1/2 kagome mineral averievite. Phys. Rev. B. 2020. Vol. 102. P. 125106.

  12. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009. Vol. 42. P. 339–341.

  13. Dovesi R., Orlando R., Erba A., Zicovich-Wilson C.M., Civalleri B., Casassa S., Maschio L., Ferra-bone M., De La Pierre M., D’Arco P., Noel Y., Causa M., Rerat M., Kirtman B. CRYSTAL14: a program for ab initio investigation of crystalline solids. Int. J. Quantum Chem. 2014. Vol. 114. P. 1287–1317.

  14. Gatti C., Casassa S. TOPOND14. User’s Manual. CNR-ISTM of Milano: Milano, 2013.

  15. Gatti C., Saunders V.R., Roetti C. Crystal field effects on the topological properties of the electron density in molecular crystals. The case of urea. J. Chem. Phys. 1994. Vol. 101. P. 10686–10696.

  16. Hoffmann R., Beier B.F., Muetterties E.L., Rossi A.R. Seven-coordination. A molecular orbital exploration of structure, stereochemistry, and reaction dynamics. Inorg. Chem. 1977. Vol. 16. P. 511–522.

  17. Inosov D. Quantum magnetism in minerals. Adv. Phys. 2018. Vol. 67. P. 149–252.

  18. Jahn H.A., Teller E. Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy. Proc. Roy. Soc. 1937. Vol. A161. P. 220–235.

  19. Jansen M. Homoatomic d10–d10 Interactions: Their Effects on Structure and Chemical and Physical Properties. Angew. Chem. Int. Ed. 1987. Vol. 26. P. 1098–1110.

  20. Kahlenberg V. On the crystal structure of K2Cu5Cl8(OH)4 ⋅ 2H2O. Z. Anorg. Allg. Chem. 2004. Vol. 630. P. 900–903.

  21. Krivovichev S. V. Structural complexity of minerals: information storage and processing in the mi-neral world. Miner. Mag. 2013. Vol. 77. P. 275–326.

  22. Krivovichev S.V., Krivovichev V.G. The Fedorov-Groth law revisited: complexity analysis using mi-neralogical data. Acta Crystallogr. 2020. Vol. 76. P. 429–431.

  23. Krivovichev S.V., Filatov S.K., Semenova T.F. Types of cationic complexes based on oxocentered tetrahedra [OM4] in crystal structures of inorganic compounds. Russ. Chem. Rev. 1998. Vol. 67. P. 137–155.

  24. Krivovichev S.V., Filatov S.K., Burns P.C., Vergasova L.P. The crystal structure of allochalcoselite, Cu+${\text{Cu}}_{5}^{{2 + }}$PbO2(SeO3)2Cl5, a mineral with well-defined Cu+ and Cu2+ positions. Canad. Miner. 2006. Vol. 44. P. 507–514.

  25. Meyer G. Synproportionierung am metallischen Substrat: CsCu2Cl3 und CsCu2Br3. Z. Anorg. Allg. Chem. 1984. Bd. 515. S. 127–132.

  26. Nakatani K., Himoto K., Kono Y., Nakahashi Y., Anma H., Okubo T., Maekawa M., Kuroda-Sowa T. Synthesis, Crystal Structure, and Electroconducting Properties of a 1D Mixed-Valence Cu(I)–Cu(II) Coordination Polymer with a Dicyclohexyl Dithiocarbamate Ligand. Crystals2015. Vol. 5. P. 215–225.

  27. Peintinger M.F., Oliveira D.V., Bredow T. Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations. J. Comput. Chem. 2013. Vol. 34. P. 451–459.

  28. Pekov I.V., Krivovichev S.V., Chukanov N.V., Yapaskurt V.O., Sidorov E.G. Avdoninite: new data, crystal structure and refined formula K2Cu5Cl8(OH)4·2H2O. Zapiski RMO (Proc. Russian Miner. Soc.). 2015. Vol. 144(3). P. 55–69 (in Russian). [English translation: Pekov I.V., Krivovichev S.V., Chukanov N.V., Yapaskurt V.O., Sidorov E.G. Avdoninite: New data, crystal structure and refined formula K2Cu5Cl8(OH)4 · 2H2O. Geol. Ore Deposits. 2016. Vol. 58. P. 568–578].

  29. Pekov I.V., Yapaskurt V.O., Britvin S.N., Vigasina M.F., Lykova I.S., Zubkova N.V., Krivovichev S.V., Sidorov E.G. Romanorlovite, a new copper and potassium hydroxychloride from the Tolbachik volcano, Kamchatka, Russia. Zapiski RMO (Proc. Russian Miner. Soc.). 2016. Vol. 145(4). P. 36–46 (in Russian) [English translation: Pekov I.V., Yapaskurt V.O., Britvin S.N., Vigasina M.F., Lykova I.S., Zubkova N.V., Krivovichev S.V., Sidorov E.G. Romanorlovite, a New Copper and Potassium Hydroxychloride from the Tolbachik Volcano, Kamchatka, Russia. Geol. Ore Deposits. 2017. Vol. 59. P. 601–608].

  30. Pekov I.V., Zubkova N.V., Pushcharovsky D.Yu. Copper minerals from volcanic exhalations – a unique family of natural compounds: crystal chemical review. Acta Crystallogr. 2018. Vol. B74. P. 502–518.

  31. Pfitzner A., Lutz H.D. The systems CuCl–MIICl2 (M = Mn, Cd) – crystal structures of Cu2MnCl4 and γ-CuCl. Z. Kristallogr. 1993. Bd. 205. S. 165–175.

  32. Sheldrick G.M. SHELXT – Integrated space-group and crystal structure determination. Acta Crystallogr. 2015a. Vol. A71. P. 3–8.

  33. Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015b. Vol. C71. P. 3–8.

  34. Shields G.P., Raithby P.R., Allen F.H., Motherwell W.D.S. The assignment and validation of metal oxidation states in the Cambridge Structural Database. Acta Crystallogr. 2000. Vol. B56. P. 455–465.

  35. Tanaka N., Okubo T., Anma H., Kim K.H., Inuzuka Y., Maekawa M., Kuroda-Sowa T. Halido-bridged 1D mixed-valence CuI–CuII coordination polymers bearing a piperidine-1-carbodithioato ligand: Crystal structure, magnetic and conductive properties, and application in dye-sensitized solar cells. Eur. J. Inorg. Chem. 2013. Vol. 2013. P. 3384–3391.

  36. Vergasova L.P., Krivovichev S.V., Britvin S.N., Fitatov S.K., Burns P.C., Ananyev V.V. Allochalcoselite, Cu+${\text{Cu}}_{5}^{{2 + }}$PbO2(SeO3)2Cl5 – a new mineral from volcanic exhalations (Kamchatka, Russia). Zpiski RMO (Proc. Russian Miner. Soc.). 2005. Vol. 134(3). P. 70–74.

  37. Vinogradova K.A., Krivopalov V.P., Nikolaenkova E.B., Pervukhina N.V., Naumov D.Y., Boguslavsky E.G., Bushuev M.B. Mixed-valence copper(i,ii) complexes with 4-(1H-pyrazol-1-yl)-6-R-pyrimidines: from ionic structures to coordination polymers. Dalton Trans. 2016. Vol. 45. P. 515–524.

  38. Volkova L.M., Marinin D.V. Antiferromagnetic spin-frustrated layers of corner-sharing Cu4 tetrahedra on the kagome lattice in volcanic minerals Cu5O2(VO4)2(CuCl), NaCu5O2(SeO3)2Cl3, and K2Cu5Cl8(OH)4 · 2H2O. J. Phys.: Cond. Matt. 2018. Vol. 30. P. 425801.

  39. Winiarski M.J., Tran T.T., Chamorro J.R., McQueen T.M. (CsX)Cu5O2(PO4)2 (X = Cl, Br, I): A family of Cu2+S = 1/2 compounds with capped-kagomé networks composed of OCu4 units. Inorg. Chem. 2019. Vol. 58. P. 4328–4336.

  40. Zambonini F., Carobbi G. Sulla presenza, tra i prodotti dell’attuale attività del Vesuvio, del tetraclorocupriato potassico diidrato, K2CuCl4 · 2H2O. Ann. R. Osserv. Vesuv. 1925. Vol. 2. P. 7–9.

Дополнительные материалы отсутствуют.