Российский физиологический журнал им. И.М. Сеченова, 2023, T. 109, № 10, стр. 1414-1429

Стероидогенный эффект агонистов рецептора лютеинизирующего гормона и метформина у самцов крыс с андрогенным дефицитом, обусловленным диета-индуцированным ожирением

А. А. Бахтюков 1, К. В. Деркач 1*, И. А. Лебедев 1, В. Н. Сорокоумов 12, А. О. Шпаков 1

1 Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН
Санкт-Петербург, Россия

2 Институт химии Санкт-Петербургского государственного университета
Санкт-Петербург, Россия

* E-mail: derkatch_k@list.ru

Поступила в редакцию 08.07.2023
После доработки 07.09.2023
Принята к публикации 07.09.2023

Аннотация

У мужчин с ожирением, наряду с метаболическими нарушениями и инсулиновой резистентностью, снижается уровень тестостерона и нарушаются функции репродуктивной системы. Одним из путей их коррекции может быть применение агонистов рецептора лютеинизирующего гормона (ЛГР) и антидиабетических препаратов, но механизмы их влияния на гипоталамо-гипофизарно-гонадную ось изучены недостаточно. Целью работы было изучить эффекты длительной терапии метформином (5 нед., 120 мг/кг) и пятидневной обработки ЛГР-агонистами – хорионическим гонадотропином человека (ХГЧ, 20 МЕ/крысу/сутки, п/к) и аллостерическим агонистом ТП03 (15 мг/кг/сутки, в/б) на уровень тестостерона в крови и экспрессию тестикулярных и гипофизарных генов у самцов крыс с длительным диета-индуцированным ожирением (ДИО). ТП03 умеренно стимулировал продукцию тестостерона у самцов крыс с ДИО, не оказывая ингибирующего эффекта на экспрессию ЛГР в семенниках и лишь в небольшой степени снижая экспрессию гена β-субъединицы лютеинизирующего гормона в гипофизе. При однократном введении ДИО-крысам стероидогенный эффект ТП03 был сопоставим с таковым в контрольной группе, но при пятидневном введении существенно ему уступал. Стероидогенный эффект ХГЧ при однократном введении крысам с ДИО был ниже такового в контроле, но сопоставим с ним при пятидневном введении ХГЧ, и существенно превосходил соответствующие эффекты ТП03. В отличие от ТП03, ХГЧ значительно снижал экспрессию ЛГР в семенниках и более выражено ингибировал экспрессию лютеинизирующего гормона в гипофизе. Обработка метформином восстанавливала андрогенный статус, существенно не влияя на экспрессию генов стероидогенеза в семенниках. В группах с обработкой метформином не было усиления стероидогенных эффектов обоих ЛГР-агонистов. Полученные результаты указывают на перспективы применения ТП03 и ХГЧ для стимуляции тестикулярного стероидогенеза и на эффективность терапии метформином для нормализации продукции тестостерона при ДИО, что может быть использовано для коррекции репродуктивных расстройств при ожирении. В то же время совместное применение метформина и ЛГР-агонистов при ДИО представляется нецелесообразным.

Ключевые слова: гонадотропин, аллостерический агонист, рецептор лютеинизирующего гормона, метформин, ожирение, андрогенный дефицит, семенники

Список литературы

  1. Dandona P, Dhindsa S, Chaudhuri A, Bhatia V, Topiwala S, Mohanty P (2008) Hypogonadotrophic hypogonadism in type 2 diabetes, obesity and the metabolic syndrome. Curr Mol Med 8: 816–828. https://doi.org/10.2174/156652408786733658

  2. Fernandez CJ, Chacko EC, Pappachan JM (2019) Male Obesity-related Secondary Hypogonadism – Pathophysiology, Clinical Implications and Management. Eur Endocrinol 15: 83–90. https://doi.org/10.17925/EE.2019.15.2.83

  3. Hermoso DAM, Bizerra PFV, Constantin RP, Ishii-Iwamoto EL, Gilglioni EH (2020) Association between metabolic syndrome, hepatic steatosis, and testosterone deficiency: evidences from studies with men and rodents. Aging Male 23: 1296–1315. https://doi.org/10.1080/13685538.2020.1764927

  4. Louters M, Pearlman M, Solsrud E, Pearlman A (2022) Functional hypogonadism among patients with obesity, diabetes, and metabolic syndrome. Int J Impot Res 34: 714–720. https://doi.org/10.1038/s41443-021-00496-7

  5. Van Cauwenberghe J, De Block C, Vanderschueren D, Antonio L (2023) Effects of treatment for diabetes mellitus on testosterone concentrations: A systematic review. Andrology 11: 225–233. https://doi.org/10.1111/andr.13318

  6. Wagner IV, Oliver E, Dötsch J, Söder O (2020) Adverse effects of metabolic disorders in childhood on adult reproductive function and fertility in the male. J Pediatr Endocrinol Metab 34: 13–23. https://doi.org/10.1515/jpem-2020-0276

  7. Gualtieri P, Tarsitano MG, DE Santis GL, Romano L, Esposito E, DE Lorenzo A (2022) Obesity in childhood: how to improve male adolescence incoming. Minerva Endocrinol (Torino) 47: 358–370. https://doi.org/10.23736/S2724-6507.21.03224-7

  8. Baik M, Jeong JY, Park SJ, Yoo SP, Lee JO, Lee JS, Haque MN, Lee HJ (2020) Testosterone deficiency caused by castration increases adiposity in male rats in a tissue-specific and diet-dependent manner. Genes Nutr 15: 14. https://doi.org/10.1186/s12263-020-00673-1

  9. Zhang Y, Qi J, Zhao J, Li M, Zhang Y, Hu H, Wei L, Zhou K, Qin H, Qu P, Cao W, Liu E (2023) Effect of Dietetic Obesity on Testicular Transcriptome in Cynomolgus Monkeys. Genes (Basel) 14: 557. https://doi.org/10.3390/genes14030557

  10. Sánchez-Garrido MA, Ruiz-Pino F, Manfredi-Lozano M, Leon S, Garcia-Galiano D, Castaño JP, Luque RM, Romero-Ruiz A, Castellano JM, Diéguez C, Pinilla L, Tena-Sempere M (2014) Obesity-induced hypogonadism in the male: premature reproductive neuroendocrine senescence and contribution of Kiss1-mediated mechanisms. Endocrinology 155: 1067–1079. https://doi.org/10.1210/en.2013-1584

  11. Fink J, Matsumoto M, Tamura Y (2018) Potential application of testosterone replacement therapy as treatment for obesity and type 2 diabetes in men. Steroids 38: 161–166. https://doi.org/10.1016/j.steroids.2018.08.002

  12. Giagulli VA, Castellana M, Carbone MD, Pelusi C, Ramunni MI, De Pergola G, Guastamacchia E, Triggiani V (2020) Weight loss more than glycemic control may improve testosterone in obese type 2 diabetes mellitus men with hypogonadism. Andrology 8: 654–662. https://doi.org/10.1111/andr.12754

  13. Mongioì LM, Cimino L, Condorelli RA, Magagnini MC, Barbagallo F, Cannarella R, La Vignera S, Calogero AE (2020) Effectiveness of a Very Low-Calorie Ketogenic Diet on Testicular Function in Overweight/Obese Men. Nutrients 12: 2967 https://doi.org/10.3390/nu12102967

  14. Caliber M, Saad F (2021) Testosterone therapy for prevention and reversal of type 2 diabetes in men with low testosterone. Curr Opin Pharmacol 58: 83–89. https://doi.org/10.1016/j.coph.2021.04.002

  15. Jedamzik J, Bichler C, Felsenreich DM, Brugger J, Eichelter J, Nixdorf L, Krebs M, Itariu B, Langer FB, Prager G (2022) The male patient with obesity undergoing metabolic and bariatric surgery: changes in testosterone levels correlate with weight loss after one-anastomosis gastric bypass and Roux-en-Y gastric bypass. Surg Obes Relat Dis 30: S1550–7289(22)00830–00839. https://doi.org/10.1016/j.soard.2022.12.034

  16. Fernández-Balsells MM, Murad MH, Lane M, Lampropulos JF, Albuquerque F, Mullan RJ, Agrwal N, Elamin MB, Gallegos-Orozco JF, Wang AT, Erwin PJ, Bhasin S, Montori VM (2010) Clinical review 1: Adverse effects of testosterone therapy in adult men: a systematic review and meta-analysis. J Clin Endocrinol Metab 95: 2560–2575. https://doi.org/10.1210/jc.2009-2575

  17. Ohlander SJ, Varghese B, Pastuszak AW (2018) Erythrocytosis Following Testosterone Therapy. Sex Med Rev 6: 77–85. https://doi.org/10.1016/j.sxmr.2017.04.001

  18. Bond P, Smit DL, de Ronde W (2022) Anabolic-androgenic steroids: How do they work and what are the risks? Front Endocrinol (Lausanne) 13: 1059473. https://doi.org/10.3389/fendo.2022.1059473

  19. Derkach KV, Dar’in DV, Lobanov PS, Shpakov AO (2014) Intratesticular, intraperitoneal, and oral administration of thienopyrimidine derivatives increases the testosterone level in male rats. Dokl Biol Sci 459: 326–329. https://doi.org/10.1134/S0012496614060040

  20. Bakhtyukov AA, Derkach KV, Gureev MA, Dar’in DV, Sorokoumov VN, Romanova IV, Morina IY, Stepochkina AM, Shpakov AO (2020) Comparative study of the steroidogenic effect of human chorionic gonadotropin and thieno[2,3-d]-pyrimidine-based allosteric agonist of luteinizing hormone receptor in young adult, aging and diabetic male rats. Int J Mol Sci 21: 7493. https://doi.org/10.3390/ijms21207493

  21. Bakhtyukov AA, Derkach KV, Sorokoumov VN, Stepochkina AM, Romanova IV, Morina IY, Zakharova IO, Bayunova LV, Shpakov AO (2021) The effects of separate and combined treatment of male rats with type 2 diabetes with metformin and orthosteric and allosteric agonists of luteinizing hormone receptor on steroidogenesis and spermatogenesis. Int J Mol Sci 23: 198. https://doi.org/10.3390/ijms23010198

  22. Shpakov AO (2023) Allosteric Regulation of G-Protein-Coupled Receptors: From Diversity of Molecular Mechanisms to Multiple Allosteric Sites and Their Ligands. Int J Mol Sci 24: 6187. https://doi.org/10.3390/ijms24076187

  23. Faure M, Bertoldo MJ, Khoueiry R, Bongrani A, Brion F, Giulivi C, Dupont J, Froment P (2018) Metformin in Reproductive Biology. Front Endocrinol (Lausanne) 9: 675. https://doi.org/10.3389/fendo.2018.00675

  24. Shpakov AO (2021) Improvement Effect of Metformin on Female and Male Reproduction in Endocrine Pathologies and Its Mechanisms. Pharmaceuticals (Basel) 14: 42. https://doi.org/10.3390/ph14010042

  25. Fernández-García JC, Barrios-Rodríguez R, Asenjo-Plaza M, Ramos-Molina B, Molina-Vega M, Guzmán-Guzmán A, Moreno-León L, Yubero-Serrano EM, Rius-Díaz F, Valdés S, Martínez-González MÁ, Jiménez-Moleón JJ, Tinahones FJ (2022) Metformin, testosterone, or both in men with obesity and low testosterone: A double-blind, parallel-group, randomized controlled trial. Metabolism 136: 155290. https://doi.org/10.1016/j.metabol.2022.155290

  26. Tseng CH (2022) The Effect of Metformin on Male Reproductive Function and Prostate: An Updated Review. World J Mens Health 40: 11–29. https://doi.org/10.5534/wjmh.210001

  27. Romanova IV, Derkach KV, Mikhrina AL, Sukhov IB, Mikhailova EV, Shpakov AO (2018) The leptin, dopamine and serotonin receptors in hypothalamic POMC-neurons of normal and obese rodents. Neurochem Res 43: 821–837. https://doi.org/10.1007/s11064-018-2485-z

  28. Song MJ, Choi JY (2022) Androgen dysfunction in non-alcoholic fatty liver disease: Role of sex hormone binding globulin. Front Endocrinol (Lausanne) 13: 1053709. https://doi.org/10.3389/fendo.2022.1053709

  29. Hsia SM, Chiang YF, Chen HY, Ali M, Wang PS, Wang KL (2022) Effect of High-Fructose Diet-Induced Metabolic Syndrome on the Pituitary-Gonadal Axis in Male Rats. Biomedicines 10: 3009. https://doi.org/10.3390/biomedicines10123009

  30. El-Shehawi AM, El-Shazly S, Ahmed M, Alkafafy M, Sayed S, Farouk S, Alotaibi SS, Elseehy MM (2020) Transcriptome Analysis of Testis from HFD-Induced Obese Rats (Rattus norvigicus) Indicated Predisposition for Male Infertility. Int J Mol Sci 21: 6493. https://doi.org/10.3390/ijms21186493

  31. Yu C, Jiang F, Zhang M, Luo D, Shao S, Zhao J, Gao L, Zuo C, Guan Q (2019) HC diet inhibited testosterone synthesis by activating endoplasmic reticulum stress in testicular Leydig cells. J Cell Mol Med 23: 3140–3150. https://doi.org/10.1111/jcmm.14143

  32. Suleiman JB, Nna VU, Othman ZA, Zakaria Z, Bakar ABA, Mohamed M (2020) Orlistat attenuates obesity-induced decline in steroidogenesis and spermatogenesis by up-regulating steroidogenic genes. Andrology 8: 1471–1485. https://doi.org/10.1111/andr.12824

  33. Barbagallo F, Condorelli RA, Mongioì LM, Cannarella R, Cimino L, Magagnini MC, Crafa A, La Vignera S, Calogero AE (2021) Molecular Mechanisms Underlying the Relationship between Obesity and Male Infertility. Metabolites 11: 840. https://doi.org/10.3390/metabo11120840

  34. Hasan H, Bhushan S, Fijak M, Meinhardt A (2022) Mechanism of Inflammatory Associated Impairment of Sperm Function, Spermatogenesis and Steroidogenesis. Front Endocrinol (Lausanne) 13: 897029. https://doi.org/10.3389/fendo.2022.897029

  35. Nna VU, Bakar ABA, Ahmad A, Mohamed M (2019) Down-regulation of steroidogenesis-related genes and its accompanying fertility decline in streptozotocin-induced diabetic male rats: ameliorative effect of metformin. Andrology 7: 110–123. https://doi.org/10.1111/andr.12567

  36. Derkach KV, Bakhtyukov AA, Romanova IV, Zorina II, Bayunova LV, Bondareva VM, Yu Morina I, Kumar Roy V, Shpakov AO (2020) The effect of metformin treatment on the basal and gonadotropin-stimulated steroidogenesis in male rats with type 2 diabetes mellitus. Andrologia 52: e13816. https://doi.org/10.1111/and.13816

  37. Derkach KV, Bakhtyukov AA, Morina IY, Romanova IV, Bayunova LV, Shpakov AO (2022) Comparative Study of the Restoring Effect of Metformin, Gonadotropin, and Allosteric Agonist of Luteinizing Hormone Receptor on Spermatogenesis in Male Rats with Streptozotocin-Induced Type 2 Diabetes Mellitus. Bull Exp Biol Med 172: 435–440. https://doi.org/10.1007/s10517-022-05409-2

  38. Naghibi M, Tayefi Nasrabadi H, Soleimani Rad J, Gholami Farashah MS, Mohammadnejad D (2022) The effects of metformin and forskolin on sperm quality parameters and sexual hormones in type II diabetic male rats. Andrologia 54: 1605–1617. https://doi.org/10.1111/and.14426

  39. Chau-Van C, Gamba M, Salvi R, Gaillard RC, Pralong FP (2007) Metformin inhibits adenosine 5'-monophosphate-activated kinase activation and prevents increases in neuropeptide Y expression in cultured hypothalamic neurons. Endocrinology 148: 507–511. https://doi.org/10.1210/en.2006-1237

  40. Lee CK, Choi YJ, Park SY, Kim JY, Won KC, Kim YW (2012) Intracerebroventricular injection of metformin induces anorexia in rats. Diabetes Metab J 36: 293–299. https://doi.org/10.4093/dmj.2012.36.4.293

  41. Lv WS, Wen JP, Li L, Sun RX, Wang J, Xian YX, Cao CX, Wang YL, Gao YY (2012) The effect of metformin on food intake and its potential role in hypothalamic regulation in obese diabetic rats. Brain Res 1444: 11–19. https://doi.org/10.1016/j.brainres.2012.01.028

  42. Derkach K, Zakharova I, Zorina I, Bakhtyukov A, Romanova I, Bayunova L, Shpakov A (2019) The evidence of metabolic-improving effect of metformin in Ay/a mice with genetically-induced melanocortin obesity and the contribution of hypothalamic mechanisms to this effect. PLoS One 14: e0213779. https://doi.org/10.1371/journal.pone.0213779

  43. Huhtaniemi IT, Warren DW, Catt KJ (1985) Regulation of infant and developing rat testicular gonadotropin and prolactin receptors and steroidogenesis by treatments with human chorionic gonadotropin, gonadotropin-releasing hormone analogs, bromocriptine, prolactin, and estrogen. Biol Reprod 32: 721–732. https://doi.org/10.1095/biolreprod32.4.721

  44. Pakarinen P, Niemimaa T, Huhtaniemi IT, Warren DW (1994) Transcriptional and translational regulation of LH, prolactin and their testicular receptors by hCG and bromocriptine treatments in adult and neonatal rats. Mol Cell Endocrinol 101: 37–47. https://doi.org/10.1016/0303-7207(94)90217-8

  45. Shpakov AO, Dar’in DV, Derkach KV, Lobanov PS (2014) The stimulating influence of thienopyrimidine compounds on the adenylyl cyclase systems in the rat testes. Dokl Biochem Biophys 456: 104–107. https://doi.org/10.1134/S1607672914030065

  46. Derkach KV, Legkodukh AS, Dar’in DV, Shpakov AO (2017) The stimulating effect of thienopyrimidines structurally similar to Org 43553 on adenylate cyclase activity in the testes and on testosterone production in male rats. Cell Tissue Biol 11: 73–80. https://doi.org/10.1134/S1990519X17010035

  47. van Koppen CJ, Zaman GJ, Timmers CM, Kelder J, Mosselman S, van de Lagemaat R, Smit MJ, Hanssen RG (2008) A signaling-selective, nanomolar potent allosteric low molecular weight agonist for the human luteinizing hormone receptor. Naunyn Schmiedebergs Arch Pharmacol 378: 503–514. https://doi.org/10.1007/s00210-008-0318-3

Дополнительные материалы отсутствуют.