Российский физиологический журнал им. И.М. Сеченова, 2023, T. 109, № 10, стр. 1349-1397

Органофосфат-индуцированная патология: механизмы развития, принципы терапии и особенности экспериментальных исследований

Н. В. Гончаров 12*, Д. А. Белинская 2, П. В. Авдонин 3

1 НИИ гигиены, профпатологии и экологии человека ФМБА России
г.п. Кузьмоловский, Ленинградская обл., Россия

2 Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН
Санкт-Петербург, Россия

3 Институт биологии развития им. Н.К. Кольцова РАН
Москва, Россия

* E-mail: ngoncharov@gmail.com

Поступила в редакцию 04.09.2023
После доработки 25.09.2023
Принята к публикации 25.09.2023

Аннотация

Органофосфаты (ОФ) – одни из наиболее распространенных ксенобиотиков нейротоксического действия. При остром отравлении ОФ в результате подавления активности синаптической ацетилхолинэстеразы (АХЭ) развивается холинергический синдром, который может трансформироваться в эпилептический статус. В течение нескольких суток после острого отравления может развиться так называемый промежуточный синдром, который связан с продолжительным ингибированием АХЭ, десенситизацией никотиновых рецепторов, функциональной деградацией синапсов и мышечных волокон. Через 10–20 дней после однократного острого или неоднократного подострого отравления может развиться ОФ-индуцированная отставленная полинейропатия (ОФИП) – нейродегенеративное заболевание, признаками которого являются атаксия, потеря функции дистальных отделов сенсорных и моторных аксонов периферических нервов. Возникновение нервно-психического расстройства, вызванное хроническим воздействием относительно малотоксичных фосфорорганических соединений (ХФР), обычно не связано с острым отравлением, среди симптомов – когнитивные расстройства, хроническая усталость и экстрапирамидные симптомы. Перече-нь возможных заболеваний или патологических состояний (синдромов), развивающихся в результате острого, подострого или хронического воздействия ОФ на организм человека, в последние годы расширился за счет ряда известных нейродегенеративных заболеваний (болезни Альцгеймера, Паркинсона, рассеянный склероз и др.). Старение организма в целом и старение мозга в частности рассмотрены в обзоре с точки зрения последствий отравления ОФ, которые могут служить неспецифическим триггером старения и связанных с ним нейродегенеративных заболеваний. Синдром Персидского залива не является следствием интоксикации ОФ, но также представляет интерес и рассмотрен в контексте именно ОФ-индуцированной патологии, поскольку его этиология и патогенез связаны с воздействием на организм ингибиторов холинэстераз. Кроме того, в обзоре представлены данные, свидетельствующие о важной роли эндотелия сосудов в развитии ОФ-индуцированной патологии; первые предположения были высказаны клиницистами в конце 1980-х, а первые экспериментальные данные были получены в начале 2000-х годов. Изложены принципы терапии острых отравлений с учетом экспериментальных данных последних лет. Представлены некоторые методы исследования ОФ в экспериментах in vitro, ex vivo и in vivo с лабораторными животными, в том числе с применением ингибиторов карбоксилэстераз; важнейшей частью исследований in vivo был и остается поиск новых биомаркеров для оценки эффективности средств адъювантной и регенеративной терапии.

Ключевые слова: органофосфаты, холинэстераза, холинергический синдром, эпилептический статус, нейродегенеративные заболевания, старение, эндотелий

Список литературы

  1. Perez-Fernandez C, Flores P, Sánchez-Santed F (2019) A Systematic Review on the Influences of Neurotoxicological Xenobiotic Compounds on Inhibitory Control. Front Behav Neurosci 13: 139. https://doi.org/10.3389/fnbeh.2019.00139

  2. Neylon J, Fuller JN, van der Poel C, Church JE, Dworkin S (2022) Organophosphate Insecticide Toxicity in Neural Development, Cognition, Behaviour and Degeneration: Insights from Zebrafish. J Dev Biol 10(4): 49. https://doi.org/10.3390/jdb10040049

  3. Jokanović M (2018) Neurotoxic effects of organophosphorus pesticides and possible association with neurodegenerative diseases in man: A review. Toxicology 410: 125–131. https://doi.org/10.1016/j.tox.2018.09.009

  4. Karimani A, Ramezani N, Afkhami Goli A, Nazem Shirazi MH, Nourani H, Jafari AM (2021) Subchronic neurotoxicity of diazinon in albino mice: Impact of oxidative stress, AChE activity, and gene expression disturbances in the cerebral cortex and hippocampus on mood, spatial learning, and memory function. Toxicol Rep 8: 1280–1288. https://doi.org/10.1016/j.toxrep.2021.06.017

  5. Zhang HY, Wang C, Li HS (2021) Effect of organophosphate pesticides poisoning on cognitive impairment. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 39(4): 313–316. (In Chinese). https://doi.org/10.3760/cma.j.cn121094-20200325-00161

  6. Roe K (2022) An Alternative Explanation for Alzheimer’s Disease and Parkinson’s Disease Initiation from Specific Antibiotics, Gut Microbiota Dysbiosis and Neurotoxins. Neurochem Res 47(3): 517–530. https://doi.org/10.1007/s11064-021-03467-y

  7. Jokanović M, Oleksak P, Kuca K (2023) Multiple neurological effects associated with exposure to organophosphorus pesticides in man. Toxicology 484: 153407. https://doi.org/10.1016/j.tox.2022.153407

  8. Eddleston M, Juszczak E, Buckley NA, Senarathna L, Mohamed F, Dissanayake W, Hittarage A, Azher S, Jeganathan K, Jayamanne S, Sheriff MR, Warrell DA, Ox-Col Poisoning Study collaborators (2008) Multiple-dose activated charcoal in acute self-poisoning: a randomised controlled trial. Lancet 371(9612): 579–587. https://doi.org/10.1016/S0140-6736(08)60270-6

  9. Jokanović M, Antonijević B, Vučinić S (2010) Epidemiological studies of anticholinesterase pesticide poisoning in Serbia. In: Satoh T, Gupta RC (eds) Anticholinesterase Pesticides: Metabolism, Neurotoxicity and Epidemiology. John Wiley & Sons. Hoboken, New Jersey. US. 481–494. https://doi.org/10.1002/9780470640500.ch35

  10. Куценко СА (2004) Основы токсикологии. Санкт-Петербург. Фолиант. [Kutsenko SA (2004) Fundamentals of toxicology. Saint Petersburg. Foliant. (In Russ)].

  11. McDonough JH Jr, Shih TM (1997) Neuropharmacological mechanisms of nerve agent-induced seizure and neuropathology. Neurosci Biobehav Rev 21(5): 559–579. https://doi.org/10.1016/s0149-7634(96)00050-4

  12. Tattersall J (2009) Seizure activity post organophosphate exposure. Front Biosci (Landmark Ed) 14(10): 3688–36711. https://doi.org/10.2741/3481

  13. DeLorenzo RJ, Kirmani B, Deshpande LS, Jakkampudi V, Towne AR, Waterhouse E, Garnett L, Ramakrishnan V (2009) Comparisons of the mortality and clinical presentations of status epilepticus in private practice community and university hospital settings in Richmond, Virginia. Seizure 18: 405–411. https://doi.org/10.1016/j.seizure.2009.02.005

  14. Trinka E, Cock H, Hesdorffer D, Rossetti AO, Scheffer IE, Shinnar S, Shorvon S, Lowenstein DH (2015) A definition and classification of status epilepticus–Report of the ILAE Task Force on Classification of Status Epilepticus. Epilepsia 56(10): 1515–1523. https://doi.org/10.1111/epi.13121

  15. Ben Abraham R, Rudick V, Weinbroum AA; Department of Anesthesiology and Critical Care Medicine, Tel Aviv Sourasky Medical Center and the Sackler Faculty of Medicine (2002) Practical guidelines for acute care of victims of bioterrorism: conventional injuries and concomitant nerve agent intoxication. Anesthesiology 97(4): 989–1004. https://doi.org/10.1097/00000542-200210000-00035

  16. Rosman Y, Eisenkraft A, Milk N, Shiyovich A, Ophir N, Shrot S, Kreiss Y, Kassirer M (2014) Lessons learned from the Syrian sarin attack: evaluation of a clinical syndrome through social media. Ann Intern Med 160(9): 644–648. https://doi.org/10.7326/M13-2799

  17. Deshpande LS, DeLorenzo RJ, Churn SB, Parsons JT (2020) Neuronal-Specific Inhibition of Endoplasmic Reticulum Mg2+/Ca2+ ATPase Ca2+ Uptake in a Mixed Primary Hippocampal Culture Model of Status Epilepticus. Brain Sci 10(7): 438. https://doi.org/10.3390/brainsci10070438

  18. Blair RE, Hawkins E, Pinchbeck LR, DeLorenzo RJ, Deshpande LS (2023) Chronic epilepsy and mossy fiber sprouting following organophosphate-induced status epilepticus in rats. J Pharmacol Exp Ther JPET-AR-2023-001739. https://doi.org/10.1124/jpet.123.001739

  19. Worek F, Thiermann H, Szinicz L, Eyer P (2004) Kinetic analysis of interactions between human acetylcholinesterase, structurally different organophosphorus compounds and oximes. Biochem Pharmacol 68(11): 2237–2248. https://doi.org/10.1016/j.bcp.2004.07.038

  20. Watson A, Opresko D, Young RA, Hauschild V, King J and Bakshi K (2015) Organophosphate Nerve Agents. In: Gupta RC (ed) Handbook of the Toxicology of Chemical Warfare Agents, 2nd ed. Acad Press/Elsevier. Amsterdam. 111–130.

  21. Reddy SD, Reddy DS (2015) Midazolam as an anticonvulsant antidote for organophosphate intoxication–A pharmacotherapeutic appraisal. Epilepsia 56(6): 813–821. https://doi.org/10.1111/epi.12989

  22. Reddy SD, Younus I, Clossen BL, Reddy DS (2015) Antiseizure Activity of Midazolam in Mice Lacking δ-Subunit Extrasynaptic GABA(A) Receptors. J Pharmacol Exp Ther 353(3): 517–528. https://doi.org/10.1124%2Fjpet.114.222075

  23. Faro LRF, Fajardo D, Durán R, Alfonso M (2018) Characterization of acute intrastriatal effects of paraoxon on in vivo dopaminergic neurotransmission using microdialysis in freely moving rats. Toxicol Lett 299: 124–128. https://doi.org/10.1016/j.toxlet.2018.09.017

  24. Scheffel C, Niessen KV, Rappenglück S, Wanner KT, Thiermann H, Worek F, Seeger T (2018) Counteracting desensitization of human α7-nicotinic acetylcholine receptors with bispyridinium compounds as an approach against organophosphorus poisoning. Toxicol Lett 293: 149–156. https://doi.org/10.1016/j.toxlet.2017.12.005

  25. John M, Oommen A, Zachariah A (2003) Muscle injury in organophosphorous poisoning and its role in the development of intermediate syndrome. Neurotoxicology 24(1): 43–53. https://doi.org/10.1016/s0161-813x(02)00111-0

  26. Abdollahi M, Karami-Mohajeri S (2012) A comprehensive review on experimental and clinical findings in intermediate syndrome caused by organophosphate poisoning. Toxicol Appl Pharmacol 258(3): 309–314. https://doi.org/10.1016/j.taap.2011.11.014

  27. Yang CC, Deng JF (2007) Intermediate syndrome following organophosphate insecticide poisoning. J Chin Med Assoc 70(11): 467–472. https://doi.org/10.1016/S1726-4901(08)70043-1

  28. Balali-Mood M, Saber H (2012) Recent advances in the treatment of organophosphorous poisonings. Iran J Med Sci 37(2): 74–91.

  29. Patil G, Murthy N, Nikhil M (2016) Contributing Factors for Morbidity and Mortality in Patients with Organophosphate Poisoning on Mechanical Ventilation: A Retrospective Study in a Teaching Hospital. J Clin Diagn Res 10(12): UC18–UC20. https://doi.org/10.7860/JCDR/2016/22116.9038

  30. Myers GJ, Wegner J (2017) Endothelial Glycocalyx and Cardiopulmonary Bypass. J Extra Corpor Technol 49(3): 174–181.

  31. Perrin RM, Harper SJ, Bates DO (2007) A role for the endothelial glycocalyx in regulating microvascular permeability in diabetes mellitus. Cell Biochem Biophys 49(2): 65–72. https://doi.org/10.1007/s12013-007-0041-6

  32. Yilmaz M, Sebe A, Ay MO, Gumusay U, Topal M, Atli M, Icme F, Satar S (2013) Effectiveness of therapeutic plasma exchange in patients with intermediate syndrome due to organophosphate intoxication. Am J Emerg Med 31(6): 953–957. https://doi.org/10.1016/j.ajem.2013.03.016

  33. Ковражкина ЕА (2013) Аксональные полинейропатии: патогенез и лечение. Журн неврол психиатр им СС Корсакова 113(6): 22–25. [Kovrazhkina EA (2015) Axonal polyneuropathies: pathogenesis and treatment. Zh Nevrol Psikhiatr im SS Korsakova 113(6): 22–25. (In Russ)].

  34. Goncharov NV, Nadeev AD, Jenkins RO, Avdonin PV (2017) Markers and Biomarkers of Endothelium: When Something Is Rotten in the State. Oxid Med Cell Longev 2017: 9759735. https://doi.org/10.1155/2017/9759735

  35. Kobayashi S, Okubo R, Ugawa Y (2017) Delayed Polyneuropathy Induced by Organophosphate Poisoning. Intern Med 56(14): 1903–1905. https://doi.org/10.2169/internalmedicine.56.7921

  36. Lotti M (1991) The pathogenesis of organophosphate polyneuropathy. Crit Rev Toxicol 21(6): 465–487. https://doi.org/10.3109/10408449209089884

  37. Johnson MK (1990) Organophosphates and delayed neuropathy–is NTE alive and well? Toxicol Appl Pharmacol 102(3): 385–399. https://doi.org/10.1016/0041-008x(90)90036-t

  38. Chang PA, Wu YJ (2010) Neuropathy target esterase: an essential enzyme for neural development and axonal maintenance. Int J Biochem Cell Biol 42(5): 573–575. https://doi.org/10.1016/j.biocel.2009.12.007

  39. Read DJ, Li Y, Chao MV, Cavanagh JB, Glynn P (2009) Neuropathy target esterase is required for adult vertebrate axon maintenance. J Neurosci 29(37): 11594–11600. https://doi.org/10.1523/JNEUROSCI.3007-09.2009

  40. Song F, Xie K (2012) Calcium-dependent neutral cysteine protease and organophosphate-induced delayed neuropathy. Chem Biol Interact 200(2–3): 114–118. https://doi.org/10.1016/j.cbi.2012.10.001

  41. Lotti M, Moretto A (2005) Organophosphate-induced delayed polyneuropathy. Toxicol Rev 24(1): 37–49. https://doi.org/10.2165/00139709-200524010-00003

  42. Peraica M, Capodicasa E, Moretto A, Lotti M (1993) Organophosphate polyneuropathy in chicks. Biochem Pharmacol 45(1): 131–135. https://doi.org/10.1016/0006-2952(93)90385-a

  43. Richardson RJ, Fink JK, Glynn P, Hufnagel RB, Makhaeva GF, Wijeyesakere SJ (2020) Neuropathy target esterase (NTE/PNPLA6) and organophosphorus compound-induced delayed neurotoxicity (OPIDN). Adv Neurotoxicol 4: 1–78. https://doi.org/10.1016/bs.ant.2020.01.001

  44. Ray DE, Richards PG (2001) The potential for toxic effects of chronic, low-dose exposure to organophosphates. Toxicol Lett 120(1–3): 343–351. https://doi.org/10.1016/s0378-4274(01)00266-1

  45. London L, Flisher AJ, Wesseling C, Mergler D, Kromhout H (2005) Suicide and exposure to organophosphate insecticides: cause or effect? Am J Ind Med 47(4): 308–321. https://doi.org/10.1002/ajim.20147

  46. Rohlman DS, Anger WK, Lein PJ (2011) Correlating neurobehavioral performance with biomarkers of organophosphorous pesticide exposure. Neurotoxicology 32(2): 268–276. https://doi.org/10.1016/j.neuro.2010.12.008

  47. Kori RK, Singh MK, Jain AK, Yadav RS (2018) Neurochemical and Behavioral Dysfunctions in Pesticide Exposed Farm Workers: A Clinical Outcome. Indian J Clin Biochem 33(4): 372–381. https://doi.org/10.1007/s12291-018-0791-5

  48. Riddle JR, Brown M, Smith T, Ritchie EC, Brix KA, Romano J (2003) Chemical warfare and the Gulf War: a review of the impact on Gulf veterans’ health. Mil Med 168(8): 606–613.

  49. Khan N, Kennedy A, Cotton J, Brumby S (2019) A Pest to Mental Health? Exploring the Link between Exposure to Agrichemicals in Farmers and Mental Health. Int J Environ Res Public Health 16(8): 1327. https://doi.org/10.3390/ijerph16081327

  50. Voorhees JR, Rohlman DS, Lein PJ, Pieper AA (2017) Neurotoxicity in Preclinical Models of Occupational Exposure to Organophosphorus Compounds. Front Neurosci 10: 590. https://doi.org/10.3389/fnins.2016.00590

  51. Trojsi F, Monsurrò MR, Tedeschi G (2013) Exposure to environmental toxicants and pathogenesis of amyotrophic lateral sclerosis: state of the art and research perspectives. J Mol Sci 14(8): 15286–15311. https://doi.org/10.3390/ijms140815286

  52. Sánchez-Santed F, Colomina MT, Herrero Hernández E (2016) Organophosphate pesticide exposure and neurodegeneration. Cortex 74: 417–426. https://doi.org/10.1016/j.cortex.2015.10.003

  53. Costa LG (2018) Organophosphorus Compounds at 80: Some Old and New Issues. Toxicol Sci 162(1): 24–35. https://doi.org/10.1093/toxsci/kfx266

  54. de Araujo Furtado M, Rossetti F, Chanda S, Yourick D (2012) Exposure to nerve agents: from status epilepticus to neuroinflammation, brain damage, neurogenesis and epilepsy. Neurotoxicology 33(6): 1476–1490. https://doi.org/10.1016/j.neuro.2012.09.001

  55. Mudyanselage AW, Wijamunige BC, Kocon A, Carter WG (2023) Differentiated Neurons Are More Vulnerable to Organophosphate and Carbamate Neurotoxicity than Undifferentiated Neurons Due to the Induction of Redox Stress and Accumulate Oxidatively-Damaged Proteins. Brain Sci 13(5): 728. https://doi.org/10.3390/brainsci13050728

  56. Horke S, Witte I, Wilgenbus P, Krüger M, Strand D, Förstermann U (2007) Paraoxonase-2 reduces oxidative stress in vascular cells and decreases endoplasmic reticulum stress-induced caspase activation. Circulation 115(15): 2055–2064. https://doi.org/10.1161/circulationaha.106.681700

  57. Ebert J, Wilgenbus P, Teiber JF, Jurk K, Schwierczek K, Döhrmann M, Xia N, Li H, Spiecker L, Ruf W, Horke S (2018) Paraoxonase-2 regulates coagulation activation through endothelial tissue factor. Blood 131(19): 2161–2172. https://doi.org/10.1182/blood-2017-09-807040

  58. Lee PC, Rhodes SL, Sinsheimer JS, Bronstein J, Ritz B (2013) Functional paraoxonase 1 variants modify the risk of Parkinson’s disease due to organophosphate exposure. Environ Int 56: 42–47. https://doi.org/10.1016/j.envint.2013.03.004

  59. Zuin M, Rosta V, Trentini A, Bosi C, Zuliani G, Cervellati C (2023) Paraoxonase 1 activity in patients with Alzheimer disease: Systematic review and meta-analysis. Chem Biol Interact 382: 110601. https://doi.org/10.1016/j.cbi.2023.110601

  60. Teodoro M, Briguglio G, Fenga C, Costa C (2019) Genetic polymorphisms as determinants of pesticide toxicity: Recent advances. Toxicol Rep 6: 564–570. https://doi.org/10.1016/j.toxrep.2019.06.004

  61. Gavaghan H (1994) NIH panel rejects Persian Gulf syndrome. Nature 369(6475): 8. https://doi.org/10.1038/369008a0

  62. Reddy DS, Wu X, Singh T, Neff M (2023) Experimental Models of Gulf War Illness, a Chronic Neuropsychiatric Disorder in Veterans. Curr Protoc 3(3): e707. https://doi.org/10.1002/cpz1.707

  63. Ribeiro ACR, Deshpande LS (2021) A review of pre-clinical models for Gulf War Illness. Pharmacol Ther 228: 107936. https://doi.org/10.1016/j.pharmthera.2021.107936

  64. Phillips KF, Deshpande LS (2018) Chronic Neurological Morbidities and Elevated Hippocampal Calcium Levels in a DFP-Based Rat Model of Gulf War Illness. Mil Med 183(suppl_1): 552–555. https://doi.org/10.1093/milmed/usx148

  65. Phillips KF, Deshpande LS (2020) Calcium Hypothesis of Gulf War Illness: Role of Calcium Ions in Neurological Morbidities in a DFP-Based Rat Model for Gulf War Illness. Neurosci Insights 15: 2633105520979841. https://doi.org/10.1177/2633105520979841

  66. Phillips KF, Santos E, Blair RE, Deshpande LS (2019) Targeting Intracellular Calcium Stores Alleviates Neurological Morbidities in a DFP-Based Rat Model of Gulf War Illness. Toxicol Sci 169(2): 567–578. https://doi.org/10.1093/toxsci/kfz070

  67. Zhu J, Hawkins E, Phillips K, Deshpande LS (2020) Assessment of Ketamine and Its Enantiomers in an Organophosphate-Based Rat Model for Features of Gulf War Illness. Int J Environ Res Public Health 17(13): 4710. https://doi.org/10.3390/ijerph17134710

  68. Ribeiro ACR, Jahr FM, Hawkins E, Kronfol MM, Younis RM, McClay JL, Deshpande LS (2021) Epigenetic histone acetylation and Bdnf dysregulation in the hippocampus of rats exposed to repeated, low-dose diisopropylfluorophosphate. Life Sci 281: 119765. https://doi.org/10.1016/j.lfs.2021.119765

  69. Slevin E, Koyama S, Harrison K, Wan Y, Klaunig JE, Wu C, Shetty AK, Meng F (2023) Dysbiosis in gastrointestinal pathophysiology: Role of the gut microbiome in Gulf War Illness. J Cell Mol Med 27(7): 891–905. https://doi.org/10.1111/jcmm.17631

  70. Burzynski HE, Ayala KE, Frick MA, Dufala HA, Woodruff JL, Macht VA, Eberl BR, Hollis F, McQuail JA, Grillo CA, Fadel JR, Reagan LP (2023) Delayed cognitive impairments in a rat model of Gulf War Illness are stimulus-dependent. Brain Behav Immun 113: 248–258. https://doi.org/10.1016/j.bbi.2023.07.003

  71. Ribeiro ACR, Hawkins E, Jahr FM, McClay JL, Deshpande LS (2022) Repeated exposure to chlorpyrifos is associated with a dose-dependent chronic neurobehavioral deficit in adult rats. Neurotoxicology 90: 172–183. https://doi.org/10.1016/j.neuro.2022.03.011

  72. Cassereau J, Ferré M, Chevrollier A, Codron P, Verny C, Homedan C, Lenaers G, Procaccio V, May-Panloup P, Reynier P (2017) Neurotoxicity of Insecticides. Curr Med Chem 24(27): 2988–3001. https://doi.org/10.2174/0929867324666170526122654

  73. Dolgacheva LP, Zinchenko VP, Goncharov NV (2022) Molecular and Cellular Interactions in Pathogenesis of Sporadic Parkinson Disease. Int J Mol Sci 23(21): 13043. https://doi.org/10.3390/ijms232113043

  74. Li X, Feng X, Sun X, Hou N, Han F, Liu Y (2022) Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990-2019. Front Aging Neurosci 14: 937486. https://doi.org/10.3389/fnagi.2022.937486

  75. Soria Lopez JA, González HM, Léger GC (2019) Alzheimer’s disease. Handb Clin Neurol 167: 231–255. https://doi.org/10.1016/B978-0-12-804766-8.00013-3

  76. Mantzavinos V, Alexiou A (2017) Biomarkers for Alzheimer’s Disease Diagnosis. Curr Alzheimer Res 14(11): 1149–1154. https://doi.org/10.2174/1567205014666170203125942

  77. Brimijoin S, Chen VP, Pang YP, Geng L, Gao Y (2016) Physiological roles for butyrylcholinesterase: A BChE-ghrelin axis. Chem Biol Interact 259(Pt B): 271–275. https://doi.org/10.1016/j.cbi.2016.02.013

  78. Prince M, Guerchet M, Prina M (2015) The Epidemiology and Impact of Dementia-Current State and Future Trends. WHO Thematic Briefing. Geneve: World Health Organization. https://hal.science/hal-03517019. Accessed 03 Sep 2023

  79. Lushchekina SV, Masson P (2020) Slow-binding inhibitors of acetylcholinesterase of medical interest. Neuropharmacology 177: 108236. https://doi.org/10.1016/j.neuropharm.2020.108236

  80. García-Morales V, González-Acedo A, Melguizo-Rodríguez L, Pardo-Moreno T, Costela-Ruiz VJ, Montiel-Troya M, Ramos-Rodríguez JJ (2021) Current Understanding of the Physiopathology, Diagnosis and Therapeutic Approach to Alzheimer’s Disease. Biomedicines 9(12): 1910. https://doi.org/10.3390/biomedicines9121910

  81. Mielke MM, Leoutsakos JM, Corcoran CD, Green RC, Norton MC, Welsh-Bohmer KA, Tschanz JT, Lyketsos CG (2012) Effects of Food and Drug Administration-approved medications for Alzheimer’s disease on clinical progression. Alzheimers Dement 8(3): 180–187. https://doi.org/10.1016/j.jalz.2011.02.011

  82. Tricco AC, Ashoor HM, Soobiah C, Rios P, Veroniki AA, Hamid JS, Ivory JD, Khan PA, Yazdi F, Ghassemi M, Blondal E, Ho JM, Ng CH, Hemmelgarn B, Majumdar SR, Perrier L, Straus SE (2017) Comparative effectiveness and safety of cognitive enhancers for treating Alzheimer’s disease: systematic review and network metaanalysis. J Am Geriatr Soc 66(1): 170–178. https://doi.org/10.1111/jgs.15069

  83. Ali TB, Schleret TR, Reilly BM, Chen WY, Abagyan R (2015) Adverse effects of cholinesterase inhibitors in dementia, according to the pharmacovigilance databases of the United-States and Canada. PLoS One 10(12): e0144337. https://doi.org/10.1371/journal.pone.0144337

  84. Mohammad D, Chan P, Bradley J, Lanctôt K, Herrmann N (2017) Acetylcholinesterase inhibitors for treating dementia symptoms – a safety evaluation. Expert Opin Drug Saf 16(9): 1009–1019. https://doi.org/10.1080/14740338.2017.1351540

  85. Pourmand A, Shay C, Redha W, Aalam A, Mazer-Amirshahi M (2017) Cholinergic symptoms and QTc prolongation following donepezil overdose. Am J Emerg Med 35: 1386.e1–1386.e3. https://doi.org/10.1016/j.ajem.2017.06.044

  86. Suzuki Y, Kamijo Y, Yoshizawa T, Fujita Y, Usui K, Kishino T (2017) Acute cholinergic syndrome in a patient with mild Alzheimer’s type dementia who had applied a large number of rivastigmine transdermal patches on her body. Clin Toxicol (Phila) 55(9): 1008–1010. https://doi.org/10.1080/15563650.2017.1329536

  87. Brimijoin S, Koenigsberger C (1999) Cholinesterases in neural development: new findings and toxicologic implications. Environ Health Perspect 107 Suppl 1(Suppl 1): 59–64. https://doi.org/10.1289/ehp.99107s159

  88. Rees TM, Berson A, Sklan EH, Younkin L, Younkin S, Brimijoin S, Soreq H (2005) Memory deficits correlating with acetylcholinesterase splice shift and amyloid burden in doubly transgenic mice. Curr Alzheimer Res 2(3): 291–300. https://doi.org/10.2174/1567205054367847

  89. Rees T, Hammond PI, Soreq H, Younkin S, Brimijoin S (2003) Acetylcholinesterase promotes beta-amyloid plaques in cerebral cortex. Neurobiol Aging 24(6): 777–787. https://doi.org/10.1016/s0197-4580(02)00230-0

  90. Dickerson TJ, Beuscher AE, 4th, Rogers CJ, Hixon MS, Yamamoto N, Xu Y, Olson AJ, Janda KD (2005) Discovery of acetylcholinesterase peripheral anionic site ligands through computational refinement of a directed library. Biochemistry 44: 14845–14853. https://doi.org/10.1021/bi051613x

  91. Pope CN, Brimijoin S (2018) Cholinesterases and the fine line between poison and remedy. Biochem Pharmacol 153: 205–216. https://doi.org/10.1016/j.bcp.2018.01.044

  92. Nordberg A, Svensson AL (1998) Cholinesterase inhibitors in the treatment of Alzheimer’s disease: a comparison of tolerability and pharmacology. Drug Saf 19(6): 465–480. https://doi.org/10.2165/00002018-199819060-00004

  93. Kryger G, Silman I, Sussman JL (1999) Structure of acetylcholinesterase complexed with E2020 (Aricept): implications for the design of new anti-Alzheimer drugs. Structure 7(3): 297–307. https://doi.org/10.1016/s0969-2126(99)80040-9

  94. Lane M, Carter D, Pescrille JD, Aracava Y, Fawcett WP, Basinger GW, Pereira EFR, Albuquerque EX (2020) Oral Pretreatment with Galantamine Effectively Mitigates the Acute Toxicity of a Supralethal Dose of Soman in Cynomolgus Monkeys Posttreated with Conventional Antidotes. J Pharmacol Exp Ther 375(1): 115–126. https://doi.org/10.1124/jpet.120.265843

  95. Chelusnova YuV, Voronina PA, Belinskaia DA, Goncharov NV (2023) Benzimidazole-Carboxamides as Potential Therapeutics for Alzheimer’s Disease: Primary Analysis In Silico and In Vitro. Bull Exp Biol Med 175(3): 345–352. https://doi.org/10.1007/s10517-023-05865-4

  96. Belinskaia DA, Voronina PA, Krivorotov DV, Jenkins RO, Goncharov NV (2023) Anticholinesterase and Serotoninergic Evaluation of Benzimidazole–Carboxamides as Potential Multifunctional Agents for the Treatment of Alzheimer’s Disease. Pharmaceutics 15(8): 2159. https://doi.org/10.3390/pharmaceutics15082159

  97. Hashim HZ, Wan Musa WR, Ngiu CS, Wan Yahya WN, Tan HJ, Ibrahim N (2011) Parkinsonism complicating acute organophosphate insecticide poisoning. Ann Acad Med Singap 40(3): 150–151.

  98. Pezzoli G, Cereda E (2013) Exposure to pesticides or solvents and risk of Parkinson disease. Neurology 80(22): 2035–2041. https://doi.org/10.1212/WNL.0b013e318294b3c8

  99. Narayan S, Liew Z, Paul K, Lee PC, Sinsheimer JS, Bronstein JM, Ritz B (2013) Household organophosphorus pesticide use and Parkinson’s disease. Int J Epidemiol 42(5): 1476–1485. https://doi.org/10.1093/ije/dyt170

  100. Wang A, Cockburn M, Ly TT, Bronstein JM, Ritz B (2014) The association between ambient exposure to organophosphates and Parkinson’s disease risk. Occup Environ Med 71(4): 275–281. https://doi.org/10.1136/oemed-2013-101394

  101. Norkaew S, Lertmaharit S, Wilaiwan W, Siriwong W, Pérez HM, Robson MG (2015) An association between organophosphate pesticides exposure and Parkinsonism amongst people in an agricultural area in Ubon Ratchathani Province, Thailand. Rocz Panstw Zakl Hig 66(1): 21–26.

  102. Chuang CS, Su HL, Lin CL, Kao CH (2017) Risk of Parkinson disease after organophosphate or carbamate poisoning. Acta Neurol Scand 136(2): 129–137. https://doi.org/10.1111/ane.12707

  103. Davis KL, Yesavage JA, Berger PA (1978) Single case study. Possible organophosphate-induced parkinsonism. J Nerv Ment Dis 166(3): 222–225. https://doi.org/10.1097/00005053-197803000-00010

  104. Bhatt MH, Elias MA, Mankodi AK (1999) Acute and reversible parkinsonism due to organophosphate pesticide intoxication: five cases. Neurology 52(7): 1467–1471. https://doi.org/10.1212/wnl.52.7.1467

  105. Das K, Ghosh M, Nag C, Nandy SP, Banerjee M, Datta M, Devi G, Chaterjee G (2011) Role of familial, environmental and occupational factors in the development of Parkinson’s disease. Neurodegener Dis 8(5): 345–351. https://doi.org/10.1159/000323797

  106. Kanthasamy A, Jin H, Charli A, Vellareddy A, Kanthasamy A (2019) Environmental neurotoxicant-induced dopaminergic neurodegeneration: a potential link to impaired neuroinflammatory mechanisms. Pharmacol Ther 197: 61–82. https://doi.org/10.1016/j.pharmthera.2019.01.001

  107. Paul KC, Sinsheimer JS, Cockburn M, Bronstein JM, Bordelon Y, Ritz B (2017) Organophosphate pesticides and PON1 L55M in Parkinson’s disease progression. Environ Int 107: 75–81. https://doi.org/10.1016/j.envint.2017.06.018

  108. Muñoz-Quezada MT, Lucero BA, Iglesias VP, Muñoz MP, Cornejo CA, Achu E, Baumert B, Hanchey A, Concha C, Brito AM, Villalobos M (2016) Chronic exposure to organophosphate (OP) pesticides and neuropsychological functioning in farm workers: a review. Int J Occup Environ Health 22(1): 68–79. https://doi.org/10.1080/10773525.2015.1123848

  109. Wani WY, Kandimalla RJL, Sharma DR, Kaushal A, Ruban A, Sunkaria A, Vallamkondu J, Chiarugi A, Reddy PH, Gill KD (2017) Cell cycle activation in p21 dependent pathway: An alternative mechanism of organophosphate induced dopaminergic neurodegeneration. Biochim Biophys Acta Mol Basis Dis 1863(7): 1858–1866. https://doi.org/10.1016/j.bbadis.2016.05.014

  110. Naughton SX, Terry AV Jr (2018) Neurotoxicity in acute and repeated organophosphate exposure. Toxicology 408: 101–112. https://doi.org/10.1016/j.tox.2018.08.011

  111. Farkhondeh T, Mehrpour O, Forouzanfar F, Roshanravan B, Samarghandian S (2020) Oxidative stress and mitochondrial dysfunction in organophosphate pesticide-induced neurotoxicity and its amelioration: a review. Environ Sci Pollut Res Int 27(20): 24799–24814. https://doi.org/10.1007/s11356-020-09045-z

  112. Zhao MW, Yang P, Zhao LL (2019) Chlorpyrifos activates cell pyroptosis and increases susceptibility on oxidative stress-induced toxicity by miR-181/SIRT1/PGC-1α/Nrf2 signaling pathway in human neuroblastoma SH-SY5Y cells: Implication for association between chlorpyrifos and Parkinson’s disease. Environ Toxicol 34(6): 699–707. https://doi.org/10.1002/tox.22736

  113. Anderson FL, von Herrmann KM, Young AL, Havrda MC (2021) Bbc3 Loss Enhances Survival and Protein Clearance in Neurons Exposed to the Organophosphate Pesticide Chlorpyrifos. Toxicol Sci 183(2): 378–392. https://doi.org/10.1093/toxsci/kfab090

  114. Parashar A, Udayabanu M (2017) Gut microbiota: Implications in Parkinson’s disease. Parkinsonism Relat Disord 38: 1–7. https://doi.org/10.1016/j.parkreldis.2017.02.002

  115. Gao B, Bian X, Mahbub R, Lu K (2017) Sex-Specific Effects of Organophosphate Diazinon on the Gut Microbiome and Its Metabolic Functions. Environ Health Perspect 125(2): 198–206. https://doi.org/10.1289/EHP202

  116. Gao B, Bian X, Chi L, Tu P, Ru H, Lu K (2017) Editor’s Highlight: OrganophosphateDiazinon Altered Quorum Sensing, Cell Motility, Stress Response, and Carbohydrate Metabolism of Gut Microbiome. Toxicol Sci 157(2): 354–364. https://doi.org/10.1093/toxsci/kfx053

  117. Stanaway IB, Wallace JC, Shojaie A, Griffith WC, Hong S, Wilder CS, Green FH, Tsai J, Knight M, Workman T, Vigoren EM, McLean JS, Thompson B, Faustman EM (2016) Human Oral Buccal Microbiomes Are Associated with Farmworker Status and Azinphos-Methyl Agricultural Pesticide Exposure. Appl Environ Microbiol 83(2): e02149–16. https://doi.org/10.1128/AEM.02149-16

  118. Oh J, Kim K, Kannan K, Parsons PJ, Mlodnicka A, Schmidt RJ, Schweitzer JB, Hertz-Picciotto I, Bennett DH (2023) Early childhood exposure to environmental phenols and parabens, phthalates, organophosphate pesticides, and trace elements in association with attention deficit hyperactivity disorder (ADHD) symptoms in the CHARGE study. Res Sq [Preprint] rs.3.rs-2565914. https://doi.org/10.21203/rs.3.rs-2565914/v1

  119. Waits A, Chang CH, Yu CJ, Du JC, Chiou HC, Hou JW, Yang W, Chen HC, Chen YS, Hwang B, Chen ML (2022) Exposome of attention deficit hyperactivity disorder in Taiwanese children: exploring risks of endocrine-disrupting chemicals. J Expo Sci Environ Epidemiol 32(1): 169–176. https://doi.org/10.1038/s41370-021-00370-0

  120. Sagiv SK, Kogut K, Harley K, Bradman A, Morga N, Eskenazi B (2021) Gestational Exposure to Organophosphate Pesticides and Longitudinally Assessed Behaviors Related to Attention-Deficit/Hyperactivity Disorder and Executive Function. Am J Epidemiol 190(11): 2420–2431. https://doi.org/10.1093/aje/kwab173

  121. Hall AM, Ramos AM, Drover SS, Choi G, Keil AP, Richardson DB, Martin CL, Olshan AF, Villanger GD, Reichborn-Kjennerud T, Zeiner P, Øvergaard KR, Sakhi AK, Thomsen C, Aase H, Engel SM (2023) Gestational organophosphate ester exposure and preschool attention-deficit/hyperactivity disorder in the Norwegian Mother, Father, and Child cohort study. Int J Hyg Environ Health 248: 114078. https://doi.org/10.1016/j.ijheh.2022.114078

  122. Eadeh HM, Davis J, Ismail AA, Abdel Rasoul GM, Hendy OM, Olson JR, Bonner MR, Rohlman DS (2023) Evaluating how occupational exposure to organophosphates and pyrethroids impacts ADHD severity in Egyptian male adolescents. Neurotoxicology 95: 75–82. https://doi.org/10.1016/j.neuro.2023.01.001

  123. Merwin SJ, Obis T, Nunez Y, Re DB (2017) Organophosphate neurotoxicity to the voluntary motor system on the trail of environment-caused amyotrophic lateral sclerosis: the known, the misknown, and the unknown. Arch Toxicol 91(8): 2939–2952. https://doi.org/10.1007/s00204-016-1926-1

  124. Huen K, Solomon O, Kogut K, Eskenazi B, Holland N (2018) PON1 DNA methylation and neurobehavior in Mexican-American children with prenatal organophosphate exposure. Environ Int 121(Pt 1): 31–40. https://doi.org/10.1016/j.envint.2018.08.044

  125. Andrew A, Zhou J, Gui J, Harrison A, Shi X, Li M, Guetti B, Nathan R, Tischbein M, Pioro EP, Stommel E, Bradley W (2021) Pesticides applied to crops and amyotrophic lateral sclerosis risk in the U.S. Neurotoxicology 87: 128–135. https://doi.org/10.1016/j.neuro.2021.09.004

  126. Zhu Q, Zhou J, Zhang Y, Huang H, Han J, Cao B, Xu D, Zhao Y, Chen G (2023) Risk factors associated with amyotrophic lateral sclerosis based on the observational study: a systematic review and meta-analysis. Front Neurosci 17: 1196722. https://doi.org/10.3389/fnins.2023.1196722

  127. Bibi S, Kauser S, Ahsan I (2022) Guillain-Barre Syndrome: A Rare Complication of Organophosphate Poisoning. J Coll Physicians Surg Pak 32(4): S52–S54. https://doi.org/10.29271/jcpsp.2022.Supp1.S52

  128. Miranda C, Brannagan TH 3rd (2023) Acute/chronic inflammatory polyradiculoneuropathy. Handb Clin Neurol 195: 619–633. https://doi.org/10.1016/B978-0-323-98818-6.00026-1

  129. Zubair AS, Rethana M, Ma A, McAlpine LS, Abulaban A, Munro BS, Patwa HS, Nowak RJ, Roy B (2023) Plasmapheresis Versus Intravenous Immunoglobulin in Patients with Autoimmune Neuromuscular and Neuro-immunological Conditions. J Clin Neuromuscul Dis 25(1): 11–17. https://doi.org/10.1097/CND.0000000000000439

  130. Rattan SI (2014) Aging is not a disease: implications for intervention. Aging Dis 5(3): 196–202. https://doi.org/10.14336/AD.2014.0500196

  131. Rattan SIS (2018) Biogerontology: research status, challenges and opportunities. Acta Biomed 89(2): 291–301. https://doi.org/10.23750/abm.v89i2.7403

  132. Rackova L, Mach M, Brnoliakova Z (2021) An update in toxicology of ageing. Environ Toxicol Pharmacol 84: 103611. https://doi.org/10.1016/j.etap.2021.103611

  133. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6): 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

  134. Mattson MP, Arumugam TV (2018) Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States. Cell Metab 27(6): 1176–1199. https://doi.org/10.1016/j.cmet.2018.05.011

  135. Vielee ST, Wise JP Jr (2023) Among Gerontogens, Heavy Metals Are a Class of Their Own: A Review of the Evidence for Cellular Senescence. Brain Sci 13(3): 500. https://doi.org/10.3390/brainsci13030500

  136. Youssef SA, Capucchio MT, Rofina JE, Chambers JK, Uchida K, Nakayama H, Head E (2016) Pathology of the Aging Brain in Domestic and Laboratory Animals, and Animal Models of Human Neurodegenerative Diseases. Vet Pathol 53(2): 327–348. https://doi.org/10.1177/0300985815623997

  137. Wang Q, Yu S, Simonyi A, Sun GY, Sun AY (2005) Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Mol Neurobiol 31(1–3): 3–16. https://doi.org/10.1385/MN:31:1-3:003

  138. Shin EJ, Jeong JH, Bing G, Park ES, Chae JS, Yen TP, Kim WK, Wie MB, Jung BD, Kim HJ, Lee SY, Kim HC (2008) Kainate-induced mitochondrial oxidative stress contributes to hippocampal degeneration in senescence-accelerated mice. Cell Signal 20(4): 645–658. https://doi.org/10.1016/j.cellsig.2007.11.014

  139. Lu CW, Wu CC, Chiu KM, Lee MY, Lin TY, Wang SJ (2022) Inhibition of Synaptic Glutamate Exocytosis and Prevention of Glutamate Neurotoxicity by Eupatilin from Artemisia argyi in the Rat Cortex. Int J Mol Sci 23(21): 13406. https://doi.org/10.3390/ijms232113406

  140. Kyllo T, Singh V, Shim H, Latika S, Nguyen HM, Chen YJ, Terry E, Wulff H, Erickson JD (2023) Riluzole and novel naphthalenyl substituted aminothiazole derivatives prevent acute neural excitotoxic injury in a rat model of temporal lobe epilepsy. Neuropharmacology 224: 109349. https://doi.org/10.1016/j.neuropharm.2022.109349

  141. Loo J, Bana MAFS, Tan JK, Aan Goon J (2023) Effect of dietary restriction on health span in Caenorhabditis elegans: A systematic review. Exp Gerontol 2023: 112294. Epub ahead of print. PMID: https://doi.org/10.1016/j.exger.2023.11229437730186

  142. Double KL, Dedov VN, Fedorow H, Kettle E, Halliday GM, Garner B, Brunk UT (2008) The comparative biology of neuromelanin and lipofuscin in the human brain. Cell Mol Life Sci 65(11): 1669–1682. https://doi.org/10.1007/s00018-008-7581-9

  143. Brunk UT, Terman A (2002) Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic Biol Med 33(5): 611–619. https://doi.org/10.1016/s0891-5849(02)00959-0

  144. Benavides SH, Monserrat AJ, Fariña S, Porta EA (2002) Sequential histochemical studies of neuronal lipofuscin in human cerebral cortex from the first to the ninth decade of life. Arch Gerontol Geriatr 34(3): 219–231. https://doi.org/10.1016/s0167-4943(01)00223-0

  145. Jolly RD, Douglas BV, Davey PM, Roiri JE (1995) Lipofuscin in bovine muscle and brain: a model for studying age pigment. Gerontology 41(Suppl 2): 283–295. https://doi.org/10.1159/000213750

  146. Song SB, Shim W, Hwang ES (2023) Lipofuscin Granule Accumulation Requires Autophagy Activation. Mol Cells 46(8): 486–495. https://doi.org/10.14348/molcells.2023.0019

  147. Moreno-García A, Kun A, Calero O, Medina M, Calero M (2018) An Overview of the Role of Lipofuscin in Age-Related Neurodegeneration. Front Neurosci 12: 464. https://doi.org/10.3389/fnins.2018.00464

  148. Bloom SI, Islam MT, Lesniewski LA, Donato AJ (2023) Mechanisms and consequences of endothelial cell senescence. Nat Rev Cardiol 20(1): 38–51. https://doi.org/10.1038/s41569-022-00739-0

  149. Sun X, Feinberg MW (2021) Vascular endothelial senescence: Pathobiological Insights, Emerging Long Noncoding RNA Targets, Challenges and Therapeutic opportunities. Front Physiol 12: 693067. https://doi.org/10.3389/fphys.2021.693067

  150. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288(5789): 373–376. https://doi.org/10.1038/288373a0

  151. Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327(6122): 524–526. https://doi.org/10.1038/327524a0

  152. Hsu SH, Tsou TC, Chiu SJ, Chao JI (2005) Inhibition of alpha7-nicotinic acetylcholine receptor expression by arsenite in the vascular endothelial cells. Toxicol Lett 159(1): 47–59. https://doi.org/10.1016/j.toxlet.2005.04.012

  153. Carvalho FA, Graça LM, Martins-Silva J, Saldanha C (2005) Biochemical characterization of human umbilical vein endothelial cell membrane bound acetylcholinesterase. FEBS J 272(21): 5584–5594. https://doi.org/10.1111/j.1742-4658.2005.04953.x

  154. Santos SC, Vala I, Miguel C, Barata JT, Garção P, Agostinho P, Mendes M, Coelho AV, Calado A, Oliveira CR, e Silva JM, Saldanha C (2007) Expression and subcellular localization of a novel nuclear acetylcholinesterase protein. J Biol Chem 282(35): 25597–25603. https://doi.org/10.1074/jbc.M700569200

  155. Kirkpatrick CJ, Bittinger F, Unger RE, Kriegsmann J, Kilbinger H, Wessler I (2001) The non-neuronal cholinergic system in the endothelium: evidence and possible pathobiological significance. Jpn J Pharmacol 85(1): 24–28. https://doi.org/10.1254/jjp.85.24

  156. Kirkpatrick CJ, Bittinger F, Nozadze K, Wessler I (2003) Expression and function of the non-neuronal cholinergic system in endothelial cells. Life Sci 72(18-19): 2111–2116. https://doi.org/10.1016/s0024-3205(03)00069-9

  157. Мусийчук ЮИ, Янно ЛВ (1988) К проблеме отдаленных последствий действия химических веществ у людей. Гигиена труда 8: 4–7. [Musiychuk YuI, Yanno LV (1988) On the problem of long-term effects of chemicals in humans. Gigiyena truda 8: 4–7. (In Russ)].

  158. Grigoryan H, Schopfer LM, Thompson CM, Terry AV, Masson P, Lockridge O (2008) Mass spectrometry identifies covalent binding of soman, sarin, chlorpyrifos oxon, diisopropyl fluorophosphate, and FP-biotin to tyrosines on tubulin: a potential mechanism of long-term toxicity by organophosphorus agents. Chem Biol Interact 175(1-3): 180–186. https://doi.org/10.1016/j.cbi.2008.04.013

  159. Stephens R, Spurgeon A, Calvert IA, Beach J, Levy LS, Berry H, Harrington JM (1995) Neuropsychological effects of long-term exposure to organophosphates in sheep dip. Lancet 345(8958): 1135–1139. https://doi.org/10.1016/s0140-6736(95)90976-1

  160. Terry AV Jr, Gearhart DA, Beck WD Jr, Truan JN, Middlemore ML, Williamson LN, Bartlett MG, Prendergast MA, Sickles DW, Buccafusco JJ (2007) Chronic, intermittent exposure to chlorpyrifos in rats: protracted effects on axonal transport, neurotrophin receptors, cholinergic markers, and information processing. J Pharmacol Exp Ther 322(3): 1117–1128. https://doi.org/10.1124/jpet.107.125625

  161. Durham SK, Imamura T (1988) Morphogenesis of O,O,S-trimethyl phosphorothioate-induced pulmonary injury in mice. Toxicol Appl Pharmacol 96(3): 417–428. https://doi.org/10.1016/0041-008x(88)90002-6

  162. Yıldırım E, Baydan E, Kanbur M, Kul O, Cınar M, Ekici H, Atmaca N (2013) The effect of chlorpyrifos on isolated thoracic aorta in rats. Biomed Res Int 2013: 376051. https://doi.org/10.1155/2013/376051

  163. Mindukshev IV, Ermolaeva EE, Vivulanets EV, Shabanova EYu, Petrishchev NN, Goncharov NV, Jenkins RO, Krivchenko AI (2005) A new method for studying platelets, based upon the low-angle light scattering technique. 2. Application of the method in experimental toxicology and clinical pathology. Spectroscopy 19(5-6): 247–257. https://doi.org/10.1155/2005/919317

  164. Goncharov N, Radilov A, Mindukshev I, Kuznetsov S, Yermolayeva Ye, Glashkina L, Shkayeva I, Dobrylko I, Kuznetsov A (2006) New Understanding on Pathogenesis of Delayed Effects of Rvx Low-Dose Chronic Exposure. In: Kolodkin VM, Ruck W (eds) Ecological Risks Associated with the Destruction of Chemical Weapons. NATO Security through Science Series. Springer. Dordrecht. 297–303. https://doi.org/10.1007/1-4020-3137-8_33

  165. Radilov A, Rembovskiy V, Rybalchenko I, Savelieva E, Podolskaya E, Babakov V, Ermolaeva E, Dulov S, Kuznetsov S, Mindukshev I, Shpak A, Krasnov I, Khlebnikova N, Jenkins R, Goncharov N (2009) Russian VX. In: Gupta R (ed) Handbook of the Toxicology of Chemical Warfare Agents. Elsevier Inc. Oxford. 69–91.

  166. Roumenina LT, Rayes J, Frimat M, Fremeaux-Bacchi V (2016) Endothelial cells: source, barrier, and target of defensive mediators. Immunol Rev 274(1): 307–329. https://doi.org/10.1111/imr.12479

  167. Odman S, Levitan H, Robinson PJ, Michel ME, Ask P, Rapoport SI (1987) Peripheral nerve as an osmometer: role of endoneurial capillaries in frog sciatic nerve. Am J Physiol 252(3 Pt 1): C335–C341. https://doi.org/10.1152/ajpcell.1987.252.3.C335

  168. Low PA (1984) Endoneurial fluid pressure and microenvironment of nerve. In: Dyck PJ, Thomas PK, Lambert EH, Bunge RP (eds) Peripheral Neuropathy. WB Saunders. Philadelphia. 599–618.

  169. Olsson Y (1984) Vascular permeability in the peripheral nervous system. In: Dyck PJ, Thomas PK, Lambert EH, Bunge RP (eds) Peripheral Neuropathy. WB Saunders. Philadelphia. 579–597.

  170. Lalu K, Lampelo S, Vanha-Perttula T (1986) Characterization of three aminopeptidases purified from maternal serum. Biochim Biophys Acta 873(2): 190–197. https://doi.org/10.1016/0167-4838(86)90045-2

  171. Favaloro EJ, Browning T, Facey D (1993) CD13 (GP150; aminopeptidase-N): predominant functional activity in blood is localized to plasma and is not cell-surface associated. Exp Hematol 21(13): 1695–1701.

  172. Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoslahti E (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60(3): 722–727.

  173. Bhagwat SV, Lahdenranta J, Giordano R, Arap W, Pasqualini R, Shapiro LH (2001) CD13/APN is activated by angiogenic signals and is essential for capillary tube formation. Blood 97(3): 652–659. https://doi.org/10.1182/blood.v97.3.652

  174. Bauvois B, Dauzonne D (2006) Aminopeptidase-N/CD13 (EC 3.4.11.2) inhibitors: chemistry, biological evaluations, and therapeutic prospects. Med Res Rev 26(1): 88–130. https://doi.org/10.1002/med.20044

  175. Staton CA, Brown NJ, Rodgers GR, Corke KP, Tazzyman S, Underwood JC, Lewis CE (2004) Alphastatin, a 24-amino acid fragment of human fibrinogen, is a potent new inhibitor of activated endothelial cells in vitro and in vivo. Blood 103(2): 601–606. https://doi.org/10.1182/blood-2003-07-2192

  176. van Hinsbergh VW, Engelse MA, Quax PH (2006) Pericellular proteases in angiogenesis and vasculogenesis. Arterioscler Thromb Vasc Biol 26(4): 716–728. https://doi.org/10.1161/01.ATV.0000209518.58252.17

  177. Deshpande LS, Blair RE, Phillips KF, DeLorenzo RJ (2016) Role of the calcium plateau in neuronal injury and behavioral morbidities following organophosphate intoxication. Ann N Y Acad Sci 1374(1): 176–183. https://doi.org/10.1111/nyas.13122

  178. Deshpande LS, DeLorenzo RJ (2020) Novel therapeutics for treating organophosphate-induced status epilepticus co-morbidities, based on changes in calcium homeostasis. Neurobiol Dis 133: 104418. https://doi.org/10.1016/j.nbd.2019.03.006

  179. Pearson JN, Patel M (2016) The role of oxidative stress in organophosphate and nerve agent toxicity. Ann N Y Acad Sci 1378(1): 17–24. https://doi.org/10.1111/nyas.13115

  180. Guignet M, Dhakal K, Flannery BM, Hobson BA, Zolkowska D, Dhir A, Bruun DA, Li S, Wahab A, Harvey DJ, Silverman JL, Rogawski MA, Lein PJ (2020) Persistent behavior deficits, neuroinflammation, and oxidative stress in a rat model of acute organophosphate intoxication. Neurobiol Dis 133: 104431. https://doi.org/10.1016/j.nbd.2019.03.019

  181. Rojas A, Ganesh T, Wang W, Wang J, Dingledine R (2020) A rat model of organophosphate-induced status epilepticus and the beneficial effects of EP2 receptor inhibition. Neurobiol Dis 133: 104399. https://doi.org/10.1016/j.nbd.2019.02.010

  182. Putra M, Sharma S, Gage M, Gasser G, Hinojo-Perez A, Olson A, Gregory-Flores A, Puttachary S, Wang C, Anantharam V, Thippeswamy T (2020) Inducible nitric oxide synthase inhibitor, 1400W, mitigates DFP-induced long-term neurotoxicity in the rat model. Neurobiol Dis 133: 104443. https://doi.org/10.1016/j.nbd.2019.03.031

  183. Iha HA, Kunisawa N, Shimizu S, Onishi M, Nomura Y, Matsubara N, Iwai C, Ogawa M, Hashimura M, Sato K, Kato M, Ohno Y (2019) Mechanism Underlying Organophosphate Paraoxon-Induced Kinetic Tremor. Neurotox Res 35(3): 575–583. https://doi.org/10.1007/s12640-019-0007-7

  184. Manek E, Petroianu GA (2021) Brain delivery of antidotes by polymeric nanoparticles. J Appl Toxicol 41(1): 20–32. https://doi.org/10.1002/jat.4029

  185. Zdarova Karasova J, Mzik M, Kucera T, Vecera Z, Kassa J, Sestak V (2020) Interaction of Cucurbit[7]uril with Oxime K027, Atropine, and Paraoxon: Risky or Advantageous Delivery System? Int J Mol Sci 21(21): 7883. https://doi.org/10.3390/ijms21217883

  186. Lagona J, Fettinger JC, Isaacs L (2005) Cucurbit[n]uril analogues: synthetic and mechanistic studies. J Org Chem 70(25): 10381–10392. https://doi.org/10.1021/jo051655r

  187. Licata C, Liu L, Mole D, Thorp J, Chand R, Chaulagain S (2019) Social and Cultural Factors Leading to Suicide Attempt via Organophosphate Poisoning in Nepal. Case Rep Psychiatry 2019: 7681309. https://doi.org/10.1155/2019/7681309

  188. Zhuang Q, Franjesevic AJ, Corrigan TS, Coldren WH, Dicken R, Sillart S, DeYong A, Yoshino N, Smith J, Fabry S, Fitzpatrick K, Blanton TG, Joseph J, Yoder RJ, McElroy CA, Ekici ÖD, Callam CS, Hadad CM (2018) Demonstration of In Vitro Resurrection of Aged Acetylcholinesterase after Exposure to Organophosphorus Chemical Nerve Agents. J Med Chem 61(16): 7034–7042. https://doi.org/10.1021/acs.jmedchem.7b01620

  189. Jackson C, Ardinger C, Winter KM, McDonough JH, McCarren HS (2019) Validating a model of benzodiazepine refractory nerve agent-induced status epilepticus by evaluating the anticonvulsant and neuroprotective effects of scopolamine, memantine, and phenobarbital. J Pharmacol Toxicol Methods 97: 1–12. https://doi.org/10.1016/j.vascn.2019.02.006

  190. Dorandeu F, Barbier L, Dhote F, Testylier G, Carpentier P (2013) Ketamine combinations for the field treatment of soman-induced self-sustaining status epilepticus. Review of current data and perspectives. Chem Biol Interact 203(1): 154–159. https://doi.org/10.1016/j.cbi.2012.09.013

  191. Niquet J, Baldwin R, Suchomelova L, Lumley L, Eavey R, Wasterlain CG (2017) Treatment of experimental status epilepticus with synergistic drug combinations. Epilepsia 58(4): e49–e53. https://doi.org/10.1111/epi.13695

  192. Krishnan JKS, Figueiredo TH, Moffett JR, Arun P, Appu AP, Puthillathu N, Braga MF, Flagg T, Namboodiri AM (2017) Brief isoflurane administration as a post-exposure treatment for organophosphate poisoning. Neurotoxicology 63: 84–89. https://doi.org/10.1016/j.neuro.2017.09.009

  193. Apland JP, Aroniadou-Anderjaska V, Figueiredo TH, De Araujo Furtado M, Braga MFM (2018) Full Protection Against Soman-Induced Seizures and Brain Damage by LY293558 and Caramiphen Combination Treatment in Adult Rats. Neurotox Res 34(3): 511–524. https://doi.org/10.1007/s12640-018-9907-1

  194. Aroniadou-Anderjaska V, Figueiredo TH, Apland JP, Braga MF (2019) Targeting the glutamatergic system to counteract organophosphate poisoning: A novel therapeutic strategy. Neurobiol Dis 2019: 104406. https://doi.org/10.1016/j.nbd.2019.02.017

  195. Dhir A, Bruun DA, Guignet M, Tsai YH, González E, Calsbeek J, Vu J, Saito N, Tancredi DJ, Harvey DJ, Lein PJ, Rogawski MA (2020) Allopregnanolone and perampanel as adjuncts to midazolam for treating diisopropylfluorophosphate-induced status epilepticus in rats. Ann N Y Acad Sci 1480(1): 183–206. https://doi.org/10.1111/nyas.14479

  196. Lumley L, Miller D, Muse WT, Marrero-Rosado B, de Araujo Furtado M, Stone M, McGuire J, Whalley C (2019) Neurosteroid and benzodiazepine combination therapy reduces status epilepticus and long-term effects of whole-body sarin exposure in rats. Epilepsia Open 4(3): 382–396. https://doi.org/10.1002/epi4.12344

  197. Giorgi FS, Pizzanelli C, Biagioni F, Murri L, Fornai F (2004) The role of norepinephrine in epilepsy: from the bench to the bedside. Neurosci Biobehav Rev 28(5): 507–524. https://doi.org/10.1016/j.neubiorev.2004.06.008

  198. Weinshenker D, Szot P (2002) The role of catecholamines in seizure susceptibility: new results using genetically engineered mice. Pharmacol Ther 94(3): 213–233. https://doi.org/10.1016/s0163-7258(02)00218-8

  199. Kuznetsov SV, Jenkins RO, Goncharov NV (2007) Electrophysiological study of infant and adult rats under acute intoxication with fluoroacetamide. J Appl Toxicol 27(6): 538–550. https://doi.org/10.1002/jat.1234

  200. Kuznetsov SV, Goncharov NV, Glashkina LM (2005) Change of Parameters of Functioning of the Cardiovascular and Respiratory Systems in Rats of Different Ages under Effects of Low Doses of the Cholinesterase Inhibitor Phosphacol. J Evol Biochem Phys 41: 201–210. https://doi.org/10.1007/s10893-005-0055-x

  201. Little JG, Bealer SL (2012) β adrenergic blockade prevents cardiac dysfunction following status epilepticus in rats. Epilepsy Res 99(3): 233–239. https://doi.org/10.1016/j.eplepsyres.2011.12.003

  202. McCarren HS, Arbutus JA, Ardinger C, Dunn EN, Jackson CE, McDonough JH (2018) Dexmedetomidine stops benzodiazepine-refractory nerve agent-induced status epilepticus. Epilepsy Res 141: 1–12. https://doi.org/10.1016/j.eplepsyres.2018.01.010

  203. Boggs JG, Marmarou A, Agnew JP, Morton LD, Towne AR, Waterhouse EJ, Pellock JM, DeLorenzo RJ (1998) Hemodynamic monitoring prior to and at the time of death in status epilepticus. Epilepsy Res 31(3): 199–209. https://doi.org/10.1016/s0920-1211(98)00031-x

  204. Rossi PR, Yusuf S, Ramsdale D, Furze L, Sleight P (1983) Reduction of ventricular arrhythmias by early intravenous atenolol in suspected acute myocardial infarction. Br Med J (Clin Res Ed) 286(6364): 506–510. https://doi.org/10.1136/bmj.286.6364.506

  205. Mangano DT, Layug EL, Wallace A, Tateo I (1996) Effect of atenolol on mortality and cardiovascular morbidity after noncardiac surgery. Multicenter Study of Perioperative Ischemia Research Group. N Engl J Med 335(23): 1713–1720. https://doi.org/10.1056/NEJM199612053352301

  206. Deshpande LS, Blair RE, Halquist M, Kosmider L, DeLorenzo RJ (2020) Intramuscular atenolol and levetiracetam reduce mortality in a rat model of paraoxon-induced status epilepticus. Ann N Y Acad Sci 1480(1): 219–232. https://doi.org/10.1111/nyas.14500

  207. el-Etri MM, Nickell WT, Ennis M, Skau KA, Shipley MT (1992) Brain norepinephrine reductions in soman-intoxicated rats: association with convulsions and AChE inhibition, time course, and relation to other monoamines. Exp Neurol 118(2): 153–163. https://doi.org/10.1016/0014-4886(92)90032-l

  208. Szot P, Weinshenker D, White SS, Robbins CA, Rust NC, Schwartzkroin PA, Palmiter RD (1999) Norepinephrine-deficient mice have increased susceptibility to seizure-inducing stimuli. J Neurosci 19(24): 10985–10992. https://doi.org/10.1523/JNEUROSCI.19-24-10985.1999

  209. Jimenez-Rivera C, Voltura A, Weiss GK (1987) Effect of locus ceruleus stimulation on the development of kindled seizures. Exp Neurol 95(1): 13–20. https://doi.org/10.1016/0014-4886(87)90002-1

  210. Giorgi FS, Ferrucci M, Lazzeri G, Pizzanelli C, Lenzi P, Alessandrl MG, Murri L, Fornai F (2003) A damage to locus coeruleus neurons converts sporadic seizures into self-sustaining limbic status epilepticus. Eur J Neurosci 17(12): 2593–2601. https://doi.org/10.1046/j.1460-9568.2003.02692.x

  211. Bealer SL, Little JG, Metcalf CS, Brewster AL, Anderson AE (2010) Autonomic and cellular mechanisms mediating detrimental cardiac effects of status epilepticus. Epilepsy Res 91(1): 66–73. https://doi.org/10.1016/j.eplepsyres.2010.06.013

  212. Read MI, McCann DM, Millen RN, Harrison JC, Kerr DS, Sammut IA (2015) Progressive development of cardiomyopathy following altered autonomic activity in status epilepticus. Am J Physiol Heart Circ Physiol 309(9): H1554–H1564. https://doi.org/10.1152/ajpheart.00256.2015

  213. Read MI, Harrison JC, Kerr DS, Sammut IA (2015) Atenolol offers better protection than clonidine against cardiac injury in kainic acid-induced status epilepticus. Br J Pharmacol 172(19): 4626–4638. https://doi.org/10.1111/bph.13132

  214. Deshpande LS, Phillips K, Huang B, DeLorenzo RJ (2014) Chronic behavioral and cognitive deficits in a rat survival model of paraoxon toxicity. Neurotoxicology 44: 352–357. https://doi.org/10.1016/j.neuro.2014.08.008

  215. Deshpande LS, Blair RE, Huang BA, Phillips KF, DeLorenzo RJ (2016) Pharmacological blockade of the calcium plateau provides neuroprotection following organophosphate paraoxon induced status epilepticus in rats. Neurotoxicol Teratol 56: 81–86. https://doi.org/10.1016/j.ntt.2016.05.002

  216. Kubasov IV, Arutyunyan RS, Matrosova EV (2016) Transformation of individual contractile responses during tetanus in rat fast and slow skeletal muscles. J Evol Biochem Phys 52: 46–55. https://doi.org/10.1134/S0022093016010051

  217. Kubasov IV, Arutyunyan RS, Matrosova EV, Kubasov II (2016) Properties of intratetanic individual contractile responses in rat slow skeletal muscles during modulation of sarcoplasmic reticulum Ca2+ release. J Evol Biochem Phys 52: 369–379. https://doi.org/10.1134/S002209301605006957

  218. Avila G, de la Rosa JA, Monsalvo-Villegas A, Montiel-Jaen MG (2019) Ca2+ Channels Mediate Bidirectional Signaling between Sarcolemma and Sarcoplasmic Reticulum in Muscle Cells. Cells 9(1): 55. https://doi.org/10.3390/cells9010055

  219. Woo JS, Jeong SY, Park JH, Choi JH, Lee EH (2020) Calsequestrin: a well-known but curious protein in skeletal muscle. Exp Mol Med 52(12): 1908–1925. https://doi.org/10.1038/s12276-020-00535-1

  220. Chaube R, Hess DT, Wang YJ, Plummer B, Sun QA, Laurita K, Stamler JS (2014) Regulation of the skeletal muscle ryanodine receptor/Ca2+-release channel RyR1 by S-palmitoylation. J Biol Chem 289(12): 8612–8619. https://doi.org/10.1074/jbc.M114.548925

  221. Lamboley CR, Wyckelsma VL, Dutka TL, McKenna MJ, Murphy RM, Lamb GD (2015) Contractile properties and sarcoplasmic reticulum calcium content in type I and type II skeletal muscle fibres in active aged humans. J Physiol 593(11): 2499–24514. https://doi.org/10.1113/JP270179

  222. Goldstein N, Goldstein R, Terterov D, Kamensky AA, Kovalev GI, Zolotarev YA, Avakyan GN, Terterov S (2012) Blood-brain barrier unlocked. Biochemistry (Mosc) 77(5): 419–424. https://doi.org/10.1134/S000629791205001X

  223. Rodríguez-Blanco J, Rodríguez-Yanez T, Rodríguez-Blanco JD, Almanza-Hurtado AJ, Martínez-Ávila MC, Borré-Naranjo D, Acuña Caballero MC, Dueñas-Castell C (2022) Neuromuscular blocking agents in the intensive care unit. J Int Med Res 50(9): 3000605221128148. https://doi.org/10.1177/03000605221128148

  224. Bracali AM, Sette MP, Marana E (1979) Risk and choice of anesthetics for patients with previous malignant hyperthermia syndrome. Minerva Anestesiol 45(10): 749–753. (In Italian).

  225. Ben Abraham R, Cahana A, Krivosic-Horber RM, Perel A (1997) Malignant hyperthermia susceptibility: anaesthetic implications and risk stratification. QJM 90(1): 13–18. https://doi.org/10.1093/qjmed/90.1.13

  226. Jönsson L, Häggendal J, Johansson G, Thorén-Tolling K, Bjurström S, Carlsten J (1989) Cardiac manifestation and blood catecholamine levels during succinylcholine-induced stress of malignant hyperthermia sensitive pigs. Zentralbl Veterinarmed A 36(10): 772–782. https://doi.org/10.1111/j.1439-0442.1989.tb00791.x

  227. Lopez RJ, Byrne S, Vukcevic M, Sekulic-Jablanovic M, Xu L, Brink M, Alamelu J, Voermans N, Snoeck M, Clement E, Muntoni F, Zhou H, Radunovic A, Mohammed S, Wraige E, Zorzato F, Treves S, Jungbluth H (2016) An RYR1 mutation associated with malignant hyperthermia is also associated with bleeding abnormalities. Sci Signal 9(435): ra68. https://doi.org/10.1126/scisignal.aad9813

  228. Riazi S, Kraeva N, Hopkins PM (2018) Malignant Hyperthermia in the Post-Genomics Era: New Perspectives on an Old Concept. Anesthesiology 128(1): 168–180. https://doi.org/10.1097/ALN.0000000000001878

  229. Ochi G, Watanabe K, Tokuoka H, Hatakenaka S, Arai T (1995) Neuroleptic malignant-like syndrome: a complication of acute organophosphate poisoning. Can J Anaesth 42(11): 1027–1030. https://doi.org/10.1007/BF03011077

  230. Moffatt A, Mohammed F, Eddleston M, Azher S, Eyer P, Buckley NA (2010) Hypothermia and Fever after organophosphorus poisoning in humans–a prospective case series. J Med Toxicol 6(4): 379–385. https://doi.org/10.1007/s13181-010-0012-y

  231. Talaie H, Owliaey H, Pajoumand A, Gholaminejad M, Mehrpour O (2012) Temperature changes among organophosphate poisoned patients, Tehran- Iran. Daru 20(1): 52. https://doi.org/10.1186/2008-2231-20-52

  232. Tanii H, Taniguchi N, Niigawa H, Hosono T, Ikura Y, Sakamoto S, Kudo T, Nishimura T, Takeda M (1996) Development of an animal model for neuroleptic malignant syndrome: heat-exposed rabbits with haloperidol and atropine administration exhibit increased muscle activity, hyperthermia, and high serum creatine phosphokinase level. Brain Res 743(1-2): 263–270. https://doi.org/10.1016/s0006-8993(96)01059-1

  233. Oruch R, Pryme IF, Engelsen BA, Lund A (2017) Neuroleptic malignant syndrome: an easily overlooked neurologic emergency. Neuropsychiatr Dis Treat 13: 161–175. https://doi.org/10.2147/NDT.S118438

  234. Lynch BA, Lambeng N, Nocka K, Kensel-Hammes P, Bajjalieh SM, Matagne A, Fuks B (2004) The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc Natl Acad Sci U S A 101(26): 9861-9866. https://doi.org/10.1073/pnas.0308208101

  235. Lee CY, Chen CC, Liou HH (2009) Levetiracetam inhibits glutamate transmission through presynaptic P/Q-type calcium channels on the granule cells of the dentate gyrus. Br J Pharmacol 158(7): 1753–1762. https://doi.org/10.1111/j.1476-5381.2009.00463.x

  236. Nagarkatti N, Deshpande LS, DeLorenzo RJ (2008) Levetiracetam inhibits both ryanodine and IP3 receptor activated calcium induced calcium release in hippocampal neurons in culture. Neurosci Lett 436(3): 289–293. https://doi.org/10.1016/j.neulet.2008.02.076

  237. Fukuyama K, Tanahashi S, Nakagawa M, Yamamura S, Motomura E, Shiroyama T, Tanii H, Okada M (2012) Levetiracetam inhibits neurotransmitter release associated with CICR. Neurosci Lett 518(2): 69–74. https://doi.org/10.1016/j.neulet.2012.03.056

  238. Farizatto KLG, Bahr BA (2017) Paraoxon: An Anticholinesterase That Triggers an Excitotoxic Cascade of Oxidative Stress, Adhesion Responses, and Synaptic Compromise. Eur Sci J 13: 29–37. https://doi.org/10.19044/esj.2017.c1p4

  239. Kumar S, Agrawal S, Raisinghani N, Khan S (2018) Leukocyte count: A reliable marker for the severity of organophosphate intoxication? J Lab Physicians 10(2): 185–188. https://doi.org/10.4103/JLP.JLP_100_17

  240. Davies NM (1995) Toxicity of nonsteroidal anti-inflammatory drugs in the large intestine. Dis Colon Rectum 38(12): 1311–1321. https://doi.org/10.1007/BF02049158

  241. Kaufmann WE, Worley PF, Pegg J, Bremer M, Isakson P (1996) COX-2, a synaptically induced enzyme, is expressed by excitatory neurons at postsynaptic sites in rat cerebral cortex. Proc Natl Acad Sci U S A 93(6): 2317–2321. https://doi.org/10.1073/pnas.93.6.2317

  242. Liu C, Li Y, Lein PJ, Ford BD (2012) Spatiotemporal patterns of GFAP upregulation in rat brain following acute intoxication with diisopropylfluorophosphate (DFP). Curr Neurobiol 3(2): 90–97.

  243. Jiang J, Quan Y, Ganesh T, Pouliot WA, Dudek FE, Dingledine R (2013) Inhibition of the prostaglandin receptor EP2 following status epilepticus reduces delayed mortality and brain inflammation. Proc Natl Acad Sci U S A 110(9): 3591–3596. https://doi.org/10.1073/pnas.1218498110

  244. Serrano GE, Lelutiu N, Rojas A, Cochi S, Shaw R, Makinson CD, Wang D, FitzGerald GA, Dingledine R (2011) Ablation of cyclooxygenase-2 in forebrain neurons is neuroprotective and dampens brain inflammation after status epilepticus. J Neurosci 31(42): 14850–14860. https://doi.org/10.1523/JNEUROSCI.3922-11.2011

  245. Varvel NH, Neher JJ, Bosch A, Wang W, Ransohoff RM, Miller RJ, Dingledine R (2016) Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus. Proc Natl Acad Sci U S A 113(38): E5665–5674. https://doi.org/10.1073/pnas.1604263113

  246. Chapman S, Grauer E, Gez R, Egoz I, Lazar S (2019) Time dependent dual effect of anti-inflammatory treatments on sarin-induced brain inflammation: Suggested role of prostaglandins. Neurotoxicology 74: 19–27. https://doi.org/10.1016/j.neuro.2019.05.006

  247. Figueiredo TH, Apland JP, Braga MFM, Marini AM (2018) Acute and long-term consequences of exposure to organophosphate nerve agents in humans. Epilepsia 59 Suppl 2(Suppl 2): 92–99. https://doi.org/10.1111/epi.14500

  248. Stewart JD, Horvath R, Baruffini E, Ferrero I, Bulst S, Watkins PB, Fontana RJ, Day CP, Chinnery PF (2010) Polymerase γ gene POLG determines the risk of sodium valproate-induced liver toxicity. Hepatology 52(5): 1791–1796. https://doi.org/10.1002/hep.23891

  249. Rojas A, Wang W, Glover A, Manji Z, Fu Y, Dingledine R (2018) Beneficial Outcome of Urethane Treatment Following Status Epilepticus in a Rat Organophosphorus Toxicity Model. eNeuro 5(2): ENEURO.0070-18.2018. https://doi.org/10.1523/ENEURO.0070-18.2018

  250. Li B, Sedlacek M, Manoharan I, Boopathy R, Duysen EG, Masson P, Lockridge O (2005) Butyrylcholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma. Biochem Pharmacol 70(11): 1673–1684. https://doi.org/10.1016/j.bcp.2005.09.002

  251. Duysen EG, Cashman JR, Schopfer LM, Nachon F, Masson P, Lockridge O (2012) Differential sensitivity of plasma carboxylesterase-null mice to parathion, chlorpyrifos and chlorpyrifos oxon, but not to diazinon, dichlorvos, diisopropylfluorophosphate, cresyl saligenin phosphate, cyclosarin thiocholine, tabun thiocholine, and carbofuran. Chem Biol Interact 195(3): 189–198. https://doi.org/10.1016/j.cbi.2011.12.006

  252. Flannery BM, Bruun DA, Rowland DJ, Banks CN, Austin AT, Kukis DL, Li Y, Ford BD, Tancredi DJ, Silverman JL, Cherry SR, Lein PJ (2016) Persistent neuroinflammation and cognitive impairment in a rat model of acute diisopropylfluorophosphate intoxication. J Neuroinflammat 13(1): 267. https://doi.org/10.1186/s12974-016-0744-y

  253. Goncharov NV, Terpilowski MA, Shmurak VI, Belinskaia DA, Avdonin PV (2019) The Rat (Rattus norvegicus) as a Model Object for Acute Organophosphate Poisoning. 1. Biochemical Aspects. J Evol Biochem Physiol 55: 112–123. https://doi.org/10.1134/S0022093019020042

  254. Гончаров НВ (2018) Разработка эффективных средств профилактики, терапии и предупреждения отставленных последствий отравления фосфорорганическими соединениями. Отчет о НИР № 16-15-00199. Росс научн фонд. Москва. [Goncharov NV (2018) Development of effective means of prevention, therapy and prevention of delayed consequences of organophosphorus poisoning. Report of Research No. 16-15-00199. Russ Sci Found. Moscow. (In Russ)].

  255. Chauhan B, Kumar G, Kalam N, Ansari SH (2013) Current concepts and prospects of herbal nutraceutical: A review. J Adv Pharm Technol Res 4(1): 4–8. https://doi.org/10.4103/2231-4040.107494

  256. Abedin MM, Chourasia R, Phukon LC, Sarkar P, Ray RC, Singh SP, Rai AK (2023) Lactic acid bacteria in the functional food industry: biotechnological properties and potential applications. Crit Rev Food Sci Nutr 2023: 1–19. https://doi.org/10.1080/10408398.2023.2227896

  257. Baciu AM, Opris RV, Filip GA, Florea A (2023) Effects of Phytochemicals from Fermented Food Sources in Alzheimer’s Disease In Vivo Experimental Models: A Systematic Review. Foods 12(11): 2102. https://doi.org/10.3390/foods12112102

  258. Avci B, Bilge SS, Arslan G, Alici O, Darakci O, Baratzada T, Ciftcioglu E, Yardan T, Bozkurt A (2018) Protective effects of dietary omega-3 fatty acid supplementation on organophosphate poisoning. Toxicol Ind Health 34(2): 69–82. https://doi.org/10.1177/0748233717737646

  259. Mukherjee S, Mukherjee N, Saini P, Roy P, Babu SP (2015) Ginger extract ameliorates phosphamidon induced hepatotoxicity. Indian J Exp Biol 53(9): 574–584.

  260. Oyagbemi AA, Omobowale TO, Ochigbo GO, Asenuga ER, Ola-Davies OE, Ajibade TO, Saba AB, Adedapo AA (2018) Polyphenol-Rich Fraction of Parquetina nigrescens Mitigates Dichlorvos-Induced Cardiorenal Dysfunction Through Reduction in Cardiac Nitrotyrosine and Renal p38 Expressions in Wistar Rats. J Diet Suppl 15(3): 269–284. https://doi.org/10.1080/19390211.2017.1336148

  261. Sinha S, Du Z, Maiti P, Klärner FG, Schrader T, Wang C, Bitan G (2012) Comparison of three amyloid assembly inhibitors: the sugar scyllo-inositol, the polyphenol epigallocatechin gallate, and the molecular tweezer CLR01. ACS Chem Neurosci 3(6): 451–458. https://doi.org/10.1021/cn200133x

  262. Goncharov N, Maevsky E, Voitenko N, Novozhilov A, Kubasov I, Jenkins R, Avdonin P (2016) Nutraceuticals in sports activities and fatigue In: Gupta RC (ed) Nutraceuticals: Efficacy, Safety and Toxicity. Acad Press/Elsevier. Amsterdam. 177–188.

  263. Гончаров НВ, Уколов АИ, Орлова ТИ, Мигаловская ЕД, Войтенко НГ (2015) Метаболомика: на пути интеграции биохимии, аналитической химии, информатики. Успехи соврем биол 135(1): 317. [Goncharov NV, Ukolov AI, Orlova TI, Migalovskaia ED, Voitenko NG (2015) Metabolomics: on the Way to Integration of Biochemistry, Analytical Chemistry, and Informatics. Uspekhi Sovrem Biol 135(1): 3–17. (In Russ)].

  264. Шмурак ВИ, Курдюков ИД, Надеев АД, Войтенко НГ, Глашкина ЛМ, Гончаров НВ (2012) Биохимические маркеры интоксикации фосфорорганическими отравляющими веществами. Токс Вестн 2012(4): 30–34. [Shmurak VI, Kurdyukov ID, Nadeyev AD, Voytenko NG, Glashkina LM, Goncharov NV (2012) Biochemical markers of intoxication with organophosphorus poisonous substances. Toks Vestn 2012(4): 30–34. (In Russ)].

  265. Черепахина НЕ, Табаксоева ДА, Marshall T, Агиров ММ, Abe H, Rose N, Шогенов ЗС, Martin FL, Cotter P, Ehrlich GD, Покровский ВИ, Hutfless S, Маев ИВ, Yamada Y, Сучков СВ (2015) Постинфекционный аутоиммунный синдром как комбинаторный биомаркер хронических заболеваний инфекционной этиологии и аутоиммунной природы. Аллергол и иммунол 6(2): 206–209. [Cherepakhina NE, Tabaksoeva DA, Marshall T, Agirov MM, Abe H, Rose N, Shogenov ZS, Martin FL, Cotter P, Ehrlich GD, Pokrovsky VI, Hutfless S, Maev IV, Yamada Y, Suchkov SV (2015) Post-infectious autoimmune syndrome as a combinatorial biomarker of chronic diseases of infectious etiology and autoimmune nature. Allergol i immunol 6(2): 206–209. (In Russ)].

  266. Goncharov NV, Terpilowski MA, Kudryavtsev IV, Serebryakova MK, Belinskaia DA, Sobolev VE, Shmurak VI, Korf EA, Avdonin PV (2019) The Rat (Rattus norvegicus) as a Model Object for Acute Organophosphate Poisoning. 2. A System Analysis of the Efficacy of Green Tea Extract in Preventing Delayed Effects of Poisoning. J Evol Biochem Physiol 55: 208–221. https://doi.org/10.1134/S0022093019030062

  267. Terpilowski MA, Korf EA, Jenkins RO, Goncharov NV (2018) An algorithm for deriving combinatorial biomarkers based on ridge regression. J Bioinform Genom 2018: 1–6. https://doi.org/10.18454/jbg.2018.1.6.2

  268. Habert R, Livera G, Rouiller-Fabre V (2014) Man is not a big rat: concerns with traditional human risk assessment of phthalates based on their anti-androgenic effects observed in the rat foetus. Basic Clin Androl 24: 14. https://doi.org/10.1186/2051-4190-24-14

  269. Terekhov SS, Smirnov IV, Shamborant OG, Bobik TV, Ilyushin DG, Murashev AN, Dyachenko IA, Palikov VA, Knorre VD, Belogurov AA, Ponomarenko NA, Kuzina ES, Genkin DD, Masson P, Gabibov AG (2015) Chemical Polysialylation and In Vivo Tetramerization Improve Pharmacokinetic Characteristics of Recombinant Human Butyrylcholinesterase-Based Bioscavengers. Acta Naturae 7(4): 136–141.

  270. Masson P, Lushchekina SV (2016) Emergence of catalytic bioscavengers against organophosphorus agents. Chem Biol Interact 259(Pt B): 319–326. https://doi.org/10.1016/j.cbi.2016.02.010

  271. Pashirova TN, Bogdanov A, Masson P (2021) Therapeutic nanoreactors for detoxification of xenobiotics: Concepts, challenges and biotechnological trends with special emphasis to organophosphate bioscavenging. Chem Biol Interact 346: 109577. https://doi.org/10.1016/j.cbi.2021.109577

  272. Kirby SD, Norris JR, Richard Smith J, Bahnson BJ, Cerasoli DM (2013) Human paraoxonase double mutants hydrolyze V and G class organophosphorus nerve agents. Chem Biol Interact 203(1): 181–185. https://doi.org/10.1016/j.cbi.2012.10.023

  273. Lushchekina SV, Schopfer LM, Grigorenko BL, Nemukhin AV, Varfolomeev SD, Lockridge O, Masson P (2018) Optimization of Cholinesterase-Based Catalytic Bioscavengers Against Organophosphorus Agents. Front Pharmacol 9: 211. https://doi.org/10.3389/fphar.2018.00211

  274. Ku TH, Zhang T, Luo H, Yen TM, Chen PW, Han Y, Lo YH (2015) Nucleic Acid Aptamers: An Emerging Tool for Biotechnology and Biomedical Sensing. Sensors (Basel) 15(7): 16281–16313. https://doi.org/10.3390/s150716281

  275. Zhang C, Wang L, Tu Z, Sun X, He Q, Lei Z, Xu C, Liu Y, Zhang X, Yang J, Liu X, Xu Y (2014) Organophosphorus pesticides detection using broad-specific single-stranded DNA based fluorescence polarization aptamer assay. Biosens Bioelectron 55: 216–219. https://doi.org/10.1016/j.bios.2013.12.020

  276. Belinskaia DA, Avdonin PV, Avdonin PP, Jenkins RO, Goncharov NV (2019) Rational in silico design of aptamers for organophosphates based on the example of paraoxon. Comput Biol Chem 80: 452–462. https://doi.org/10.1016/j.compbiolchem.2019.05.004

  277. Czerwinski SE, Skvorak JP, Maxwell DM, Lenz DE, Baskin SI (2006) Effect of octanol:water partition coefficients of organophosphorus compounds on biodistribution and percutaneous toxicity. J Biochem Mol Toxicol 20(5): 241–246. https://doi.org/10.1002/jbt.20140

  278. Shih ML, McMonagle JD, Dolzine TW, Gresham VC (1994) Metabolite pharmacokinetics of soman, sarin and GF in rats and biological monitoring of exposure to toxic organophosphorus agents. J Appl Toxicol 14(3): 195–199. https://doi.org/10.1002/jat.2550140309

  279. Корягина НЛ, Савельева ЕИ, Прокофьева ДС, Хлебникова НС, Каракашев ГВ, Уколова ЕС, Радилов АС, Гончаров НВ (2017) Особенности токсикокинетики метаболитов фосфорорганических отравляющих веществ G-типа в биологических жидкостях крыс при использовании антидотной терапии. Токс вестн 2017(3): 8–16. [Koryagina NL, Savelyeva EI, Prokofieva DS, Khlebnikova NS, Karakashev GV, Ukolova ES, Radilov AS, Goncharov NV (2015) Features of the toxicokinetics of metabolites of G-type organophosphorus poisonous substances in biological fluids of rats when using antidote therapy. Toks Vestn 2017(3): 8–16. (In Russ)].

  280. Goncharov NV, Belinskaia DA, Shmurak VI, Terpilowski MA, Jenkins RO, Avdonin PV (2017) Serum Albumin Binding and Esterase Activity: Mechanistic Interactions with Organophosphates. Molecules 22(7): 1201. https://doi.org/10.3390/molecules22071201

  281. Pohanka M (2014) Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity. Int J Mol Sci 15(6): 9809–9825. https://doi.org/10.3390/ijms15069809

  282. Чепур СВ (2010) Отдаленные органофосфатные нейропатии: патогенез, профилактика и лечение. Токс вестн 2010(3): 42–43. [Chepur SV (2010) Delayed organophosphate neuropathies: pathogenesis, prevention and treatment. Toks Vestn 2010(3): 42–43. (In Russ)].

  283. Шефер ТВ, Рейнюк ВЛ, Ивницкий ЮЮ (2011) Роль гипераммониемии в формировании летального исхода острой интоксикации циклофосфаном у крыс. Токс вестн 2011(3): 33–36. [Shefer TV, Reynyuk VL, Ivnitskiy YuYu (2011) [The role of hyperammonemia in the formation of lethal outcome of acute cyclophosphamide intoxication in rats. Toks Vestn 2011(3): 33–36. (In Russ)].

  284. Goncharov NV, Jenkins RO, Radilov AS (2006) Toxicology of fluoroacetate: a review, with possible directions for therapy research. J Appl Toxicol 26(2): 148–161. https://doi.org/10.1002/jat.1118

  285. Sobolev VE, Jenkins RO, Goncharov NV (2017) Sulfated glycosaminoglycans in bladder tissue and urine of rats after acute exposure to paraoxon and cyclophosphamide. Exp Toxicol Pathol 69(6): 339–347. https://doi.org/10.1016/j.etp.2017.02.007

  286. Grivennikova VG, Cecchini G, Vinogradov AD (2008) Ammonium-dependent hydrogen peroxide production by mitochondria. FEBS Lett 582(18): 2719–2724. https://doi.org/10.1016/j.febslet.2008.06.054

  287. Гончаров НВ, Белинская ДА, Авдонин ПВ (2021) Антидотная и адъювантная терапия при остром отравлении органофосфатами Часть 4: поиск новых сочетаний. В: Бережнов АВ, Зинченко ВП (ред) Рецепторы и внутриклеточная сигнализация. Том 2. Пущинск научн центр биол исследов Рос акад наук. Пущино. 642–647. [Goncharov NV, Belinskaya DA, Avdonin PV (2021) Antidote and adjuvant therapy in acute organophosphate poisoning Part 4: search for new combinations. In: Berezhnov AV, Zinchenko VP (eds) Receptors and intracellular signaling. Vol 2. Pushchinsk Scientific Center for Biol Research of the Russ Acad of Sci Pushchino. 642–647. (In Russ)].

  288. Aharon MA, Prittie JE, Buriko K (2017) A review of associated controversies surrounding glucocorticoid use in veterinary emergency and critical care. J Vet Emerg Crit Care (San Antonio) 27(3): 267–277. https://doi.org/10.1111/vec.12603

  289. Marik PE (2018) Hydrocortisone, Ascorbic Acid and Thiamine (HAT Therapy) for the Treatment of Sepsis. Focus on Ascorbic Acid. Nutrients 10(11): 1762. https://doi.org/10.3390/nu10111762

  290. Wang H, Tang W, Ristagno G, Li Y, Sun S, Wang T, Weil MH (2009) The potential mechanisms of reduced incidence of ventricular fibrillation as the presenting rhythm in sudden cardiac arrest. Crit Care Med 37(1): 26–31. https://doi.org/10.1097/CCM.0b013e3181928914

  291. Gong X, Zhou R, Li Q (2018) Effects of captopril and valsartan on ventricular remodeling and inflammatory cytokines after interventional therapy for AMI. Exp Ther Med 16(4): 3579–3583. https://doi.org/10.3892/etm.2018.6626

  292. Rice TW, Wheeler AP, Bernard GR, Vincent JL, Angus DC, Aikawa N, Demeyer I, Sainati S, Amlot N, Cao C, Ii M, Matsuda H, Mouri K, Cohen J (2010) A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis. Crit Care Med 38(8): 1685–1694. https://doi.org/10.1097/CCM.0b013e3181e7c5c9

  293. Hussey SE, Liang H, Costford SR, Klip A, DeFronzo RA, Sanchez-Avila A, Ely B, Musi N (2012) TAK-242, a small-molecule inhibitor of Toll-like receptor 4 signalling, unveils similarities and differences in lipopolysaccharide- and lipid-induced inflammation and insulin resistance in muscle cells. Biosci Rep 33(1): 37–47. https://doi.org/10.1042/BSR20120098

Дополнительные материалы отсутствуют.