Российский физиологический журнал им. И.М. Сеченова, 2023, T. 109, № 10, стр. 1331-1348

Молекулярные механизмы действия вальпроевой кислоты на сигнальные системы и функционирование мозга

А. Н. Турсунов 1, Д. С. Васильев 2*, Н. Н. Наливаева 2**

1 Санкт-Петербургский государственный университет
Санкт-Петербург, Россия

2 Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН
Санкт-Петербург, Россия

* E-mail: dvasilyev@bk.ru
** E-mail: natalia.nalivaeva@outlook.com

Поступила в редакцию 23.06.2023
После доработки 09.09.2023
Принята к публикации 22.09.2023

Аннотация

Вальпроевая кислота (вальпроат, ВА) уже несколько десятилетий широко используется как противоэпилептическое средство, а также в лечении биполярного аффективного расстройства. На протяжении многих лет способность ВА купировать эпилептические приступы разного характера связывали с усилением ГАМКергической нейротрансмиссии, угнетением глутаматергической нейротрансмиссии и общим снижением гиперактивности ЦНС путем воздействия на ионные каналы, однако точные механизмы реализации противосудорожного эффекта ВА до сих пор не ясны. С течением времени стало известно о влиянии ВА на другие нейромедиаторные системы, ферменты и внутриклеточные сигнальные пути, что, однако, не объясняет эффективность препарата в качестве антиконвульсанта и нормотимика, а лишь расширяет его фармакологический профиль. За последние 10 лет фокус интереса к ВА сместился в связи с его способностью изменять экспрессию генов как путем ингибирования деацетилаз гистонов, так и изменением уровня метилирования ДНК, и новые исследования скорее раскрывают альтернативные механизмы его действия, чем пытаются проверить и подтвердить ранее выдвинутые гипотезы.

Ключевые слова: вальпроевая кислота, эпилепсия, депрессия, расстройства аффективного спектра, регуляция экспрессии генов, ингибитор деацетилаз гистонов, нейропротекция

Список литературы

  1. Burton BS (1882) On the propyl derivatives and decomposition products of ethylacetoacetate. Am Chem J 3: 385–395.

  2. Tomson T, Battino D, Perucca E (2016) The remarkable story of valproic acid. Lancet Neurol 15: 141. https://doi.org/10.1016/S1474-4422(15)00398-1

  3. Bialer M, Yagen B (2007) Valproic Acid: Second Generation. Neurotherapeutics 4: 130–137. https://doi.org/10.1016/j.nurt.2006.11.007

  4. Chiu CT, Wang Z, Hunsberger JG, Chuang DM. (2013) Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol Rev 65: 105–142. https://doi.org/10.1124/pr.111.005512

  5. Shahien R, Saleh SA, Bowirrat A (2011) Intravenous sodium valproate aborts migraine headaches rapidly. Acta Neurol Scand 123: 257–265. https://doi.org/10.1111/j.1600-0404.2010.01394.x

  6. Rosenberg G (2007) The mechanisms of action of valproate in neuropsychiatric disorders: can we see the forest for the trees? Cell Mol Life Sci 64: 2090–2103. https://doi.org/10.1007/s00018-007-7079-x

  7. Lima IVA, Almeida-Santos AF, Ferreira-Vieira TH, Aguiar DC, Ribeiro FM, Campos AC, de Oliveira ACP (2017) Antidepressant-like effect of valproic acid-Possible involvement of PI3K/Akt/mTOR pathway. Behav Brain Res 329: 166–171. https://doi.org/10.1016/j.bbr.2017.04.015

  8. Tomson T, Battino D, Perucca E (2016) Valproic acid after five decades of use in epilepsy: time to reconsider the indications of a time-honoured drug. Lancet Neurol 15: 210–218. https://doi.org/10.1016/s1474-4422(15)00314-2

  9. Hirsch E, Genton P (2003) Antiepileptic Drug-Induced Pharmacodynamic Aggravation of Seizures. CNS Drugs 17: 633–640. https://doi.org/10.2165/00023210-200317090-00003

  10. Gayatri NA, Livingston JH (2006) Aggravation of epilepsy by anti-epileptic drugs. Dev Med Child Neurol 48: 394–398. https://doi.org/10.1017/S0012162206000843

  11. Göttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, Heinzel T (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20: 6969–6978. https://doi.org/.1093/emboj/20.24.6969

  12. Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276: 36734–36741. https://doi.org/10.1074/jbc.M101287200

  13. Nalivaeva NN, Belyaev ND, Turner AJ (2009) Sodium valproate: an old drug with new roles. Trends Pharmacol Sci 30: 509–514. https://doi.org/10.1016/j.tips.2009.07.002

  14. Methaneethorn J (2018) A systematic review of population pharmacokinetics of valproic acid. Br J Clin Pharmacol 84: 816–834. https://doi.org/10.1111/bcp.13510

  15. Ghodke-Puranik Y, Thorn CF, Lamba JK, Leeder JS, Song W, Birnbaum AK, Altman RB, Klein TE (2013) Valproic acid pathway: pharmacokinetics and pharmacodynamics. Pharmacogenet Genomics 23: 236–241. https://doi.org/10.1097/FPC.0b013e32835ea0b2

  16. Löscher W, Vetter M (1984) Relationship between drug-induced increases of GABA levels in discrete brain areas and different pharmacological effects in rats. Biochem Pharmacol 33: 1907–1914. https://doi.org/10.1016/0006-2952(84)90546-x

  17. Bolanos JP, Medina JM (1993) Evidence of stimulation of the γ-aminobutyric acid shunt by valproate and E-Δ2-valproate in neonatal rat brain. Mol Pharmacol 43: 487–490.

  18. Ueda Y, Willmore LJ (2000) Molecular regulation of glutamate and GABA transporter proteins by valproic acid in rat hippocampus during epileptogenesis. Exp Brain Res 133: 334–339. https://doi.org/10.1007/s002210000443

  19. Hariton C, Ciesielski L, Simler S, Valli M, Jadot G, Gobaille S, Mesdjian E, Mandel P (1984) Distribution of sodium valproate and GABA metabolism in CNS of the rat. Biopharm Drug Dispos 5: 409–414. https://doi.org/10.1002/bdd.2510050412

  20. Löscher W, Hönack D, Gramer M (1999) Effect of depth electrode implantation with or without subsequent kindling on GABA turnover in various rat brain regions. Epilepsy Res 37: 95–108. https://doi.org/10.1016/s0920-1211(99)00038-8

  21. van der Laan JW, de Boer T, Bruinvels J (1979) D-n-propylacetate and GABA degradation. Preferential inhibition of succinic semialdehyde dehydrogenase and indirect inhibition of GABA-transaminase. J Neurochem 32: 1769–1780. https://doi.org/10.1111/j.1471-4159.1979.tb02290.x

  22. Whittle SR, Turner AJ (1982) Effects of anticonvulsants on the formation of gamma-hydroxybutyrate from gamma-aminobutyrate in rat brain. J Neurochem 38: 848–851. https://doi.org/10.1111/j.1471-4159.1982.tb08710.x

  23. Larsson OM, Gram L, Schusboe I, Schousboe A (1986) Differential effect of gamma-vinyl GABA and valproate on GABA-transaminase from cultured neurones and astrocytes. Neuropharmacology 25: 617–625. https://doi.org/10.1016/0028-3908(86)90214-5

  24. Lee HHC, McGinty GE, Pearl PL, Rotenberg A (2022) Understanding the Molecular Mechanisms of Succinic Semialdehyde Dehydrogenase Deficiency (SSADHD): Towards the Development of SSADH-Targeted Medicine. Int J Mol Sci 23: 2606. https://doi.org/10.3390/ijms23052606

  25. Löscher W (1999) Valproate: a reappraisal of its pharmacodynamic properties and mechanisms of action. Prog Neurobiol 58: 31–59. https://doi.org/10.1016/s0301-0082(98)00075-6

  26. Petroff OA, Rothman DL, Behar KL, Hyder F, Mattson RH (1999) Effects of valproate and other antiepileptic drugs on brain glutamate, glutamine, and GABA in patients with refractory complex partial seizures. Seizure 8: 120–127. https://doi.org/10.1053/seiz.1999.0267

  27. O’Donnell T, Rotzinger S, Ulrich M, Hanstock CC, Nakashima TT, Silverstone PH (2003) Effects of chronic lithium and sodium valproate on concentrations of brain amino acids. Eur Neuropsychopharmacol 13: 220–227. https://doi.org/10.1016/s0924-977x(03)00070-1

  28. Romoli M, Mazzocchetti P, D’Alonzo R, Siliquini S, Rinaldi VE, Verrotti A, Calabresi P, Costa C (2019) Valproic Acid and Epilepsy: From Molecular Mechanisms to Clinical Evidences. Curr Neuropharmacol 17: 926–946. https://doi.org/10.2174/1570159X17666181227165722

  29. Johannessen CU, Johannessen SI (2003) Valproate: Past, Present, and Future. CNS Drug Rev 9: 199–216. https://doi.org/10.1111/j.1527-3458.2003.tb00249.x

  30. Laeng P, Pitts RL, Lemire AL, Drabik CE, Weiner A, Tang H, Thyagarajan R, Mallon BS, Altar CA (2004). The mood stabilizer valproic acid stimulates GABA neurogenesis from rat forebrain stem cells. J Neurochem 91: 238–251. https://doi.org/10.1111/j.1471-4159.2004.02725.x

  31. Gao J, Luo Y, Lu Y, Wu X, Chen P, Zhang X, Han L, Qiu M, Shen W (2022) Epigenetic regulation of GABAergic differentiation in the developing brain. Front Cell Neurosci 23: 988732. https://doi.org/10.3389/fncel.2022.988732

  32. Kim JE, Kim DS, Kwak SE, Choi HC, Song HK, Choi SY, Kwon OS, Kim YI, Kang TC (2007) Anti-glutamatergic effect of riluzole: comparison with valproic acid. Neuroscience 147: 136–145. https://doi.org/10.1016/j.neuroscience.2007.04.018

  33. Zou X, Zhu Z, Guo Y, Zhang H, Liu Y, Cui Z, Ke Z, Jiang S, Tong Y, Wu Z, Mao Y, Chen L, Wang D (2022) Neural excitatory rebound induced by valproic acid may predict its inadequate control of seizures. EBioMedicine 83: 104218. https://doi.org/10.1016/j.ebiom.2022.104218

  34. Gobbi G, Janiri L (2006) Sodium- and magnesium-valproate in vivo modulate glutamatergic and GABAergic synapses in the medial prefrontal cortex. Psychopharmacology 185: 255–262. https://doi.org/10.1007/s00213-006-0317-3

  35. Ko GY, Brown-Croyts LM, Teyler TJ (1997) The effects of anticonvulsant drugs on NMDA-EPSP, AMPA-EPSP, and GABA-IPSP in the rat hippocampus. Brain Res Bull 42: 297–302. https://doi.org/10.1016/s0361-9230(96)00268-7

  36. Zeise ML, Kasparow S, Zieglgänsberger W (1991) Valproate suppresses N-methyl-D-aspartate-evoked, transient depolarizations in the rat neocortex in vitro. Brain Res 544: 345–348. https://doi.org/10.1016/0006-8993(91)90078-a

  37. Gean PW, Huang CC, Hung CR, Tsai JJ (1994) Valproic acid suppresses the synaptic response mediated by the NMDA receptors in rat amygdalar slices. Brain Res Bull 33: 333–336. https://doi.org/10.1016/0361-9230(94)90202-x

  38. Du J, Gray NA, Falke CA, Chen W, Yuan P, Szabo ST, Einat H, Manji HK (2004) Modulation of synaptic plasticity by antimanic agents: the role of AMPA glutamate receptor subunit 1 synaptic expression. J Neurosci 24: 6578–6589.https://doi.org/10.1523/JNEUROSCI.1258-04.2004

  39. Gray NA, Du J, Falke CS, Yuan P, Manji HK (2003) Lithium Regulates Total and Synaptic Expression of the AMPA Glutamate Receptor GluR2 in Vitro and in Vivo. Ann N Y Acad Sci 1003: 402–404.https://doi.org/10.1196/annals.1300.036

  40. Du J, Quiroz J, Yuan P, Zarate C, Manji H (2004) Bipolar disorder: involvement of signaling cascades and AMPA receptor trafficking at synapses. Neuron Glia Biol 1: 231–243. https://doi.org/10.1017/S1740925X05000098

  41. Mehta MV, Gandal MJ, Siegel SJ (2011) mGluR5-antagonist mediated reversal of elevated stereotyped, repetitive behaviors in the VPA model of autism. PLoS One 6: e26077. https://doi.org/10.1371/journal.pone.0026077

  42. Wu HF, Lu TY, Chu MC, Chen PS, Lee CW, Lin HC (2020) Targeting the inhibition of fatty acid amide hydrolase ameliorate the endocannabinoid-mediated synaptic dysfunction in a valproic acid-induced rat model of Autism. Neuropharmacology 162: 107736. https://doi.org/10.1016/j.neuropharm.2019.107736

  43. Kuo HY, Liu FC (2018) Molecular pathology and pharmacological treatment of autism spectrum disorder-like phenotypes using rodent models. Front Cell Neurosci 12: 422. https://doi.org/10.3389/fncel.2018.00422

  44. Basselin M, Chang L, Chen M, Bell JM, Rapoport SI (2008) Chronic administration of valproic acid reduces brain NMDA signaling via arachidonic acid in unanesthetized rats. Neurochem Res 33: 2229–2240. https://doi.org/10.1007/s11064-008-9700-2

  45. Chateauvieux S, Morceau F, Dicato M, Diederich M (2010) Molecular and therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol 2010: 479364. https://doi.org/10.1155/2010/479364

  46. Shaltiel G, Shamir A, Shapiro J, Ding D, Dalton E, Bialer M, Harwood AJ, Belmaker RH, Greenberg ML, Agam G (2004) Valproate decreases inositol biosynthesis. Biol Psychiatry 56: 868–874. https://doi.org/10.1016/j.biopsych.2004.08.027

  47. Vaden DL, Ding D, Peterson B, Greenberg ML (2001) Lithium and valproate decrease inositol mass and increase expression of the yeast INO1 and INO2 genes for inositol biosynthesis. J Biol Chem 276: 15466–15471. https://doi.org/10.1074/jbc.M004179200

  48. Ju S, Shaltiel G, Shamir A, Agam G, Greenberg ML (2004) Human 1-D-myo-Inositol-3-phosphate Synthase Is Functional in Yeast. J Biol Chem 279: 21759–21765. https://doi.org/10.1074/jbc.M312078200

  49. Murray M, Greenberg ML (2000) Expression of yeast INM1 encoding inositol monophosphatase is regulated by inositol, carbon source and growth stage and is decreased by lithium and valproate. Mol Microbiol 36: 651–661. https://doi.org/10.1046/j.1365-2958.2000.01886.x

  50. Berridge MJ (2016) The Inositol Trisphosphate/Calcium Signaling Pathway in Health and Disease. Physiol Rev 96: 1261–1296. https://doi.org/10.1152/physrev.00006.2016

  51. Silverstone PH, McGrath BM, Kim H (2005) Bipolar disorder and myo-inositol: a review of the magnetic resonance spectroscopy findings. Bipolar Disord 7: 1–10. https://doi.org/10.1111/j.1399-5618.2004.00174.x

  52. Williams RS, Cheng L, Mudge AW, Harwood AJ (2002) A common mechanism of action for three mood-stabilizing drugs. Nature 417: 292–295. https://doi.org/10.1038/417292a

  53. Eickholt BJ, Towers GJ, Ryves WJ, Eikel D, Adley K, Ylinen LM, Chadborn NH, Harwood AJ, Nau H, Williams RS (2005) Effects of valproic acid derivatives on inositol trisphosphate depletion, teratogenicity, glycogen synthase kinase-3β inhibition, and viral replication: a screening approach for new bipolar disorder drugs derived from the valproic acid core structure. Mol Pharmacol 67: 1426–1433. https://doi.org/10.1124/mol.104.009308

  54. Cheng L, Lumb M, Polgár L, Mudge AW (2005) How can the mood stabilizer VPA limit both mania and depression? Mol Cell Neurosci 29: 155–161. https://doi.org/10.1016/j.mcn.2004.12.003

  55. Wolfson M, Bersudsky Y, Zinger E, Simkin M, Belmaker RH, Hertz L (2000) Chronic treatment of human astrocytoma cells with lithium, carbamazepine or valproic acid decreases inositol uptake at high inositol concentrations but increases it at low inositol concentrations. Brain Res 855: 158–161. https://doi.org/10.1016/s0006-8993(99)02371-9

  56. Yu W, Greenberg ML (2016) Inositol depletion, GSK3 inhibition and bipolar disorder. Future Neurol 11: 135–148. https://doi.org/10.2217/fnl-2016-0003

  57. Boku S, Nakagawa S, Toda H, Hishimoto A (2018) Neural basis of major depressive disorder: Beyond monoamine hypothesis. Psychiatry Clin Neurosci 72: 3–12. https://doi.org/10.1111/pcn.1260445

  58. Meshki Baf MH, Subhash MN, Lakshmana KM, Rao BS (1994) Sodium valproate induced alterations in monoamine levels in different regions of the rat brain. Neurochem Int 24: 67–72. https://doi.org/10.1016/0197-0186(94)90130-9

  59. Fisar Z, Hroudová J, Raboch J (2010) Inhibition of monoamine oxidase activity by antidepressants and mood stabilizers. Neuro Endocrinol Lett 31: 645–656. PMID: 21200377

  60. Wu JB, Shih JC (2011) Valproic acid induces monoamine oxidase A via Akt/Forkhead box O1 activation. Mol Pharmacol 80: 714–723. https://doi.org/10.1124/mol.111.072744

  61. Narita N, Kato M, Tazoe M, Miyazaki K, Narita M, Okado N (2002) Increased Monoamine Concentration in the Brain and Blood of Fetal Thalidomide- and Valproic Acid–Exposed Rat: Putative Animal Models for Autism. Pediatr Res 52: 576–579. https://doi.org/10.1203/00006450-200210000-00018

  62. Qiu HM, Yang JX, Jiang XH, Hu XY, Liu D, Zhou QX (2015) Enhancing tyrosine hydroxylase and tryptophan hydroxylase expression and improving oxidative stress involved in the antidepressant effect of sodium valproate on rats undergoing chronic unpredicted stress. Neuroreport 26: 1145–1150. https://doi.org/10.1097/WNR.0000000000000482

  63. Sands SA, Guerra V, Morilak DA (2000) Changes in tyrosine hydroxylase mRNA expression in the rat locus coeruleus following acute or chronic treatment with valproic acid. Neuropsychopharmacology 22: 27–35. https://doi.org/10.1016/S0893-133X(99)00072-X

  64. Lee S, Jeong J, Park YU, Kwak Y, Lee SA, Lee H, Son H, Park SK (2012) Valproate alters dopamine signaling in association with induction of Par-4 protein expression. PLoS One 7: e45618. https://doi.org/10.1371/journal.pone.0045618

  65. Park SK, Nguyen MD, Fischer A, Luke MP, Affarel B, Dieffenbach PB, Tseng HC, Shi Y, Tsai LH (2005) Par-4 links dopamine signaling and depression. Cell 122: 275–287. https://doi.org/10.1016/j.cell.2005.05.031

  66. Glantz LA, Gilmore JH, Overstreet DH, Salimi K, Lieberman JA, Jarskog LF (2010) Pro-apoptotic Par-4 and dopamine D2 receptor in temporal cortex in schizophrenia, bipolar disorder and major depression. Schizophr Res 118: 292–299. https://doi.org/10.1016/j.schres.2009.12.027

  67. Large CH, Kalinichev M, Lucas A, Carignani C, Bradford A, Garbati N, Sartori Austin NE, Ruffo A, Jones DNC, Alvaro G, Read KD (2009) The relationship between sodium channel inhibition and anticonvulsant activity in a model of generalised seizure in the rat. Epilepsy Res 85: 96–106. https://doi.org/10.1016/j.eplepsyres.2009.02.018

  68. Zanatta G, Sula A, Miles AJ, Ng LCT, Torella R, Pryde DC, DeCaen PG, Wallace BA (2019) Valproic acid interactions with the NavMs voltage-gated sodium channel. Proc Natl Acad Sci U S A 116: 26549–26554. https://doi.org/10.1073/pnas.1909696116

  69. Mantegazza M, Curia G, Biagini G, Ragsdale DS, Avoli M (2010) Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol 9: 413–424. https://doi.org/10.1016/S1474-4422(10)70059-4

  70. Yamamoto R, Yanagita T, Kobayashi H, Yokoo H, Wada A (1997) Up-regulation of sodium channel subunit mRNAs and their cell surface expression by antiepileptic valproic acid: activation of calcium channel and catecholamine secretion in adrenal chromaffin cells. J Neurochem 68: 1655–1662. https://doi.org/10.1046/j.1471-4159.1997.68041655.x

  71. Albus H, Williamson R (1998) Electrophysiologic analysis of the actions of valproate on pyramidal neurons in the rat hippocampal slice. Epilepsia 39: 124–139. https://doi.org/10.1111/j.1528-1157.1998.tb01350.x

  72. Bagnéris C, DeCaen PG, Naylor CE, Pryde DC, Nobeli I, Clapham DE, Wallace BA (2014) Prokaryotic NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism. Proc Natl Acad Sci U S A 111: 8428–8433. https://doi.org/10.1073/pnas.1406855111

  73. Kelly KM, Gross RA, Macdonald RL (1990) Valproic acid selectively reduces the low-threshold (T) calcium current in rat nodose neurons. Neurosci Lett 116: 233–238. https://doi.org/10.1016/0304-3940(90)90416-7

  74. Coulter DA, Huguenard JR, Prince DA (1989) Characterization of ethosuximide reduction of low-threshold calcium current in thalamic neurons. Ann Neurol 25: 582–593. https://doi.org/10.1002/ana.410250610

  75. Tan NN, Tang HL, Lin GW, Chen YH, Lu P, Li HJ, Gao MM, Zhao QH, Yi YH, Liao WP, Long YS (2017) Epigenetic Downregulation of Scn3a Expression by Valproate: a Possible Role in Its Anticonvulsant Activity. Mol Neurobiol 54: 2831–2842. https://doi.org/10.1007/s12035-016-9871-9

  76. Tseng PT, Chen YW, Chung W, Tu KY, Wang HY, Wu CK, Lin PY (2016) Significant Effect of Valproate Augmentation Therapy in Patients With Schizophrenia: A Meta-analysis Study. Medicine (Baltimore) 95: e2475. https://doi.org/10.1097/MD.0000000000002475

  77. Nayak R, Rosh I, Kustanovich I, Stern S (2021) Mood Stabilizers in Psychiatric Disorders and Mechanisms Learnt from In Vitro Model Systems. Int J Mol Sci 22: 9315. https://doi.org/10.3390/ijms22179315

  78. Qiu HM, Yang JX, Jiang XH, Hu XY, Liu D, Zhou QX (2015) Enhancing tyrosine hydroxylase and tryptophan hydroxylase expression and improving oxidative stress involved in the antidepressant effect of sodium valproate on rats undergoing chronic unpredicted stress. Neuroreport 26: 1145–1150. https://doi.org/10.1097/WNR.0000000000000482

  79. Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry 35: 676–692. https://doi.org/10.1016/j.pnpbp.2010.05.004

  80. Cárdenas-Rodríguez N, Coballase-Urrutia E, Rivera-Espinosa L, Romero-Toledo A, Sampieri A 3rd, Ortega-Cuellar D, Montesinos-Correa H, Floriano-Sánchez E, Carmona-Aparicio L (2013) Modulation of antioxidant enzymatic activities by certain antiepileptic drugs (valproic acid, oxcarbazepine, and topiramate): evidence in humans and experimental models. Oxid Med Cell Longev 2013: 598493. https://doi.org/10.1155/2013/598493

  81. Beltrán-Sarmiento E, Arregoitia-Sarabia CK, Floriano-Sánchez E, Sandoval-Pacheco R, Galván-Hernández DE, Coballase-Urrutia E, Carmona-Aparicio L, Ramos-Reyna E, Rodríguez-Silverio J, Cárdenas-Rodríguez N (2018) Effects of Valproate Monotherapy on the Oxidant-Antioxidant Status in Mexican Epileptic Children: A Longitudinal Study. Oxid Med Cell Longev 2018: 7954371. https://doi.org/10.1155/2018/7954371

  82. Akindele AJ, Otuguor E, Singh D, Ota D, Benebo AS (2015) Hypoglycemic, antilipidemic and antioxidant effects of valproic acid in alloxan-induced diabetic rats. Eur J Pharmacol 762: 174–183. https://doi.org/10.1016/j.ejphar.2015.05.044

  83. Khan S, Kumar S, Jena G (2016) Valproic acid reduces insulin-resistance, fat deposition and FOXO1-mediated gluconeogenesis in type-2 diabetic rat. Biochimie 125: 42–52. https://doi.org/10.1016/j.biochi.2016.02.014

  84. Rakitin A (2017) Does Valproic Acid Have Potential in the Treatment of Diabetes Mellitus? Front Endocrinol (Lausanne) 8: 147. https://doi.org/10.3389/fendo.2017.00147

  85. Bourin M (2020) Mechanism of Action of Valproic Acid and Its Derivatives. SOJ Pharm Sci 7: 1–4. https://doi.org/10.15226/2374-6866/7/1/00199

  86. Valvasori SS, Gava FF, Dal-Pont GC, Simoes HL, Damiani-Neves M, Andersen ML, Boeck CR, Quevedo J (2019) Effects of lithium and valproate on ERK/ JNK signaling pathway in an animal model of mania induced by amphetamine. Heliyon 5: e01541. https://doi.org/10.1016/j.heliyon.2019.e01541

  87. Hao Y, Creson T, Zhang L, Li P, Du F, Yuan P, Gould TD, Manji HK, Chen G (2004) Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J Neurosci 24: 6590–6599. https://doi.org/10.1523/JNEUROSCI.5747-03.2004

  88. Lee JG, Woo YS, Park SW, Seog DH, Seo MK, Bahk WM (2022) Neuromolecular Etiology of Bipolar Disorder: Possible Therapeutic Targets of Mood Stabilizers. Clin Psychopharmacol Neurosci 20: 228–239. https://doi.org/10.9758/cpn.2022.20.2.228

  89. Boeckeler K, Adley K, Xu X, Jenkins A, Jin T, Williams RS (2006) The neuroprotective agent, valproic acid, regulates the mitogen-activated protein kinase pathway through modulation of protein kinase A signaling in Dictyosteliumdiscoideum. Eur J Cell Biol 85: 1047–1057. https://doi.org/10.1016/j.ejcb.2006.04.013

  90. Muneer A (2017) Wnt and GSK3 Signaling Pathways in Bipolar Disorder: Clinical and Therapeutic Implications. Clin Psychopharmacol Neurosci 15: 100–114. https://doi.org/10.9758/cpn.2017.15.2.100

  91. Jonathan RW, Dalton EC, Harwood AJ, Williams RS (2005) GSK- 3 activity in neocortical cells is inhibited by lithium but not carbamazepine or valproic acid. Bipolar Disord 7: 260–265. https://doi.org/10.1111/j.1399-5618.2005.00194.x

  92. Li X, Liu M, Cai Z, Wang G, Li X (2010) Regulation of glycogen synthase kinase-3 during bipolar mania treatment. Bipolar Disord 12: 741–752. https://doi.org/10.1111/j.1399-5618.2010.00866.x

  93. Fukuchi M, Nii T, Ishimaru N, Minamino A, Hara D, Takasaki I, Tabuchi A, Tsuda M (2009) Valproic acid induces up- or down-regulation of gene expression responsible for the neuronal excitation and inhibition in rat cortical neurons through its epigenetic actions. Neurosci Res 65: 35–43. https://doi.org/10.1016/j.neures.2009.05.002

  94. Kim SA, Jang EH, Lee J, Cho SH (2023) Neonatal Exposure to Valproate Induces Long-Term Alterations in Steroid Hormone Levels in the Brain Cortex of Prepubertal Rats. Int J Mol Sci 24: 6681. https://doi.org/10.3390/ijms24076681

  95. Felisbino MB, Ziemann M, Khurana I, Okabe J, Al-Hasani K, Maxwell S, Harikrishnan KN, de Oliveira CBM, Mello MLS, El-Osta A (2021) Valproic acid influences the expression of genes implicated with hyperglycaemia-induced complement and coagulation pathways. Sci Rep 11: 2163. https://doi.org/10.1038/s41598-021-81794-4

  96. Guerra M, Medici V, Weatheritt R, Corvino V, Palacios D, Geloso MC, Farini D, Sette C (2023) Fetal exposure to valproic acid dysregulates the expression of autism-linked genes in the developing cerebellum. Transl Psychiatry 13: 114. https://doi.org/10.1038/s41398-023-02391-9

  97. Arafat EA, Shabaan DA (2019) The possible neuroprotective role of grape seed extract on the histopathological changes of the cerebellar cortex of rats prenatally exposed to Valproic Acid: Animal model of autism. Acta Histochem 121: 841–851. https://doi.org/10.1016/j.acthis.2019.08.002

  98. Chen J, Lei L, Tian L, Hou F, Roper C, Ge X, Zhao Y, Chen Y, Dong Q, Tanguay RL, Huang C (2018) Developmental and behavioral alterations in zebrafish embryonically exposed to valproic acid (VPA): An aquatic model for autism. Neurotoxicol Teratol 66: 8–16. https://doi.org/10.1016/j.ntt.2018.01.002

  99. Gervain J, Vines BW, Chen LM, Seo RJ, Hensch TK, Werker JF, Young AH (2013) Valproate reopens critical-period learning of absolute pitch. Front Syst Neurosci 27: 102. https://doi.org/10.3389/fnsys.2013.00102

  100. Chen PS, Peng GS, Li G, Yang S, Wu X, Wang CC, Wilson B. Lu RB, Gean PW. Chuang DM, Hong JS (2006) Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes. Mol Psychiatry 1: 1116–1125. https://doi.org/10.1038/sj.mp.4001893

  101. Mello MLS (2021) Sodium Valproate-Induced Chromatin Remodeling. Front Cell Dev Biol 9: 645518. https://doi.org/10.3389/fcell.2021.645518

  102. Veronezi GM, Felisbino MB, Gatti MS, Mello ML, Vidal BC (2017) DNA Methylation Changes in Valproic Acid-Treated HeLa Cells as Assessed by Image Analysis, Immunofluorescence and Vibrational Microspectroscopy. PLoS One 12: e0170740. https://doi.org/10.1371/journal.pone.0170740

  103. Detich N, Bovenzi V, Szyf M (2003) Valproate induces replication-independent active DNA demethylation. J Biol Chem 278: 27586–27592. https://doi.org/10.1074/jbc.M303740200

  104. Zhang Z, Convertini P, Shen M, Xu X, Lemoine F, de la Grange P, Andres DA, Stamm S (2013) Valproic acid causes proteasomal degradation of DICER and influences miRNA expression. PLoS One 8: e82895. https://doi.org/10.1371/journal.pone.0082895

  105. Lloyd KA (2013) A scientific review: mechanisms of valproate-mediated teratogenesis. Bioscience Horizons: Int J Stud Res 6: hzt003. https://doi.org/10.1093/biohorizons/hzt003

  106. Chen G, Yuan PX, Jiang YM, Huang LD, Manji HK (1999) Valproate robustly enhances AP-1 mediated gene expression. Brain Res Mol Brain Res 64: 52–58. https://doi.org/10.1016/s0169-328x(98)00303-9

  107. Belyaev ND, Nalivaeva NN, Makova NZ, Turner AJ (2009) Neprilysin gene expression requires binding of the amyloid precursor protein intracellular domain to its promoter: implications for Alzheimer disease. EMBO Rep 10: 94–100. https://doi.org/10.1038/embor.2008.222

  108. Qing H, He G, Ly PT, Fox CJ, Staufenbiel M, Cai F, Zhang Z, Wei S, Sun X, Chen C-H, Zhou W, Wang K, Song W (2008) Valproic acid inhibits Aβ production, neuritic plaque formation, and behavioral deficits in Alzheimer’s disease mouse models. J Exp Med 205: 2781–2789. https://doi.org/10.1084/jem.20081588

  109. Appleby BS, Cummings JL (2013) Discovering new treatments for Alzheimer’s disease by repurposing approved medications. Curr Top Med Chem 13: 2306–2327. https://doi.org/10.2174/15680266113136660162

  110. Zhang C, Sun L, Sun H (2022) Effects of magnesium valproate adjuvant therapy on patients with dementia: A systematic review and meta-analysis. Medicine (Baltimore) 101: e29642. https://doi.org/10.1097/MD.0000000000029642

  111. Lynch DG, Narayan RK, Li C (2023) Multi-Mechanistic Approaches to the Treatment of Traumatic Brain Injury: A Review. J Clin Med 12: 2179. https://doi.org/10.3390/jcm12062179

  112. Yi J, Zhang L, Tang B, Han W, Zhou Y, Chen Z, Jia D, Jiang H. (2013) Sodium Valproate Alleviates Neurodegeneration in SCA3/MJD via Suppressing Apoptosis and Rescuing the Hypoacetylation Levels of Histone H3 and H4. PLoS One 8: e54792. https://doi.org/10.1371/journal.pone.0054792

  113. Nalivaeva NN, Zhuravin IA, Turner AJ (2020) Neprilysin expression and functions in development, ageing and disease. Mech Ageing Dev 192: 111363. https://doi.org/10.1016/j.mad.2020.111363

  114. Vasilev DS, Dubrovskaya NM, Zhuravin IA, Nalivaeva NN (2021) Developmental Profle of Brain Neprilysin Expression Correlates with Olfactory Behaviour of Rats. J Mol Neurosci 71: 1772–1785. https://doi.org/10.1007/s12031-020-01786-3

  115. Nalivaeva NN, Belyaev ND, Lewis DI, Pickles AR, Makova NZ, Bagrova DI, Dubrovskaya NM, Plesneva SA, Zhuravin IA, Turner AJ (2012) Effect of sodium valproate administration on brain neprilysin expression and memory in rats. J Mol Neurosci 46: 569–577. https://doi.org/10.1007/s12031-011-9644-x

  116. Наливаева НН, Васильев ДС, Дубровская НМ, Turner AJ, Журавин ИА (2020) Роль неприлизина в синаптической пластичности и памяти. Рос физиол журн им ИМ Сеченова 106: 1191–1208. [Nalivaeva NN, Vasiliev DS, Dubrovskaya NM, Turner AJ, Zhuravin IA (2020) Role of Neprilysin in Synaptic Plasticity and Memory. Russ J Physiol 106: 1191–1208. (In Russ)]. https://doi.org/10.31857/S0869813920100076

  117. Marr RA, Hafez DM (2014) Amyloid-β and Alzheimer’s disease: the role of neprilysin-2 in amyloid-β clearance. Front Aging Neurosci 6: 187. https://doi.org/10.3389/fnagi.2014.00187

  118. Nalivaeva NN, Turner AJ (2019) Targeting amyloid clearance in Alzheimer’s disease as a therapeutic strategy. Br J Pharmacol 176: 3447–3463. https://doi.org/10.1111/bph.14593

  119. Andreu S, Ripa I, Bello-Morales R, López-Guerrero JA (2020) Valproic Acid and Its Amidic Derivatives as New Antivirals against Alphaherpesviruses. Viruses 12: 1356. https://doi.org/10.3390/v12121356

  120. Soria-Castro R, Schcolnik-Cabrera A, Rodríguez-López G, Campillo-Navarro M, Puebla-Osorio N, Estrada-Parra S, Estrada-García I, Chacón-Salinas R, Chávez-Blanco AD (2019) Exploring the Drug Repurposing Versatility of Valproic Acid as a Multifunctional Regulator of Innate and Adaptive Immune Cells. J Immunol Res 2019: 9678098. https://doi.org/10.1155/2019/9678098

Дополнительные материалы отсутствуют.