Российский физиологический журнал им. И.М. Сеченова, 2023, T. 109, № 10, стр. 1457-1475

Сравнение влияния содержания крыс в горах и на равнине на развитие стрептозотоцин-индуцированного диабета и язвообразование в желудке

Т. Т. Подвигина 1*, О. П. Комкова 1, О. В. Ветровой 12, Н. И. Ярушкина 1, Л. П. Филаретова 1

1 Институт физиологии им. И.П. Павлова РАН
Санкт-Петербург, Россия

2 Санкт-Петербургский государственный университет
Санкт-Петербург, Россия

* E-mail: podviginatt@infran.ru

Поступила в редакцию 13.08.2023
После доработки 17.09.2023
Принята к публикации 19.09.2023

Аннотация

Гипоксия может корректировать развитие диабета и его осложнений у животных и человека, а диабет усугубляет язвообразование в желудке. Однако влияние гипоксии на язвообразование в желудке при диабете остается неизвестным. Задача работы состояла в сравнении влияния содержания крыс в горах при умеренной естественной гипоксии и на равнине на развитие диабета 1-го типа и язвообразование в желудке. Через 2 нед. после акклиматизиции крыс к гипоксии (Приэльбрусье, 2125 м над уровнем моря) им вводили стрептозотоцин (СТР, 50 или 70 мг/кг) или его растворитель. Одновременно крыс на равнине инъецировали СТР (или растворителем) в тех же дозах. Спустя 2 нед. на фоне 24-часового голодания крысам как в горах, так и на равнине, вводили индометацин (35 мг/кг), что приводило к образованию эрозий в слизистой оболочке желудка через 4 ч. Введение СТР (50 и 70 мг/кг) вызывало дозозависимое увеличение уровня глюкозы в крови у крыс как в горах, так и на равнине, что свидетельствует о развитии диабета разной степени тяжести. У крыс на равнине введение СТР (50 и 70 мг/кг) приводило к дозозависимому увеличению площади эрозий, индуцированных индометацином, по сравнению с контрольными животными (растворитель СТР). У крыс в горах наблюдалось усугубление повреждений слизистой оболочки желудка, вызванное индометацином, как у контрольных крыс (растворитель СТР), так и у животных со СТР-индуцированным диабетом по сравнению с повреждениями у крыс соответствующих групп на равнине. Наибольшее усиление проульцерогенного действия СТР в горах наблюдалось при его введении в дозе 70 мг/кг. Таким образом, постоянная умеренная гипоксия может приводить к усилению язвообразования в желудке, вызванного индометацином, у крыс с диабетом 1-го типа, и кроме того, сама по себе усугублять ульцерогенное действие индометацина.

Ключевые слова: горы, гипоксия, равнина, стрептозотоцин, диабет, индометацин, эрозии желудка, крысы

Список литературы

  1. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, Pavkov ME, Ramachandaran A, Wild SH, James S, Herman WH, Zhang P, Bommer C, Kuo S, Boyko EJ, Magliano DJ (2022) IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 183. https://doi.org/10.1016/J.DIABRES.2021.109119

  2. Дедов ИИ, Шестакова МВ, Викулова ОК, Железнякова АВ, Исаков МА, Сазонова ДВ, Мокрышева НГ (2023) Сахарный диабет в Российской Федерации: динамика эпидемиологических показателей по данным Федерального регистра сахарного диабета за период 2010–2022 гг. Сахарный диабет 26(2): 104–123. [Dedov II, Shestakova MV, Vikulova OK, Zheleznyakova AV, Isakov MA, Sazonova DV, Mokrysheva NG (2023) Diabetes mellitus in the Russian Federation: dynamics of epidemiological indicators according to the Federal Register of Diabetes Mellitus for the period 2010–2022. Diabetes mellitus 26(2): 104–123. (In Russ)]. https://doi.org/10.14341/DM13035

  3. Reynolds L, Luo Z, Singh K (2023) Diabetic complications and prospective immunotherapy. Front Immunol 14: 1219598. https://doi.org/10.3389/FIMMU.2023.1219598

  4. Mahmood T, Fahim MF, Ahsan S, Qidwai U, Memon MS (2023) Ocular Complications Associated With Diabetes And The Risk Of Sustainable Blindness; A Real World Analysis. J Pak Med Assoc 73: 1453–1456. https://doi.org/10.47391/JPMA.8001

  5. Vučić Lovrenčić M, Božičević S, Smirčić Duvnjak L (2023) Diagnostic challenges of diabetic kidney disease. Biochem Med 33(3): 030501. https://doi.org/10.11613/BM.2023.030501

  6. Mosenzon O, Cheng AYY, Rabinstein AA, Sacco S (2023) Diabetes and Stroke: What Are the Connections? J Stroke 25: 26–38. https://doi.org/10.5853/JOS.2022.02306

  7. Armstrong DG, Tan T-W, Boulton AJM, Bus SA (2023) Diabetic Foot Ulcers: A Review. JAMA 330: 62. https://doi.org/10.1001/JAMA.2023.10578

  8. Home P (2021) The evolution of insulin therapy. Diabetes Res Clin Pract 175: 108816. https://doi.org/10.1016/J.DIABRES.2021.108816

  9. Phadtare P, Patil D, Desai S (2023) Nanotechnology: Newer Approach in Insulin Therapy. Pharm Nanotechnol 11: 3–9. https://doi.org/10.2174/2211738510666220928111142

  10. Sakurai T, Kubota S, Kato T, Yabe D (2023) Advances in insulin therapy from discovery to βрcell replacement. J Diabetes Investig 14: 15–18. https://doi.org/10.1111/JDI.13902

  11. Захарова ИО, Баюнова ЛВ, Деркач КВ, Илясов ИО., Шпаков АО, Аврова НФ (2022) Влияние интраназально вводимых инсулина и ганглиозидов на метаболические показатели и активность инсулиновой системы в печени крыс с сахарным диабетом 2-го типа. Журн эвол биохим физиол 58(2): 141–154. [Zakharova IO, Bayunova LV, Derkach KV, Ilyasov IO, Shpakov AO, Avrova NF (2022) Influence of intranasally insulin and gangliosides on metabolic parameters and of activity of the insulin system in the liver of rats with type 2 diabetes. J Evol Biochem Physiol 58(2): 141–154. (In Russ)].

  12. Деркач КВ, Бахтюков АА, Басова НЕ, Бондарева ВМ, Шпаков АО (2022) Интраназально вводимый инсулин, но не С-пептид проинсулина, нормализует гормональные показатели и экспрессию гипоталамических генов у самцов крыс с диабетом 2-го типа и ожирением. Интеграт физиол 3(1): 41–57. [Derkach KV, Bakhtyukov AA, Basova NE, Bondareva VM, Shpakov AO (2022) Intranasally insured insulin, but not proinsulin C-peptide, normalizes hormonal parameters and expression of hypothalamic genes in male rats with type 2 diabetes and obesity. Integrat Physiol 3(1): 41–57. (In Russ)]. https://doi.org/10.33910/2687-1270-2022-3-1-41-57

  13. Shpakov AO, Zorina II, Derkach KV (2023) Hot Spots for the Use of Intranasal Insulin: Cerebral Ischemia, Brain Injury, Diabetes Mellitus, Endocrine Disorders and Postoperative Delirium. Int J Mol Sci 24(4): 3278. https://doi.org/10.3390/IJMS24043278

  14. Chuzho N, Mishra N, Tandon N, Kumar N (2023) Therapies for Type 1 Diabetes: Is a Cure Possible? Curr Diabetes Rev 19(7): e021222211565. https://doi.org/10.2174/1573399819666221202161259

  15. Li Y, He C, Liu R, Xiao Z, Sun B (2023) Stem cells therapy for diabetes: from past to future. Cytotherapy S1465-S3249(23)00129-9. https://doi.org/10.1016/J.JCYT.2023.04.012

  16. Geng L, Lam KSL, Xu A (2020) The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat Rev Endocrinol 16: 654–667. https://doi.org/10.1038/S41574-020-0386-0

  17. Bazhan NM, Jakovleva TV, Kazantseva AY, Kostina NE, Orlov PE, Balybina NY, Baranov KO, Makarova EN (2023) Studying sex differences in responses to fibroblast growth factor 21 administration in obese mice consuming a sweet-fat diet. Vavilov Zhurn Genet Selekt 27: 333–341. https://doi.org/10.18699/VJGB-23-40

  18. Podvigina T, Yarushkina NI, Filaretova LP (2022) Effects of Running on the Development of Diabetes and Diabetes-Induced Complications. J Evol Biochem Physiol 58(1): 174–192. https://doi.org/10.31857/S0869813922020078

  19. Zaharieva DP, Riddell MC (2023) Advances in Exercise and Nutrition as Therapy in Diabetes. Diabetes Technol Ther 25: S146–S160. https://doi.org/10.1089/DIA.2023.2509

  20. Ota H, Fujita Y, Yamauchi M, Muro S, Kimura H, Takasawa S (2019) Relationship Between Intermittent Hypoxia and Type 2 Diabetes in Sleep Apnea Syndrome. Int J Mol Sci 20(19): 4756. https://doi.org/10.3390/IJMS20194756

  21. Kindlovits R, Pereira AMDS, Sousa AC, Viana JL, Teixeira VH (2022) Effects of Acute and Chronic Exercise in Hypoxia on Cardiovascular and Glycemic Parameters in Patients with Type 2 Diabetes: A Systematic Review. High Alt Med Biol 23: 301–312. https://doi.org/10.1089/HAM.2022.0029

  22. Serebrovska TV, Portnychenko AG, Drevytska TI, Portnichenko VI, Xi L, Egorov E, Gavalko A V., Naskalova S, Chizhova V, Shatylo VB (2017) Intermittent hypoxia training in prediabetes patients: Beneficial effects on glucose homeostasis, hypoxia tolerance and gene expression. Exp Biol Med 242: 1542–1552. https://doi.org/10.1177/1535370217723578

  23. Tian YM, Liu Y, Wang S, Dong Y, Su T, Ma HJ, Zhang Y (2016) Anti-diabetes effect of chronic intermittent hypobaric hypoxia through improving liver insulin resistance in diabetic rats. Life Sci 150: 1–7. https://doi.org/10.1016/J.LFS.2016.02.053

  24. Cui F, Guan Y, Guo J, Tian YM, Hu HF, Zhang XJ, Zhang Y (2018) Chronic intermittent hypobaric hypoxia protects vascular endothelium by ameliorating autophagy in metabolic syndrome rats. Life Sci 205: 145–154. https://doi.org/10.1016/J.LFS.2018.05.008

  25. Żebrowska A, Jastrzȩbski D, Sadowska-Krȩpa E, Sikora M, Di Giulio C (2019) Comparison of the Effectiveness of High-Intensity Interval Training in Hypoxia and Normoxia in Healthy Male Volunteers: A Pilot Study. Biomed Res Int 2019: 7315714. https://doi.org/10.1155/2019/7315714

  26. De Mol P, Fokkert MJ, De Vries ST, De Koning EJP, Dikkeschei BD, Gans ROB, Tack CJ, Bilo HJG (2012) Metabolic effects of high altitude trekking in patients with type 2 diabetes. Diabetes Care 35: 2018–2020. https://doi.org/10.2337/DC12-0204

  27. Schobersberger W, Schmid P, Lechleitner M, von Duvillard SP, Hörtnagl H, Gunga HC, Klingler A, Fries D, Kirsch K, Spiesberger R, Pokan R, Hofmann P, Hoppicher F, Riedmann G, Baumgartner H, Humpeler E (2003) Austrian Moderate Altitude Study 2000 (AMAS 2000). The effects of moderate altitude (1700 m) on cardiovascular and metabolic variables in patients with metabolic syndrome. Eur J Appl Physiol 88: 506–514. https://doi.org/10.1007/S00421-002-0736-8

  28. Akat F, Fıçıcılar H, Durak A, Tuncay E, Dursun AD, Çelikkan FT, Sabuncuoğlu B, Turan B, Baştuğ M (2018) Intermittent hypoxia induces beneficial cardiovascular remodeling in left ventricular function of type 1 diabetic rat. Anatol J Cardiol 19: 259–266. https://doi.org/10.14744/ANATOLJCARDIOL.2018.00236

  29. Güzel D, Dursun AD, Fıçıcılar H, Tekin D, Tanyeli A, Akat F, Çelikkan FT, Sabuncuoğlu B, Baştuğ M (2016) Effect of intermittent hypoxia on the cardiac HIF-1/VEGF pathway in experimental type 1 diabetes mellitus. Anatol J Cardiol 16: 76–83. https://doi.org/10.5152/AKD.2015.5925

  30. Santos JL, Pérez-Bravo F, Carrasco E, Calvillán M, Albala C (2001) Low prevalence of type 2 diabetes despite a high average body mass index in the Aymara natives from Chile. Nutrition 17: 305–309. https://doi.org/10.1016/S0899-9007(00)00551-7

  31. Peng W, Li K, Yan AF, Shi Z, Zhang J, Cheskin LJ, Hussain A, Wang Y (2022) Prevalence, Management, and Associated Factors of Obesity, Hypertension, and Diabetes in Tibetan Population Compared with China Overall. Int J Environ Res Public Health 19(14): 8787. https://doi.org/10.3390/IJERPH19148787

  32. Rybnikova EA, Zenko MY, Barysheva VS, Vetrovoy O (2020) Acclimatization to Middle Attitude Hypoxia Masks the Symptoms of Experimental Posttraumatic Stress Disorder, but Does Not Affect Its Pathogenetic Mechanisms. Bull Exp Biol Med 168: 614–617. https://doi.org/10.1007/S10517-020-04763-3

  33. Szlachcic A, Majka J, Strzalka M, Szmyd J, Pajdo R, Ptak-Belowska A, Kwiecien S, Brzozowski T (2013) Experimental healing of preexisting gastric ulcers induced by hormones controlling food intake ghrelin, orexin-A and nesfatin-1 is impaired under diabetic conditions. A key to understanding the diabetic gastropathy? J Physiol Pharmacol 64(5): 625–637.

  34. Подвигина ТТ, Филаретова ЛП (2020) Чувствительность слизистой оболочки желудка к ульцерогенным факторам и активность гипоталамо-гипофизарно-адренокортикальной системы. Рос физиол журн им ИМ Сеченова 106(2): 176–188. [Podvigina TT, Filaretova LP (2020) Sensitivity of the gastric mucosa to ulcerogenic factors and the activity of the hypothalamo-pituitary-adrenocortical system in the development of streptozotocin-induced diabetes. Russ J Physiol 106(2): 176–188. (In Russ)].

  35. Podvigina TT, Bagaeva TR, Bobryshev PY, Filaretova LP (2011) High sensitivity of gastric mucosa to ulcerogenic effect of indomethacin in rats with diabetes. Bull Exp Biol Med 152: 43–46. https://doi.org/10.1007/S10517-011-1449-Y

  36. Takeuchi K, Hatazawa R, Korolkiewicz R, Tashima K (2006) Alterations in gastric mucosal homeostasis under diabetic conditions. In: Pathophysiological and biochemical analysis of life-style related or intractable diseases – Target validation for drug therapy. Nishino T, Takeuchi K (Eds). Research Signpost. Kerala. 49–77.

  37. Konturek PC, Brzozowski T, Burnat, Szlachcic A, Koziel J, Kwiecien S, Konturek SJ, Harsch IA (2010) Gastric ulcer healing and stress-lesion preventive properties of pioglitazone are attenuated in diabetic rats. J Physiol Pharmacol 61(4): 429–436.

  38. Morsy MA, Ashour OM, Fouad AA, Abdel-Gaber SA (2010) Gastroprotective effects of the insulin sensitizers rosiglitazone and metformin against indomethacin-induced gastric ulcers in Type 2 diabetic rats. Clin Exp Pharmacol Physiol 37: 173–177. https://doi.org/10.1111/J.1440-1681.2009.05250.X

  39. AbdelAziz EY, Tadros MG, Menze ET (2021) The effect of metformin on indomethacin-induced gastric ulcer: Involvement of nitric oxide/Rho kinase pathway. Eur J Pharmacol 892: 173812. https://doi.org/10.1016/J.EJPHAR.2020.173812

  40. Idris M, Smiley A, Patel S, Latifi R (2022) Risk Factors for Mortality in Emergently Admitted Patients with Acute Gastric Ulcer: An Analysis of 15,538 Patients in National Inpatient Sample, 2005–2014. Int J Environ Res Public Health 19(23): 16263. https://doi.org/10.3390/IJERPH192316263

  41. Подвигина ТТ, Багаева ТР, Филаретова ЛП (2016) Гастропротективный эффект кортикотропин-рилизинг фактора в модели стрептозотоцин-индуцированного диабета у крыс. Рос физиол журн им ИМ Сеченова 102(11): 1352–1362. [Podvigina TT, Bagaeva TR, Filaretova LP (2016) Gastroprotective effect of corticotropin-releasing factor in a model of streptozotocin-induced diabetes in rats. Russ J Physiol 102(11): 1352–1362. (In Russ)].

  42. Подвигина ТТ, Багаева ТР, Морозова ОЮ, Филаретова ЛП (2011) Чувствительность слизистой оболочки желудка к ульцерогенному действию индометацина в разные сроки развития стрептозотоцин-индуцированного диабета у крыс. Рос физиол журн им ИМ Сеченова 97 (9): 957–967. [Podvigina TT, Bagaeva TR, Morozova OY, Filaretova LP (2011) Sensitivity of the gastric mucosa to the ulcerogenic action of indomethacin at different stages of the development of streptozotocin-induced diabetes in rats. Russ J Physiol 97(9): 957–967. (In Russ)].

  43. Yang M, Yang Z, Li Y, Su S, Li Z, Lu D (2022) Mechanism of Traditional Tibetan Medicine Grubthobrildkr Alleviated Gastric Ulcer Induced by Acute Systemic Hypoxia in Rats. Biomed Res Int 2022: 4803956. https://doi.org/10.1155/2022/4803956

  44. Syam AF, Simadibrata M, Wanandi SI, Hernowo BS, Sadikin M, Rani AA (2011) Gastric ulcers induced by systemic hypoxia. Acta Med Indones 43(4): 243–248.

  45. Takeuchi K, Ueshima K, Ohuchi T, Okabe S (1994) Induction of gastric lesions and hypoglycemic response by food deprivation in streptozotocin-diabetic rats. Dig Dis Sci 39: 626–634. https://doi.org/10.1007/BF02088352

  46. Teixeira DF, Santos AM, Oliveira AMS, Nascimento Júnior JAC, Frank LA, Santana Souza MT De, Camargo EA, Serafini MR (2021) Pharmaceuticals agents for preventing NSAID-induced gastric ulcers: a patent review. Expert Rev Clin Pharmacol 14: 677–686. https://doi.org/10.1080/17512433.2021.1909475

  47. Filaretova LP, Morozova OY, Yarushkina NI (2021) Peripheral corticotropin-releasing hormone may protect the gastric musosa against indometacin-induced injury through involvement of glucocorticoids. J Physiol Pharmacol 72: 1–10. https://doi.org/10.26402/JPP.2021.5.06

  48. Солнушкин СД, Чихман ВН (2018) Компьютерная обработка биологических изображений. Биомед радиоэлектрон 2: 35–40. [Solnushkin SD, Chikhman VN (2018) Computer processing of biological images. Biomed Radioelectron 2: 35–40. (In Russ)].

  49. Fournell A, Schwarte LA, Kindgen-Milles D, Müller E, Scheeren TWL (2003) Assessment of microvascular oxygen saturation in gastric mucosa in volunteers breathing continuous positive airway pressure. Crit Care Med 31: 1705–1710. https://doi.org/10.1097/01.CCM.0000063281.47070.53

  50. Filaretova L, Tanaka A, Komoike Y, Takeuchi K (2002) Selective cyclooxygenase-2 inhibitor induces gastric mucosal damage in adrenalectomized rats. Inflammopharmacology 10(4-6): 413–422.

  51. Suresh MV, Balijepalli S, Solanki S, Aktay S, Choudhary K, Shah YM, Raghavendran K (2023) Hypoxia-Inducible Factor 1α and Its Role in Lung Injury: Adaptive or Maladaptive. Inflammation 46: 491–508. https://doi.org/10.1007/S10753-022-01769-Z

  52. Serebrovska TV, Portnychenko AG, Portnichenko VI, Xi L, Egorov E, Antoniuk-Shcheglova I, Naskalova S, Shatylo VB (2019) Effects of intermittent hypoxia training on leukocyte pyruvate dehydrogenase kinase 1 (PDK-1) mRNA expression and blood insulin level in prediabetes patients. Eur J Appl Physiol 119: 813–823. https://doi.org/10.1007/S00421-019-04072-2

  53. Catrina SB, Zheng X (2021) Hypoxia and hypoxia-inducible factors in diabetes and its complications. Diabetologia 64: 709–716. https://doi.org/10.1007/S00125-021-05380-Z

  54. Hashimoto H, Akimoto M, Maeda A, Shigemoto M, Yamashito K (2004) Relation of hypoxia-inducible factor-1alpha to vascular endothelial growth factor and vasoactive factors during healing of gastric ulcers. J Cardiovasc Pharmacol 44 Suppl 1: S407–S409. https://doi.org/10.1097/01.FJC.0000166305.79055.AD

  55. Tarnawski AS, Ahluwalia A (2021) The Critical Role of Growth Factors in Gastric Ulcer Healing: The Cellular and Molecular Mechanisms and Potential Clinical Implications. Cells 10(8): 1964. https://doi.org/10.3390/CELLS10081964

  56. Russell J, Ward J, Becci M, Mir GN (1987) Spontaneous gastric ulceration in streptozotocin (STZ)-diabetic rats. Gastroenterology 92: 1605.

  57. Vador N, Jagtap AG, Damle A (2012) Vulnerability of Gastric Mucosa in Diabetic Rats, Its Pathogenesis and Amelioration by Cuminum cyminum. Indian J Pharm Sci 74: 387–396. https://doi.org/10.4103/0250-474X.108413

  58. Igarashi S, Kume E, Narita H, Kinoshita M (2000) Food deprivation depletes gastric mucus glycoprotein in streptozotocin-induced diabetic rats. Jpn J Pharmacol 84: 51–55. https://doi.org/10.1254/JJP.84.51

  59. Korolkiewicz R, Tashima K, Kubomi M, Kato S, Takeuchi K (1999) Increased susceptibility of diabetic rat gastric mucosa to food deprivation during cold stress. Digestion 60: 528–537. https://doi.org/10.1159/000007702

  60. Tashima K, Fujita A, Takeuchi K (2000) Aggravation of ischemia/reperfusion-induced gastric lesions in streptozotocin-diabetic rats. Life Sci 67: 1707–1718. https://doi.org/10.1016/S0024-3205(00)00754-2

  61. Takeuchi K, Takehara K, Tajima K, Kato S, Hirata T (1997) Impaired healing of gastric lesions in streptozotocin-induced diabetic rats: effect of basic fibroblast growth factor. J Pharmacol Exp Ther 281(1): 200–207.

  62. Tashima K, Korolkiewicz R, Kubomi M, Takeuchi K (1998) Increased susceptibility of gastric mucosa to ulcerogenic stimulation in diabetic rats–role of capsaicin-sensitive sensory neurons. Br J Pharmacol 124: 1395–1402. https://doi.org/10.1038/SJ.BJP.0701974

  63. Holzer P, Livingston EH, Guth PH (1991) Sensory neurons signal for an increase in rat gastric mucosal blood flow in the face of pending acid injury. Gastroenterology 101: 416–423. https://doi.org/10.1016/0016-5085(91)90020-L

  64. Комкова ОЮ, Подвигина ТТ, Филаретова ЛП (2017) Трансформация гастропротективного эффекта стресса в проульцерогенные последствия: разработка экспериментальных моделей. Рос физиол журн им ИМ Сеченова 103(2): 182–192. [Komkova OYu, Podvigina TT, Filaretova LP (2017) Transformation of the gastroprotective effect of stress into proulcerogenic consequences: development of experimental models. Russ J Physiol 103(2): 182–192. (In Russ)].

  65. Filaretova L (2017) Gastroprotective Effect of Stress Preconditioning: Involvement of Glucocorticoids. Curr Pharm Des 23: 3923–3927. https://doi.org/10.2174/1381612823666170215145125

  66. Filaretova LP, Bagaeva TR, Amagase K, Takeuchi K (2008) Contribution of glucocorticoids to protective influence of preconditioning mild stress against stress-induced gastric erosions. Ann NY Acad Sci 1148: 209–212. https://doi.org/10.1196/annals.1410.005

  67. Деркач КВ, Бондарева ВМ, Шпаков АО (2017) Совместное интраназальное введение инсулина и С-пептида проинсулина крысам с сахарным диабетом 1-го и 2-го типа восстанавливает у них метаболические показатели. Успехи геронтол 30(6): 851–858. [Derkach KV, Bondareva VM, Shpakov AO (2017) Co-administration of intranasally delivered insulin and proinsulin C-peptide to rats with the types 1 and 2 diabetes mellitus restores their metabolic parameters. Adv Gerontol 30(6): 851–858. (In Russ)].

  68. Zelena D, Filaretova L, Mergl Z, Barna I, Tóth ZE, Makara GB (2006) Hypothalamic paraventricular nucleus, but not vasopressin, participates in chronic hyperactivity of the HPA axis in diabetic rats. Am J Physiol - Endocrinol Metab 290: 243–250. https://doi.org/10.1152/AJPENDO.00118.2005

  69. Yuan H, Liu J, Gu Y, Ji X, Nan G (2022) Intermittent hypoxia conditioning as a potential prevention and treatment strategy for ischemic stroke: Current evidence and future directions. Front Neurosci 16: 1067411. https://doi.org/10.3389/FNINS.2022.1067411

  70. Rybnikova EA, Nalivaeva NN, Zenko MY, Baranova KA (2022) Intermittent Hypoxic Training as an Effective Tool for Increasing the Adaptive Potential, Endurance and Working Capacity of the Brain. Front Neurosci 16: 941740. https://doi.org/10.3389/FNINS.2022.941740

  71. Yarushkina NI, Komkova OP, Filaretova LP (2020) Influence of forced treadmill and voluntary wheel running on the sensitivity of gastric mucosa to ulcerogenic stimuli in male rats. J Physiol Pharmacol 71: 1–13. https://doi.org/10.26402/JPP.2020.6.04

Дополнительные материалы отсутствуют.