Российский физиологический журнал им. И.М. Сеченова, 2023, T. 109, № 11, стр. 1699-1717

Поведенческие, геномные и нейрохимические нарушения в модели нейротравмы на взрослых рыбах зебраданио (Danio rerio)

Н. П. Ильин 123, Д. С. Галстян 123, К. А. Демин 12, А. В. Калуев 12345*

1 Институт трансляционной биомедицины, Санкт-Петербургский государственный университет,
Санкт-Петербург, Россия

2 Национальный медицинский исследовательский центр им. В.А. Алмазова МЗ РФ
Санкт-Петербург, Россия

3 Российский научный центр радиологии и хирургических технологий им. акад. А.М. Гранова МЗ РФ
Санкт-Петербург, Россия

4 Направление “Нейробиология”, Научный центр генетики и наук о жизни, Научно-технологический университет “Сириус”
Федеральная территория Сириус, Россия

5 Уральский федеральный университет
Екатеринбург, Россия

* E-mail: avkalueff@gmail.com

Поступила в редакцию 31.08.2023
После доработки 01.10.2023
Принята к публикации 02.10.2023

Аннотация

Травматическое повреждение мозга (ТПМ, нейротравма) представляет собой серьезную биомедицинскую проблему, особенно в связи с высокой распространенностью и риском смертности. Поэтому необходимо понимание механизмов патогенеза ТПМ как в клинике, так в экспериментальных моделях на животных. В исследовании использовали модель проникающей травмы мозга (теленцефалона) для изучения поведенческих и молекулярных последствий ТПМ у взрослых рыб зебраданио (zebrafish, Danio rerio). Спустя четыре дня после индукции нейротравмы зебраданио демонстрировали гиполокомоцию в тесте незнакомого аквариума, нарушение рабочей памяти в Y-образном лабиринте и активацию экспрессии в теленцефалоне гена isg15, который является биомаркером повреждения нейронов. Кроме того, повреждение теленцефалона вызвало значительное снижение уровня норадреналина (но не дофамина и серотонина) в мозге зебраданио, что может отчасти объяснить наблюдаемые когнитивные дефициты, и подчеркивает потенциальное вовлечение нейротрансмиттерных систем в патогенез ТПМ.

Ключевые слова: черепно-мозговая травма, зебраданио, конечный мозг, поведение, норадреналин, ген isg15

Список литературы

  1. Risdall JE, Menon DK (2011) Traumatic brain injury. Philos Trans R Soc B Biol Sci 366: 241–250. https://doi.org/10.1098%2Frstb.2010.0230

  2. Dewan MC, Rattani A, Gupta S, Baticulon RE, Hung Y-C, Punchak M, Agrawal A, Adeleye AO, Shrime MG, Rubiano AM (2018) Estimating the global incidence of traumatic brain injury. J Neurosurg 130: 1080–1097. https://doi.org/10.3171/2017.10.JNS17352

  3. Parikh S, Koch M, Narayan RK (2007) Traumatic brain injury. Int Anesthesiol Clin 45: 119–135. https://doi.org/10.1097/AIA.0b013e318078cfe7

  4. Andriessen TM, Jacobs B, Vos PE (2010) Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury. J Cell Mol Med 14: 2381–2392. https://doi.org/10.1111/j.1582-4934.2010.01164.x

  5. Walker KR, Tesco G (2013) Molecular mechanisms of cognitive dysfunction following traumatic brain injury. Front Aging Neurosci 5: 29. https://doi.org/10.3389/fnagi.2013.00029

  6. Galea OA, Cottrell MA, Treleaven JM, O’Leary SP (2018) Sensorimotor and physiological indicators of impairment in mild traumatic brain injury: a meta-analysis. Neurorehabil Neural Repair 32: 115–128. https://doi.org/10.1177/1545968318760728

  7. Mallya S, Sutherland J, Pongracic S, Mainland B, Ornstein TJ (2015) The manifestation of anxiety disorders after traumatic brain injury: a review. J Neurotrauma 32: 411–421. https://doi.org/10.1089/neu.2014.3504

  8. Yang C-C, Hua M-S, Lin W-C, Tsai Y-H, Huang S-J (2012) Irritability following traumatic brain injury: divergent manifestations of annoyance and verbal aggression. Brain Injury 26: 1185–1191. https://doi.org/10.3109/02699052.2012.666374

  9. Delic V, Beck KD, Pang KC, Citron BA (2020) Biological links between traumatic brain injury and Parkinson’s disease. Acta Neuropathol Commun 8: 1–16. https://doi.org/10.1186/s40478-020-00924-7

  10. Ding K, Gupta PK, Diaz-Arrastia R (2016) Epilepsy after traumatic brain injury. Transl Res Trauma Brain Injury Chapter 14. https://doi.org/10.1201/b18959-19

  11. Sivanandam TM, Thakur MK (2012) Traumatic brain injury: a risk factor for Alzheimer’s disease. Neurosci Biobehav Rev 36: 1376–1381. https://doi.org/10.1016/j.neubiorev.2012.02.013

  12. Krishnamurthy K, Laskowitz DT (2016) Cellular and molecular mechanisms of secondary neuronal injury following traumatic brain injury. Transl Res Trauma Brain Injury, CRC Press/Taylor and Francis Group / Boca Raton (FL), Chapter 5. https://doi.org/10.1201/b18959-10

  13. Guerriero RM, Giza CC, Rotenberg A (2015) Glutamate and GABA imbalance following traumatic brain injury. Curr Neurol Neurosci Rep 15: 1–11. https://doi.org/10.1007/s11910-015-0545-1

  14. Hinzman JM, Thomas TC, Quintero JE, Gerhardt GA, Lifshitz J (2012) Disruptions in the regulation of extracellular glutamate by neurons and glia in the rat striatum two days after diffuse brain injury. J Neurotrauma 29: 1197–1208. https://doi.org/10.1089/neu.2011.2261

  15. Palmer AM, Marion DW, Botscheller ML, Swedlow PE, Styren SD, DeKosky ST (1993) Traumatic brain injury-induced excitotoxicity assessed in a controlled cortical impact model. J Neurochem 61: 2015–2024. https://doi.org/10.1111/j.1471-4159.1993.tb07437.x

  16. Chamoun R, Suki D, Gopinath SP, Goodman JC, Robertson C (2010) Role of extracellular glutamate measured by cerebral microdialysis in severe traumatic brain injury. J Neurosurg 113: 564–570. https://doi.org/10.3171/2009.12.jns09689

  17. Lakshmanan R, Loo JA, Drake T, Leblanc J, Ytterberg AJ, McArthur DL, Etchepare M, Vespa PM (2010) Metabolic crisis after traumatic brain injury is associated with a novel microdialysis proteome. Neurocrit Care 12: 324–336. https://doi.org/10.1007/s12028-010-9342-5

  18. Aiba I, Shuttleworth CW (2012) Sustained NMDA receptor activation by spreading depolarizations can initiate excitotoxic injury in metabolically compromised neurons. J Physiol 590: 5877–5893. https://doi.org/10.1113/jphysiol.2012.234476

  19. Orrenius S, Gogvadze V, Zhivotovsky B (2015) Calcium and mitochondria in the regulation of cell death. Biochem Biophys Res Commun 460: 72–81. https://doi.org/10.1016/j.bbrc.2015.01.137

  20. Sattler R, Tymianski M (2001) Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol 24: 107–129. https://doi.org/10.1385/mn:24:1-3:107

  21. Balu R (2014) Inflammation and immune system activation after traumatic brain injury. Curr Neurol Neurosci Rep 14: 1–8. https://doi.org/10.1007/s11910-014-0484-2

  22. Lehnardt S (2010) Innate immunity and neuroinflammation in the CNS: The role of microglia in Toll-like receptor-mediated neuronal injury. Glia 58: 253–263. https://doi.org/10.1002/glia.20928

  23. Karve IP, Taylor JM, Crack PJ (2016) The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol 173: 692–702. https://doi.org/10.1111/bph.13125

  24. Loane DJ, Kumar A, Stoica BA, Cabatbat R, Faden AI (2014) Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation. J Neuropathol Exp Neurol 73: 14–29. https://doi.org/10.1097/nen.0000000000000021

  25. Burda JE, Bernstein AM, Sofroniew MV (2016) Astrocyte roles in traumatic brain injury. Exp Neurol 275: 305–315. https://doi.org/10.1016/j.expneurol.2015.03.020

  26. Landeghem FKV, Weiss T, Oehmichen M, Deimling AV (2006) Decreased expression of glutamate transporters in astrocytes after human traumatic brain injury. J Neurotrauma 23: 1518–1528. https://doi.org/10.1089/neu.2006.23.1518

  27. Das M, Mohapatra S, Mohapatra SS (2012) New perspectives on central and peripheral immune responses to acute traumatic brain injury. J Neuroinflammat 9: 1–12. https://doi.org/10.1186/1742-2094-9-236

  28. Fan L, Young PR, Barone FC, Feuerstein GZ, Smith DH, McIntosh TK (1996) Experimental brain injury induces differential expression of tumor necrosis factor-α mRNA in the CNS. Mol Brain Res 36: 287–291. https://doi.org/10.1016/0169-328x(95)00274-v

  29. Chio C-C, Chang C-H, Wang C-C, Cheong C-U, Chao C-M, Cheng B-C, Yang C-Z, Chang C-P (2013) Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-α. BMC Neurosci 14: 1–12. https://doi.org/10.1186/1471-2202-14-33

  30. Lu K-T, Wang Y-W, Yang J-T, Yang Y-L, Chen H-I (2005) Effect of interleukin-1 on traumatic brain injury–induced damage to hippocampal neurons. J Neurotrauma 22: 885–895. https://doi.org/10.1089/neu.2005.22.885

  31. Shohami E, Bass R, Wallach D, Yamin A, Gallily R (1996) Inhibition of tumor necrosis factor alpha (TNFα) activity in rat brain is associated with cerebroprotection after closed head injury. J Cereb Blood Flow Metab 16: 378–384. https://doi.org/10.1097/00004647-199605000-00004

  32. Babchenko VY, Belova AS, Bashirzade AA, Tikhonova MA, Demin KA, Zabegalov KN, Petersen EV, Kalueff AV, Amstislavskaya TG (2022) Traumatic brain injury models in zebrafish (Danio rerio). Neurosci Behav Physiol 52: 405–414. https://doi.org/10.1089/zeb.2012.0777

  33. Zulazmi NA, Arulsamy A, Ali I, Zainal Abidin SA, Othman I, Shaikh MF (2021) The utilization of small non-mammals in traumatic brain injury research: A systematic review. CNS Neurosci Ther 27: 381–402. https://doi.org/10.1111/cns.13590

  34. Westerfield M (2007) The Zebrafish Book. A guide for the laboratory use of zebrafish (Danio rerio).

  35. Schmidt R, Beil T, Strähle U, Rastegar S (2014) Stab wound injury of the zebrafish adult telencephalon: a method to investigate vertebrate brain neurogenesis and regeneration. J Vis Exp 90: e51753. https://doi.org/10.3791/51753

  36. Levin ED, Bencan Z, Cerutti DT (2007) Anxiolytic effects of nicotine in zebrafish. Physiol Behav 90: 54–58. https://doi.org/10.7287/peerj.preprints.1718v2

  37. Egan RJ, Bergner CL, Hart PC, Cachat JM, Canavello PR, Elegante MF, Elkhayat SI, Bartels BK, Tien AK, Tien DH (2009) Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res 205: 38–44. https://doi.org/10.1016/j.bbr.2009.06.022

  38. Cleal M, Fontana BD, Ranson DC, McBride SD, Swinny JD, Redhead ES, Parker MO (2021) The Free-movement pattern Y-maze: A cross-species measure of working memory and executive function. Behav Res Methods 53: 536–557. https://doi.org/10.3758/s13428-020-01452-x

  39. Fontana BD, Cleal M, Clay JM, Parker MO (2019) Zebrafish (Danio rerio) behavioral laterality predicts increased short-term avoidance memory but not stress-reactivity responses. Anim Cogn 22: 1051–1061. https://doi.org/10.1007/s10071-019-01296-9

  40. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔCT method. Methods 25: 402–408. https://doi.org/10.1006/meth.2001.1262

  41. Alburges ME, Narang N, Wamsley JK (1993) A sensitive and rapid HPLC-ECD method for the simultaneous analysis of norepinephrine, dopamine, serotonin and their primary metabolites in brain tissue. Biomed Chromatogr 7: 306–310. https://doi.org/10.1002/bmc.1130070605

  42. Fontana BD, Cleal M, Gibbon AJ, McBride SD, Parker MO (2021) The effects of two stressors on working memory and cognitive flexibility in zebrafish (Danio rerio): the protective role of D1/D5 agonist on stress responses. Neuropharmacology 196: 108681. https://doi.org/10.1016/j.neuropharm.2021.108681

  43. Pearn ML, Niesman IR, Egawa J, Sawada A, Almenar-Queralt A, Shah SB, Duckworth JL, Head BP (2017) Pathophysiology associated with traumatic brain injury: current treatments and potential novel therapeutics. Cell Mol Neurobiol 37: 571–585. https://doi.org/10.1007/s10571-016-0400-1

  44. Ladak AA, Enam SA, Ibrahim MT (2019) A review of the molecular mechanisms of traumatic brain injury. World Neurosurg 131: 126–132. https://doi.org/10.1016/j.wneu.2019.07.039

  45. Akamatsu Y, Hanafy KA (2020) Cell death and recovery in traumatic brain injury. Neurotherapeutics 17: 446–456. https://doi.org/10.1007/s13311-020-00840-7

  46. Clark RS, Kochanek PM, Chen M, Watkins SC, Marion DW, Chen J, Hamilton RL, Loeffert JE, Graham SH (1999) Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury. FASEB J 13: 813–821. https://doi.org/10.1097/00008506-200007000-00019

  47. Dressler J, Hanisch U, Kuhlisch E, Geiger KD (2007) Neuronal and glial apoptosis in human traumatic brain injury. Int J Legal Med 121: 365–375. https://doi.org/10.1007/s00414-006-0126-6

  48. Ng I, Yeo T-T, Tang W-Y, Soong R, Ng P-Y, Smith DR (2000) Apoptosis occurs after cerebral contusions in humans. Neurosurgery 46: 949–956. https://doi.org/10.1227/00006123-200004000-00034

  49. Zhang X, Graham SH, Kochanek PM, Marion DW, Nathaniel PD, Watkins SC, Clark RS (2003) Caspase-8 expression and proteolysis in human brain after severe head injury. FASEB J 17: 1367–1369. https://doi.org/10.1096/fj.02-1067fje

  50. Zhang X, Alber S, Watkins SC, Kochanek PM, Marion DW, Graham SH, Clark RS (2006) Proteolysis consistent with activation of caspase-7 after severe traumatic brain injury in humans. J Neurotrauma 23: 1583–1590. https://doi.org/10.1089/neu.2006.23.1583

  51. McIlwain DR, Berger T, Mak TW (2015) Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 7: 1–15. https://doi.org/10.1101/cshperspect.a008656

  52. Salvesen GS, Dixit VM (1999) Caspase activation: the induced-proximity model. Proc Natl Acad Sci U S A 96: 10964–10967. https://doi.org/10.1073/pnas.96.20.10964

  53. Kenny EM, Fidan E, Yang Q, Anthonymuthu TS, New LA, Meyer EA, Wang H, Kochanek PM, Dixon CE, Kagan VE (2019) Ferroptosis contributes to neuronal death and functional outcome after traumatic brain injury. Crit Care Med 47: 410. https://doi.org/10.1097/ccm.0000000000003555

  54. Zhang L, Wang H (2018) Autophagy in traumatic brain injury: a new target for therapeutic intervention. Front Mol Neurosci 11: 190. https://doi.org/10.3389/fnmol.2018.00190

  55. Zhao P, Li C, Chen B, Sun G, Chao H, Tu Y, Bao Z, Fan L, Du X, Ji J (2020) Up-regulation of CHMP4B alleviates microglial necroptosis induced by traumatic brain injury. J Cell Mol Med 24: 8466–8479. https://doi.org/10.1111/jcmm.15406

  56. Chaoul V, Awad M, Harb F, Najjar F, Hamade A, Nabout R, Soueid J (2022) Saffron Extract Attenuates Anxiogenic Effect and Improves Cognitive Behavior in an Adult Zebrafish Model of Traumatic Brain Injury. Int J Mol Sci 23: 11600. https://doi.org/10.3390/ijms231911600

  57. McCutcheon V, Park E, Liu E, Sobhebidari P, Tavakkoli J, Wen X-Y, Baker AJ (2017) A novel model of traumatic brain injury in adult zebrafish demonstrates response to injury and treatment comparable with mammalian models. J Neurotrauma 34: 1382–1393. https://doi.org/10.1089/neu.2016.4497

  58. Tikhonova MA, Maslov NA, Bashirzade AA, Nehoroshev EV, Babchenko VY, Chizhova ND, Tsibulskaya EO, Akopyan AA, Markova EV, Yang Y-L (2022) A novel laser-based zebrafish model for studying traumatic brain injury and its molecular targets. Pharmaceutics 14: 1751. https://doi.org/10.3390/pharmaceutics14081751

  59. Chou A, Krukowski K, Jopson T, Zhu PJ, Costa-Mattioli M, Walter P, Rosi S (2017) Inhibition of the integrated stress response reverses cognitive deficits after traumatic brain injury. Proc Natl Acad Sci U S A 114: E6420–E6426. https://doi.org/10.1073/pnas.1707661114

  60. Fujimoto ST, Longhi L, Saatman KE, McIntosh TK (2004) Motor and cognitive function evaluation following experimental traumatic brain injury. Neurosci Biobehav Rev 28: 365–378. https://doi.org/10.1016/j.neubiorev.2004.06.002

  61. Zohar O, Schreiber S, Getslev V, Schwartz J, Mullins P, Pick C (2003) Closed-head minimal traumatic brain injury produces long-term cognitive deficits in mice. Neuroscience 118: 949–955. https://doi.org/10.1016/s0306-4522(03)00048-4

  62. Mirzalieva O, Juncker M, Schwartzenburg J, Desai S (2022) ISG15 and ISGylation in human diseases. Cells 11: 538. https://doi.org/10.3390/cells11030538

  63. Nakka VP, Mohammed AQ (2020) A critical role for ISGylation, ubiquitination and, SUMOylation in brain damage: implications for neuroprotection. Neurochem Res 45: 1975–1985. https://doi.org/10.1007/s11064-020-03066-3

  64. Kang JA, Kim YJ, Jeon YJ (2022) The diverse repertoire of ISG15: More intricate than initially thought. Exp Mol Med 54: 1779–1792. https://doi.org/10.1038/s12276-022-00872-3

  65. Demirci Y, Cucun G, Poyraz YK, Mohammed S, Heger G, Papatheodorou I, Ozhan G (2020) Comparative transcriptome analysis of the regenerating zebrafish telencephalon unravels a resource with key pathways during two early stages and activation of wnt/β-catenin signaling at the early wound healing stage. Front Cell Dev Biol 8: 584604. https://doi.org/10.3389/fcell.2020.584604

  66. Kanagaraj P, Chen JY, Skaggs K, Qadeer Y, Connors M, Cutler N, Richmond J, Kommidi V, Poles A, Affrunti D (2020) Microglia stimulate zebrafish brain repair via a tumor necrosis factor-α-initiated inflammatory cascade. BioRXiv 2020–10. https://doi.org/10.1101/2020.10.08.330662

  67. Yin G, Du M, Li R, Li K, Huang X, Duan D, Ai X, Yao F, Zhang L, Hu Z (2018) Glia maturation factor beta is required for reactive gliosis after traumatic brain injury in zebrafish. Exp Neurol 305: 129–138. https://doi.org/10.1016/j.expneurol.2018.04.008

  68. Knoblach SM, Fan L, Faden AI (1999) Early neuronal expression of tumor necrosis factor-α after experimental brain injury contributes to neurological impairment. J Neuroimmunol 95: 115–125. https://doi.org/10.1016/s0165-5728(98)00273-2

  69. Glushakova OY, Glushakov AO, Borlongan CV, Valadka AB, Hayes RL, Glushakov AV (2018) Role of caspase-3-mediated apoptosis in chronic caspase-3-cleaved tau accumulation and blood–brain barrier damage in the corpus callosum after traumatic brain injury in rats. J Neurotrauma 35: 157–173. https://doi.org/10.1089/neu.2017.4999

  70. Kaneko Y, Tajiri N, Yu S, Hayashi T, Stahl CE, Bae E, Mestre H, Franzese N, Rodrigues Jr A, Rodrigues MC (2012) Nestin overexpression precedes caspase-3 upregulation in rats exposed to controlled cortical impact traumatic brain injury. Cell Med 4: 55–63. https://doi.org/10.3727/215517912x639306

  71. Ringger NC, Tolentino PJ, McKinsey DM, Pike BR, Wang KKW, Hayes RL (2004) Effects of injury severity on regional and temporal mRNA expression levels of calpains and caspases after traumatic brain injury in rats. J Neurotrauma 21: 829–841. https://doi.org/10.1089/0897715041526177

  72. Schweitzer J, Löhr H, Filippi A, Driever W (2012) Dopaminergic and noradrenergic circuit development in zebrafish. Dev Neurobiol 72: 256–268. https://doi.org/10.1002/dneu.20911

  73. Jenkins PO, Mehta MA, Sharp DJ (2016) Catecholamines and cognition after traumatic brain injury. Brain 139: 2345–2371. https://doi.org/10.1093/brain/aww128

  74. Wang Q, Oyarzabal EA, Song S, Wilson B, Santos JH, Hong J-S (2020) Locus coeruleus neurons are most sensitive to chronic neuroinflammation-induced neurodegeneration. Brain Behav Immun 87: 359–368. https://doi.org/10.1016/j.bbi.2020.01.003

  75. Bueno-Nava A, Montes S, DelaGarza-Montano P, Alfaro-Rodriguez A, Ortiz A, Gonzalez-Pina R (2008) Reversal of noradrenergic depletion and lipid peroxidation in the pons after brain injury correlates with motor function recovery in rats. Neurosci Lett 443: 32–36. https://doi.org/10.1016/j.neulet.2008.07.046

  76. Bari BA, Chokshi V, Schmidt K (2020) Locus coeruleus-norepinephrine: basic functions and insights into Parkinson’s disease. Neural Regen Res 15: 1006. https://doi.org/10.4103/1673-5374.270297

  77. Kyritsis N, Kizil C, Zocher S, Kroehne V, Kaslin J, Freudenreich D, Iltzsche A, Brand M (2012) Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science 338: 1353–1356. https://doi.org/10.1126/science.1228773

  78. Anand SK, Sahu MR, Mondal AC (2021) Induction of oxidative stress and apoptosis in the injured brain: potential relevance to brain regeneration in zebrafish. Mol Biol Rep 48: 5099–5108. https://doi.org/10.21203/rs.3.rs-549302/v1

  79. Schmidt R, Strähle U, Scholpp S (2013) Neurogenesis in zebrafish–from embryo to adult. Neural Dev 8: 1–13. https://doi.org/10.1186/1749-8104-8-3

Дополнительные материалы отсутствуют.