Российский физиологический журнал им. И.М. Сеченова, 2023, T. 109, № 11, стр. 1567-1583

Экспериментальные модели нарушений ЦНС при развитии болезней лизосомального накопления

А. С. Лебедев 123, М. М. Котова 2, Т. О. Колесникова 2, Д. С. Галстян 134, А. В. Калуев 123456*

1 Научный центр мирового уровня “Центр персонализированной медицины”, Национальный медицинский исследовательский центр им. В.А. Алмазова МЗ РФ
Санкт-Петербург, Россия

2 Направление “Нейробиология”, Научный центр генетики и наук о жизни, Научно-технологический университет “Сириус”
Федеральная территория Сириус, Россия

3 Институт трансляционной биомедицины, Санкт-Петербургский государственный университет
Санкт-Петербург, Россия

4 Российский научный центр радиологии и хирургических технологий им. акад. А.М. Гранова МЗ РФ
Санкт-Петербург, Россия

5 Уральский федеральный университет
Екатеринбург, Россия

6 НИИ нейронаук и медицины
Новосибирск, Россия

* E-mail: avkalueff@gmail.com

Поступила в редакцию 27.03.2023
После доработки 09.08.2023
Принята к публикации 09.08.2023

Аннотация

Болезни лизосомального накопления (БЛН) представляют собой группу орфанных заболеваний, вызванных недостаточностью ферментов лизосом, в результате чего происходит накопление непереваренного материала в клетках и повреждаются ткани. Различаясь по типу накопленного материала (белки, липиды или углеводы), БЛН также чрезвычайно разнообразны по своей клинической картине. При этом наиболее частым проявлением БЛН является повреждение мозга, приводящее к различным неврологическим дисфункциям. К настоящему моменту известно более 70 БЛН, для которых практически не существует эффективной терапии. Настоящий обзор посвящен обсуждению существующих БЛН, их последствий для мозга, а также значению экспериментальных (животных) моделей для выяснения механизмов их патогенеза и поиска новых средств терапии.

Ключевые слова: болезни лизосомального накопления, лизосомы, ферментопатии, нарушения ЦНС, животные модели

Список литературы

  1. Platt FM, d’Azzo A, Davidson BL, Neufeld EF, Tifft CJ (2018) Lysosomal storage diseases. Nat Rev Dis Primer 4: 27. https://doi.org/10.1038/s41572-018-0025-4

  2. Marques ARA, Saftig P (2019) Lysosomal storage disorders – challenges, concepts and avenues for therapy: beyond rare diseases. J Cell Sci 132: jcs221739. https://doi.org/10.1242/jcs.221739

  3. Martina JA, Raben N, Puertollano R (2020) SnapShot: Lysosomal Storage Diseases. Cell 180: 602–602. https://doi.org/10.1016/j.cell.2020.01.017

  4. McKenna MC, Schuck PF, Ferreira GC (2019) Fundamentals of CNS energy metabolism and alterations in lysosomal storage diseases. J Neurochem 148: 590–599. https://doi.org/10.1111/jnc.14577

  5. Stirnemann J, Belmatoug N, Camou F, Serratrice C, Froissart R, Caillaud C, Levade T, Astudillo L, Serratrice J, Brassier A, Rose C, Billette de Villemeur T, Berger MG (2017) A Review of Gaucher Disease Pathophysiology, Clinical Presentation and Treatments. Int J Mol Sci 18: 441. https://doi.org/10.3390/ijms18020441

  6. Rosenbloom BE, Weinreb NJ (2013) Gaucher disease: a comprehensive review. Crit Rev Oncog 18: 163–175. https://doi.org/10.1615/critrevoncog.2013006060

  7. Bradbury AM, Bongarzone ER, Sands MS (2021) Krabbe disease: New hope for an old disease. Neurosci Lett 752: 135841. https://doi.org/10.1016/j.neulet.2021.135841

  8. Chan B, Adam DN (2018) A Review of Fabry Disease. Skin Ther Lett 23: 4–6.

  9. Mahmud HM (2014) Fabry’s disease – a comprehensive review on pathogenesis, diagnosis and treatment. J Pak Med Assoc 64: 189–194.

  10. Dasouki M, Jawdat O, Almadhoun O, Pasnoor M, McVey AL, Abuzinadah A, Herbelin L, Barohn RJ, Dimachkie MM (2014) Pompe disease: literature review and case series. Neurol Clin 32: 751–776. https://doi.org/10.1016/j.ncl.2014.04.010

  11. Kohler L, Puertollano R, Raben N (2018) Pompe Disease: From Basic Science to Therapy. Neurother J 15: 928–942. https://doi.org/10.1007/s13311-018-0655-y

  12. Nita DA, Mole SE, Minassian BA (2016) Neuronal ceroid lipofuscinoses. Epileptic Disord Int Epilepsy J 18: 73–88. https://doi.org/10.1684/epd.2016.0844

  13. Parini R, Deodato F (2020) Intravenous Enzyme Replacement Therapy in Mucopolysaccharidoses: Clinical Effectiveness and Limitations. Int J Mol Sci 21: 2975. https://doi.org/10.3390/ijms21082975

  14. Tomatsu S, Alméciga-Díaz CJ, Montaño AM, Yabe H, Tanaka A, Dung VC, Giugliani R, Kubaski F, Mason RW, Yasuda E, Sawamoto K, Mackenzie W, Suzuki Y, Orii KE, Barrera LA, Sly WS, Orii T (2015) Therapies for the bone in mucopolysaccharidoses. Mol Genet Metab 114: 94–109. https://doi.org/10.1016/j.ymgme.2014.12.001

  15. van Rappard DF, Boelens JJ, Wolf NI (2015) Metachromatic leukodystrophy: Disease spectrum and approaches for treatment. Best Pract Res Clin Endocrinol Metab 29: 261–273. https://doi.org/10.1016/j.beem.2014.10.001

  16. Hess B, Saftig P, Hartmann D, Coenen R, Lüllmann-Rauch R, Goebel HH, Evers M, von Figura K, D’Hooge R, Nagels G, De Deyn P, Peters C, Gieselmann V (1996) Phenotype of arylsulfatase A-deficient mice: relationship to human metachromatic leukodystrophy. Proc Natl Acad Sci U S A 93: 14821–14826. https://doi.org/10.1073/pnas.93.25.14821

  17. Cenacchi G, Papa V, Pegoraro V, Marozzo R, Fanin M, Angelini C (2020) Review: Danon disease: Review of natural history and recent advances. Neuropathol Appl Neurobiol 46: 303–322. https://doi.org/10.1111/nan.12587

  18. Mehta A, Ricci R, Widmer U, Dehout F, Garcia de Lorenzo A, Kampmann C, Linhart A, Sunder-Plassmann G, Ries M, Beck M (2004) Fabry disease defined: baseline clinical manifestations of 366 patients in the Fabry Outcome Survey. Eur J Clin Invest 34: 236–242. https://doi.org/10.1111/j.1365-2362.2004.01309.x

  19. Lantos JD (2011) Dangerous and expensive screening and treatment for rare childhood diseases: the case of Krabbe disease. Dev Disabil Res Rev 17: 15–18. https://doi.org/10.1002/ddrr.133

  20. Hult M, Darin N, von Döbeln U, Månsson J-E (2014) Epidemiology of lysosomal storage diseases in Sweden. Acta Paediatr (103): 1258–1263. https://doi.org/10.1111/apa.12807

  21. Zlotogora J (1997) Autosomal recessive diseases among Palestinian Arabs. J Med Genet 34: 765–766. https://doi.org/10.1136/jmg.34.9.765

  22. Ausems MG, Verbiest J, Hermans MP, Kroos MA, Beemer FA, Wokke JH, Sandkuijl LA, Reuser AJ, van der Ploeg AT (1999) Frequency of glycogen storage disease type II in The Netherlands: implications for diagnosis and genetic counselling. Eur J Hum Genet 7: 713–716. https://doi.org/10.1038/sj.ejhg.5200367

  23. De Jesus Rojas W, Young LR (2020) Hermansky-Pudlak Syndrome. Semin Respir Crit Care Med 41: 238–246. https://doi.org/10.1055/s-0040-1708088

  24. Aronson NN (1999) Aspartylglycosaminuria: biochemistry and molecular biology. Biochim Biophys Acta 1455: 139–154. https://doi.org/10.1016/s0925-4439(99)00076-9

  25. Chan B, Adam DN (2018) A Review of Fabry Disease. Skin Ther Lett 23: 4–6.

  26. Tylki-Szymańska A (2014) Mucopolysaccharidosis type II, Hunter’s syndrome. Pediatr Endocrinol Rev 12 Suppl 1: 107–113.

  27. Andrade F, Aldámiz-Echevarría L, Llarena M, Couce ML (2015) Sanfilippo syndrome: Overall review. Pediatr Int 57: 331–338. https://doi.org/10.1111/ped.12636

  28. Beard H, Luck AJ, Hassiotis S, King B, Trim PJ, Snel MF, Hopwood JJ, Hemsley KM (2015) Determination of the role of injection site on the efficacy of intra-CSF enzyme replacement therapy in MPS IIIA mice. Mol Genet Metab 115: 33–40. https://doi.org/10.1016/j.ymgme.2015.03.002

  29. Zemoura K, Ralvenius WT, Malherbe P, Benke D (2016) The positive allosteric GABAB receptor modulator rac-BHFF enhances baclofen-mediated analgesia in neuropathic mice. Neuropharmacology 108: 172–178. https://doi.org/10.1016/j.neuropharm.2016.04.028

  30. Goo MS, Sancho L, Slepak N, Boassa D, Deerinck TJ, Ellisman MH, Bloodgood BL, Patrick GN (2017) Activity-dependent trafficking of lysosomes in dendrites and dendritic spines. J Cell Biol 216: 2499–2513. https://doi.org/10.1083/jcb.201704068

  31. Sidoryk-Wegrzynowicz M, Wegrzynowicz M, Lee E, Bowman AB, Aschner M (2011) Role of astrocytes in brain function and disease. Toxicol Pathol 39: 115–123. https://doi.org/10.1177/0192623310385254

  32. D’Arcangelo G, Grossi D, De Chiara G, de Stefano MC, Cortese G, Citro G, Rufini S, Tancredi V, Merlo D, Frank C (2011) Glutamatergic neurotransmission in a mouse model of Niemann-Pick type C disease. Brain Res 1396: 11–19. https://doi.org/10.1016/j.brainres.2011.04.020

  33. Vance JE (2006) Lipid imbalance in the neurological disorder, Niemann-Pick C disease. FEBS Lett 580: 5518–5524. https://doi.org/10.1016/j.febslet.2006.06.008

  34. Lou HO, Reske-Nielsen E (1971) the central nervous system in Fabry’s disease. A clinical, pathological, and biochemical investigation. Arch Neurol 25: 351–359. https://doi.org/10.1001/archneur.1971.00490040077009

  35. Tybulewicz VL, Tremblay ML, LaMarca ME, Willemsen R, Stubblefield BK, Winfield S, Zablocka B, Sidransky E, Martin BM, Huang SP (1992) Animal model of Gaucher’s disease from targeted disruption of the mouse glucocerebrosidase gene. Nature 357: 407–410. https://doi.org/10.1038/357407a0

  36. Xu Y-H, Quinn B, Witte D, Grabowski GA (2003) Viable mouse models of acid beta-glucosidase deficiency: the defect in Gaucher disease. Am J Pathol 163: 2093–2101. https://doi.org/10.1016/s0002-9440(10)63566-3

  37. Enquist IB, Lo Bianco C, Ooka A, Nilsson E, Månsson J-E, Ehinger M, Richter J, Brady RO, Kirik D, Karlsson S (2007) Murine models of acute neuronopathic Gaucher disease. Proc Natl Acad Sci U S A 104: 17483–17488. https://doi.org/10.1073/pnas.0708086104

  38. Kobayashi T, Yamanaka T, Jacobs JM, Teixeira F, Suzuki K (1980) The Twitcher mouse: an enzymatically authentic model of human globoid cell leukodystrophy (Krabbe disease). Brain Res 202: 479–483. https://doi.org/10.1016/0006-8993(80)90159-6

  39. Duchen LW, Eicher EM, Jacobs JM, Scaravilli F, Teixeira F (1980) Hereditary leucodystrophy in the mouse: the new mutant twitcher. Brain J Neurol 103: 695–710. https://doi.org/10.1093/brain/103.3.695

  40. Bijvoet AG, van de Kamp EH, Kroos MA, Ding JH, Yang BZ, Visser P, Bakker CE, Verbeet MP, Oostra BA, Reuser AJ, van der Ploeg AT (1998) Generalized glycogen storage and cardiomegaly in a knockout mouse model of Pompe disease. Hum Mol Genet 7. https://doi.org/10.1093/hmg/7.1.53

  41. Raben N, Nagaraju K, Lee E, Kessler P, Byrne B, Lee L, LaMarca M, King C, Ward J, Sauer B, Plotz P (1998) Targeted disruption of the acid alpha-glucosidase gene in mice causes an illness with critical features of both infantile and adult human glycogen storage disease type II. J Biol Chem 273. https://doi.org/10.1074/jbc.273.30.19086

  42. Rothaug M, Stroobants S, Schweizer M, Peters J, Zunke F, Allerding M, D’Hooge R, Saftig P, Blanz J (2015) LAMP-2 deficiency leads to hippocampal dysfunction but normal clearance of neuronal substrates of chaperone-mediated autophagy in a mouse model for Danon disease. Acta Neuropathol Commun 3. https://doi.org/10.1186/s40478-014-0182-y

  43. Gupta P, Soyombo AA, Atashband A, Wisniewski KE, Shelton JM, Richardson JA, Hammer RE, Hofmann SL (2001) Disruption of PPT1 or PPT2 causes neuronal ceroid lipofuscinosis in knockout mice. Proc Natl Acad Sci U S A 98: 13566–13571. https://doi.org/10.1073/pnas.251485198

  44. Katz ML, Johnson GS (2001) Mouse gene knockout models for the CLN2 and CLN3 forms of ceroid lipofuscinosis. Eur J Paediatr Neurol 5: 109–114. https://doi.org/10.1053/ejpn.2000.0445

  45. Eliason SL, Stein CS, Mao Q, Tecedor L, Ding S-L, Gaines DM, Davidson BL (2007) A knock-in reporter model of Batten disease. J Neurosci Off J Soc Neurosci 27: 9826–9834. https://doi.org/10.1523/JNEUROSCI.1710-07.2007

  46. Kalueff AV, Stewart AM, Gerlai R (2014) Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 35: 63–75. https://doi.org/10.1016/j.tips.2013.12.002

  47. Zhang T, Peterson RT (2020) Modeling Lysosomal Storage Diseases in the Zebrafish. Front Mol Biosci 7: 82. https://doi.org/10.3389/fmolb.2020.00082

  48. Zancan I, Bellesso S, Costa R, Salvalaio M, Stroppiano M, Hammond C, Argenton F, Filocamo M, Moro E (2015) Glucocerebrosidase deficiency in zebrafish affects primary bone ossification through increased oxidative stress and reduced Wnt/β-catenin signaling. Hum Mol Genet 24: 1280–1294. https://doi.org/10.1093/hmg/ddu538

  49. Zizioli D, Guarienti M, Tobia C, Gariano G, Borsani G, Bresciani R, Ronca R, Giacopuzzi E, Preti A, Gaudenzi G, Belleri M, Di Salle E, Fabrias G, Casas J, Ribatti D, Monti E, Presta M (2014) Molecular cloning and knockdown of galactocerebrosidase in zebrafish: new insights into the pathogenesis of Krabbe’s disease. Biochim Biophys Acta 1842: 665–675. https://doi.org/10.1016/j.bbadis.2014.01.008

  50. Wu J, Yang Y, Sun C, Sun S, Li Q, Yao Y, Fei F, Lu L, Chang Z, Zhang W, Wang X, Luo F (2017) Disruption of the gaa Gene in Zebrafish Fails to Generate the Phenotype of Classical Pompe Disease. DNA Cell Biol 36: 10–17. https://doi.org/10.1089/dna.2016.3459

  51. Dvornikov AV, Wang M, Yang J, Zhu P, Le T, Lin X, Cao H, Xu X (2019) Phenotyping an adult zebrafish lamp2 cardiomyopathy model identifies mTOR inhibition as a candidate therapy. J Mol Cell Cardiol 133: 199–208. https://doi.org/10.1016/j.yjmcc.2019.06.013

  52. Mahmood F, Fu S, Cooke J, Wilson SW, Cooper JD, Russell C (2013) A zebrafish model of CLN2 disease is deficient in tripeptidyl peptidase 1 and displays progressive neurodegeneration accompanied by a reduction in proliferation. Brain J Neurol 136: 1488–1507. https://doi.org/10.1093/brain/awt043

  53. Wager K, Zdebik AA, Fu S, Cooper JD, Harvey RJ, Russell C (2016) Neurodegeneration and Epilepsy in a Zebrafish Model of CLN3 Disease (Batten Disease). PloS One 11: e0157365. https://doi.org/10.1371/journal.pone.0157365

  54. Rodrigues de Souza I, Wilke Sivek T, Vaz de Oliveira JB, Di Pietro Micali Canavez A, de Albuquerque Vita N, Cigaran Schuck D, Rodrigues de Souza I, Cestari MM, Lorencini M, Leme DM (2023) Cytotoxicity Assays with Zebrafish Cell Lines. J Vis Exp. https://doi.org/10.3791/64860

  55. Patton EE, Zon LI, Langenau DM (2021) Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nat Rev Drug Discov 20: 611–628. https://doi.org/10.1038/s41573-021-00210-8

  56. Zhang T, Alonzo I, Stubben C, Geng Y, Herdman C, Chandler N, Doane KP, Pluimer BR, Trauger SA, Peterson RT (2023) A zebrafish model of combined saposin deficiency identifies acid sphingomyelinase as a potential therapeutic target. Dis Model Mech 16: dmm049995. https://doi.org/10.1242/dmm.049995

  57. Zhang T, Peterson RT (2020) Modeling Lysosomal Storage Diseases in the Zebrafish. Front Mol Biosci 7: 82. https://doi.org/10.3389/fmolb.2020.00082

  58. Marza E, Barthe C, André M, Villeneuve L, Hélou C, Babin PJ (2005) Developmental expression and nutritional regulation of a zebrafish gene homologous to mammalian microsomal triglyceride transfer protein large subunit. Dev Dyn 232: 506–518. https://doi.org/10.1002/dvdy.20251

  59. Clifton JD, Lucumi E, Myers MC, Napper A, Hama K, Farber SA, Smith AB, Huryn DM, Diamond SL, Pack M (2010) Identification of novel inhibitors of dietary lipid absorption using zebrafish. PloS One 5: e12386. https://doi.org/10.1371/journal.pone.0012386

  60. Pickart MA, Klee EW, Nielsen AL, Sivasubbu S, Mendenhall EM, Bill BR, Chen E, Eckfeldt CE, Knowlton M, Robu ME, Larson JD, Deng Y, Schimmenti LA, Ellis LBM, Verfaillie CM, Hammerschmidt M, Farber SA, Ekker SC (2006) Genome-wide reverse genetics framework to identify novel functions of the vertebrate secretome. PloS One 1: e104. https://doi.org/10.1371/journal.pone.0000104

  61. Stoletov K, Fang L, Choi S-H, Hartvigsen K, Hansen LF, Hall C, Pattison J, Juliano J, Miller ER, Almazan F, Crosier P, Witztum JL, Klemke RL, Miller YI (2009) Vascular lipid accumulation, lipoprotein oxidation, and macrophage lipid uptake in hypercholesterolemic zebrafish. Circ Res 104: 952–960. https://doi.org/10.1161/CIRCRESAHA.108.189803

  62. Walker MT, Montell C (2016) Suppression of the motor deficit in a mucolipidosis type IV mouse model by bone marrow transplantation. Hum Mol Genet 25: 2752–2761. https://doi.org/10.1093/hmg/ddw132

  63. Venkatachalam K, Long AA, Elsaesser R, Nikolaeva D, Broadie K, Montell C (2008) Motor deficit in a Drosophila model of mucolipidosis type IV due to defective clearance of apoptotic cells. Cell 135: 838–851. https://doi.org/10.1016/j.cell.2008.09.041

  64. Jin W, Dai Y, Li F, Zhu L, Huang Z, Liu W, Li J, Zhang M, Du J, Zhang W, Wen Z (2019) Dysregulation of Microglial Function Contributes to Neuronal Impairment in Mcoln1a-Deficient Zebrafish. Science 13: 391–401. https://doi.org/10.1016/j.isci.2019.02.031

  65. Kiselyov K, Jennigs JJ, Rbaibi Y, Chu CT (2007) Autophagy, mitochondria and cell death in lysosomal storage diseases. Autophagy 3: 259–262. https://doi.org/10.4161/auto.3906

  66. Jolly RD, Brown S, Das AM, Walkley SU (2002) Mitochondrial dysfunction in the neuronal ceroid-lipofuscinoses (Batten disease). Neurochem Int 40: 565–571. https://doi.org/10.1016/s0197-0186(01)00128-0

  67. Settembre C, Fraldi A, Jahreiss L, Spampanato C, Venturi C, Medina D, de Pablo R, Tacchetti C, Rubinsztein DC, Ballabio A (2008) A block of autophagy in lysosomal storage disorders. Hum Mol Genet 17: 119–129. https://doi.org/10.1093/hmg/ddm289

  68. Takamura A, Higaki K, Kajimaki K, Otsuka S, Ninomiya H, Matsuda J, Ohno K, Suzuki Y, Nanba E (2008) Enhanced autophagy and mitochondrial aberrations in murine G(M1)-gangliosidosis. Biochem Biophys Res Commun 367: 616–622. https://doi.org/10.1016/j.bbrc.2007.12.187

  69. de la Mata M, Cotán D, Oropesa-Ávila M, Garrido-Maraver J, Cordero MD, Villanueva Paz M, Delgado Pavón A, Alcocer-Gómez E, de Lavera I, Ybot-González P, Paula Zaderenko A, Ortiz Mellet C, García Fernández JM, Sánchez-Alcázar JA (2015) Pharmacological Chaperones and Coenzyme Q10 Treatment Improves Mutant β-Glucocerebrosidase Activity and Mitochondrial Function in Neuronopathic Forms of Gaucher Disease. Sci Rep 5: 10903. https://doi.org/10.1038/srep10903

  70. Plucińska G, Paquet D, Hruscha A, Godinho L, Haass C, Schmid B, Misgeld T (2012) In vivo imaging of disease-related mitochondrial dynamics in a vertebrate model system. J Neurosci 32: 16203–16212. https://doi.org/10.1523/JNEUROSCI.1327-12.2012

  71. Riboldi GM, Di Fonzo AB (2019) GBA, Gaucher Disease, and Parkinson’s Disease: From Genetic to Clinic to New Therapeutic Approaches. Cells 8: 364. https://doi.org/10.3390/cells8040364

  72. Schmidt R, Strähle U, Scholpp S (2013) Neurogenesis in zebrafish - from embryo to adult. Neural Develop 8: 3. https://doi.org/10.1186/1749-8104-8-3

  73. Meijer AH, Aerts JM (2016) Linking Smokers’ Susceptibility to Tuberculosis with Lysosomal Storage Disorders. Dev Cell 37: 112–113. https://doi.org/10.1016/j.devcel.2016.04.004

  74. Su Q, Schröder SP, Lelieveld LT, Ferraz MJ, Verhoek M, Boot RG, Overkleeft HS, Aerts JMFG, Artola M, Kuo C-L (2021) Xylose-Configured Cyclophellitols as Selective Inhibitors for Glucocerebrosidase. Chembiochem Eur J Chem Biol 22: 3090–3098. https://doi.org/10.1002/cbic.202100396

  75. Li H, Pei W, Vergarajauregui S, Zerfas PM, Raben N, Burgess SM, Puertollano R (2017) Novel degenerative and developmental defects in a zebrafish model of mucolipidosis type IV. Hum Mol Genet 26: 2701–2718. https://doi.org/10.1093/hmg/ddx158

  76. Platt FM (2018) Emptying the stores: lysosomal diseases and therapeutic strategies. Nat Rev Drug Discov 17: 133–150. https://doi.org/10.1038/nrd.2017.214

  77. Klein AD, Ferreira N-S, Ben-Dor S, Duan J, Hardy J, Cox TM, Merrill AH, Futerman AH (2016) Identification of Modifier Genes in a Mouse Model of Gaucher Disease. Cell Rep 16: 2546–2553. https://doi.org/10.1016/j.celrep.2016.07.085

  78. Ogawa Y, Sano T, Irisa M, Kodama T, Saito T, Furusawa E, Kaizu K, Yanagi Y, Tsukimura T, Togawa T, Yamanaka S, Itoh K, Sakuraba H, Oishi K (2017) FcRγ-dependent immune activation initiates astrogliosis during the asymptomatic phase of Sandhoff disease model mice. Sci Rep 7: 40518. https://doi.org/10.1038/srep40518

  79. Udayar V, Chen Y, Sidransky E, Jagasia R (2022) Lysosomal dysfunction in neurodegeneration: emerging concepts and methods. Trends Neurosci 45: 184–199. https://doi.org/10.1016/j.tins.2021.12.004

  80. Li B, Wang F, Schall N, Muller S (2018) Rescue of autophagy and lysosome defects in salivary glands of MRL/lpr mice by a therapeutic phosphopeptide. J Autoimmun 90: 132–145. https://doi.org/10.1016/j.jaut.2018.02.005

  81. Mathai BJ, Meijer AH, Simonsen A (2017) Studying Autophagy in Zebrafish. Cells 6: 21. https://doi.org/10.3390/cells6030021

  82. Tseng W-C, Johnson Escauriza AJ, Tsai-Morris C-H, Feldman B, Dale RK, Wassif CA, Porter FD (2021) The role of Niemann-Pick type C2 in zebrafish embryonic development. Dev Camb Engl 148: dev194258. https://doi.org/10.1242/dev.194258

  83. Bonam SR, Wang F, Muller S (2019) Lysosomes as a therapeutic target. Nat Rev Drug Discov 18: 923–948. https://doi.org/10.1038/s41573-019-0036-1

Дополнительные материалы отсутствуют.