Российский физиологический журнал им. И.М. Сеченова, 2023, T. 109, № 12, стр. 1810-1831

Взаимодействие гликированного альбумина с рецептором конечных продуктов гликирования по данным молекулярного моделирования

Д. А. Белинская 1*, Н. В. Гончаров 12

1 Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН
Санкт-Петербург, Россия

2 НИИ гигиены, профпатологии и экологии человека
г.п. Кузьмоловский, Ленинградская обл., Россия

* E-mail: d_belinskaya@mail.ru

Поступила в редакцию 04.09.2023
После доработки 13.10.2023
Принята к публикации 16.10.2023

Аннотация

У больных сахарным диабетом (СД) накопление конечных продуктов гликирования (AGE – advanced glycation end products) ведет к воспалению и оксидативному стрессу посредством активации специфических рецепторов AGE (RAGE). Гликированный альбумин (gHSA) вносит существенный вклад в общий уровень AGE в организме и, как следствие, в патогенез диабета и сопутствующих заболеваний. Механизм взаимодействия gHSA с RAGE практически не изучен. Цель представленного исследования – методами молекулярного моделирования изучить связывание gHSA с RAGE, определить основные участки взаимодействия и структурные особенности сайтов гликирования, определяющие эффективность образования комплекса с RAGE. Методами молекулярного докинга и молекулярной динамики (МД) были сконструированы десять моделей gHSA, каждой модели соответствовал один модифицированный остаток лизина (карбоксиметил-лизин): Lys64, Lys73, Lys137, Lys233, Lys262, Lys317, Lys378, Lys525, Lys573, Lys574. Методом макромолекулярного докинга построены комплексы gHSA с V-доменом RAGE, методом МД изучена их стабильность. В построенных моделях gHSA карбоксильные группы гликированных Lys317 и Lys525 образуют внутримолекулярные солевые мостики с окружающими аминокислотами, в остальных случаях карбоксильные группы модифицированных лизинов свободны для взаимодействия с положительно заряженными аминокислотными остатками на поверхности RAGE. Согласно данным макромолекулярного докинга и последующей симуляции МД, самым эффективным с точки зрения прочности и специфичности является комплекс RAGE с gHSA, гликированным по Lys233. Специфические комплексы RAGE с gHSA, гликированным по Lys317 и Lys574, не образуются. Полученные данные о взаимодействии gHSA с RAGE помогут понять роль альбумина в патофизиологии СД и продвинуться на пути профилактики и создания эффективной терапии этого заболевания.

Ключевые слова: сахарный диабет, гликированный альбумин, карбоксиметил-лизин, рецептор конечных продуктов гликирования, молекулярное моделирование

Список литературы

  1. Gounden V, Ngu M, Anastasopoulou C, Jialal I (2020) Fructosamine. In: Stat Pearls. StatPearls Publ. Treasure Island (FL).

  2. Vlassopoulos A, Lean MEJ, Combet E (2013) Role of oxidative stress in physiological albumin glycation: A neglected interaction. Free Radic Biol Med 60: 318–324. https://doi.org/10.1016/j.freeradbiomed.2013.03.010

  3. Belsare S, Coté G (2021) Development of a colorimetric paper fluidic dipstick assay for measurement of glycated albumin to monitor gestational diabetes at the point-of-care. Talanta 223(Pt 1): 121728. https://doi.org/10.1016/j.talanta.2020.121728

  4. Bettiga A, Fiorio F, Di Marco F, Trevisani F, Romani A, Porrini E, Salonia A, Montorsi F, Vago R (2019) The modern western diet rich in advanced glycation end-products (AGEs): An overview of its impact on obesity and early progression of renal pathology. Nutrients 11(8): 1748. https://doi.org/10.3390/nu11081748

  5. Fritz G (2011) RAGE: A single receptor fits multiple ligands. Trends Biochem Sci 36: 625–632. https://doi.org/10.1016/j.tibs.2011.08.008

  6. Гаврилова АО, Северина АС, Шамхалова МШ, Шестакова МВ (2021) Роль конечных продуктов гликирования в патогенезе диабетической нефропатии. Сахарный диабет 24(5): 461–469. [Gavrilova AO, Severina AS, Shamkhalova MSH, Shestakova MV (2021) The role of advanced glycation end products in patogenesis of diabetic nephropathy. Sakharnyy Diabet 24(5): 461–469. (In Russ)]. https://doi.org/10.14341/DM12784

  7. Gill V, Kumar V, Singh K, Kumar A, Kim JJ (2019) Advanced glycation end products (AGEs) may be a striking link between modern diet and health. Biomolecules 9(12): 888. https://doi.org/10.3390/biom9120888

  8. Smith PK (2017) Do advanced glycation end-products cause food allergy? Curr Opin Allergy Clin Immunol 17: 325–331. https://doi.org/10.1097/ACI.0000000000000385

  9. Sukkar MB, Wood LG, Tooze M, Simpson JL, McDonald VM, Gibson PG, Wark PAB (2012) Soluble RAGE is deficient in neutrophilic asthma and COPD. Eur Respir J 39: 721–729. https://doi.org/10.1183/09031936.00022011

  10. Gutowska K, Czajkowski K, Kuryłowicz A (2023) Receptor for the Advanced Glycation End Products (RAGE) Pathway in Adipose Tissue Metabolism. Int J Mol Sci 24(13): 10982. https://doi.org/10.3390/ijms241310982

  11. Morales ME, Rojas RA, Monasterio AV, González BI, Figueroa CI, Manques M B, Romero EJ, Llanos LJ, Valdés ME, Cofré LC (2013) Lesiones gástricas en pacientes infectados con Helicobacter pylori: Expresión de RAGE (receptor de productos de glicosilización avanzada) y otros inmunomarcadores. Rev Med Chil 141: 1240–1248. https://doi.org/10.4067/S0034-98872013001000002

  12. Fasano M, Curry S, Terreno E, Galliano M, Fanali G, Narciso P, Notari S, Ascenzi P (2005) The extraordinary ligand binding properties of human serum albumin. IUBMB Life 57(12): 787–796. https://doi.org/10.1080/15216540500404093

  13. van der Vusse GJ (2009) Albumin as fatty acid transporter. Drug Metab Pharmacokinet 24(4): 300–307. https://doi.org/10.2133/dmpk.24.300

  14. Giglio RV, Lo Sasso B, Agnello L, Bivona G, Maniscalco R, Ligi D, Mannello F, Ciaccio M (2020) Recent Updates and Advances in the Use of Glycated Albumin for the Diagnosis and Monitoring of Diabetes and Renal, Cerebro- and Cardio-Metabolic Diseases. J Clin Med 9: 3634. https://doi.org/10.3390/jcm9113634

  15. Arasteh A, Farahi S, Habibi-Rezaei M, Moosavi-Movahedi AA (2014) Glycated albumin: an overview of the In Vitro models of an In Vivo potential disease marker. J Diabetes Metab Disord 13: 49. https://doi.org/10.1186/2251-6581-13-49

  16. Qiu HY, Hou NN, Shi JF, Liu YP, Kan CX, Han F, Sun XD (2021) Comprehensive overview of human serum albumin glycation in diabetes mellitus. World J Diabetes 12(7): 1057–1069. https://doi.org/10.4239/wjd.v12.i7.1057

  17. Xie J, Reverdatto S, Frolov A, Hoffmann R, Burz DS, Shekhtman A (2008) Structural basis for pattern recognition by the receptor for advanced glycation end products (RAGE). J Biol Chem 283(40): 27255–27269. https://doi.org/10.1074/jbc.M801622200

  18. Tramarin A, Naldi M, Degani G, Lupu L, Wiegand P, Mazzolari A, Altomare A, Aldini G, Popolo L, Vistoli G, Przybylski M, Bartolini M (2020) Unveiling the molecular mechanisms underpinning biorecognition of early-glycated human serum albumin and receptor for advanced glycation end products. Anal Bioanal Chem 412(18): 4245–4259. https://doi.org/10.1007/s00216-020-02674-w

  19. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4(1): 17. https://doi.org/10.1186/1758-2946-4-17

  20. Hein KL, Kragh-Hansen U, Morth JP, Jeppesen MD, Otzen D, Møller JV, Nissen P (2010) Crystallographic analysis reveals a unique lidocaine binding site on human serum albumin. J Struct Biol 171(3): 353–360. https://doi.org/10.1016/j.jsb.2010.03.014

  21. Kislinger T, Fu C, Huber B, Qu W, Taguchi A, Du Yan S, Hofmann M, Yan SF, Pischetsrieder M, Stern D, Schmidt AM (1999) N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J Biol Chem 274(44): 31740–31749. https://doi.org/10.1074/jbc.274.44.31740

  22. Yatime L, Andersen GR (2013) Structural insights into the oligomerization mode of the human receptor for advanced glycation end-products. FEBS J 280(24): 6556–6568. https://doi.org/10.1111/febs.12556

  23. Mohan SK, Gupta AA, Yu C (2013) Interaction of the S100A6 mutant (C3S) with the V domain of the receptor for advanced glycation end products (RAGE). Biochem Biophys Res Commun 434(2): 328–333. https://doi.org/10.1016/j.bbrc.2013.03.049

  24. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14: 28–33. https://doi.org/10.1016/0263-7855(96)00018-5

  25. Ansari NA, Moinuddin, Ali R (2011) Glycated lysine residues: a marker for non-enzymatic protein glycation in age-related diseases. Dis Markers 30(6): 317–324. https://doi.org/10.3233/DMA-2011-0791

  26. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2: 19–25. https://doi.org/10.1016/j.softx.2015.06.001

  27. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31(2): 455–461. https://doi.org/10.1002/jcc.21334

  28. Pierce BG, Wiehe K, Hwang H, Kim BH, Vreven T, Weng Z (2014) ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 30(12): 1771–1773. https://doi.org/10.1093/bioinformatics/btu097

  29. Pierce BG, Hourai Y, Weng Z (2011) Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLoS One 6(9): e24657. https://doi.org/10.1371/journal.pone.0024657

  30. Sirois CM, Jin T, Miller AL, Bertheloot D, Nakamura H, Horvath GL, Mian A, Jiang J, Schrum J, Bossaller L, Pelka K, Garbi N, Brewah Y, Tian J, Chang C, Chowdhury PS, Sims GP, Kolbeck R, Coyle AJ, Humbles AA, Xiao TS, Latz E (2013) RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA. J Exp Med 210(11): 2447–2463. https://doi.org/10.1084/jem.20120201

  31. Foloppe N, MacKerell AD Jr (2000) All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J Comput Chem 21: 86–104. https://doi.org/10.1002/(SICI)1096-987X(20000130)21:2%3C86::AID-JCC2%3E3.0.CO;2-G

  32. Jorgensen WL (1981) Quantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water. J Am Chem Soc 103(2): 335–340. https://doi.org/10.1021/ja00392a016

  33. Bussi G, Zykova-Timan T, Parrinello M (2009) Isothermal-isobaric molecular dynamics using stochastic velocity rescaling. J Chem Phys 130(7): 074101. https://doi.org/10.1063/1.3073889

  34. Parrinello M, Rahman A (1980) Crystal Structure and Pair Potentials: A Molecular-Dynamics Study. Phys Rev Lett 45: 1196–1199. https://doi.org/10.1103/PhysRevLett.45.1196

  35. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J Chem Phys 3: 10089–10092. https://doi.org/10.1063/1.464397

  36. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: A linear constraint solver for molecular simulations. J Comp Chem 18: 1463–1473.

  37. Sartore G, Bassani D, Ragazzi E, Traldi P, Lapolla A, Moro S (2021) In silico evaluation of the interaction between ACE2 and SARS-CoV-2 Spike protein in a hyperglycemic environment. Sci Rep 11(1): 22860. https://doi.org/10.1038/s41598-021-02297-w

  38. Penumutchu SR, Chou RH, Yu C (2014) Structural insights into calcium-bound S100P and the V domain of the RAGE complex. PLoS One 2014 9(8): e103947. https://doi.org/10.1371/journal.pone.0103947

  39. Sand KM, Bern M, Nilsen J, Noordzij HT, Sandlie I, Andersen JT (2015) Unraveling the Interaction between FcRn and Albumin: Opportunities for Design of Albumin-Based Therapeutics. Front Immunol 5: 682. https://doi.org/10.3389/fimmu.2014.00682

  40. Wu D, Gucwa M, Czub MP, Cooper DR, Shabalin IG, Fritzen R, Arya S, Schwarz-Linek U, Blindauer CA, Minor W, Stewart AJ (2023) Structural and biochemical characterisation of Co2+-binding sites on serum albumins and their interplay with fatty acids. Chem Sci 14(23): 6244–6258. https://doi.org/10.1039/d3sc01723k

  41. Schmidt AM, Hasu M, Popov D, Zhang JH, Chen J, Yan SD, Brett J, Cao R, Kuwabara K, Costache G, Simionescu N, Simionescu M, Stern D (1994) Receptor for advanced glycation end products (AGEs) has a central role in vessel wall interactions and gene activation in response to circulating AGE proteins. Proc Natl Acad Sci U S A 91(19): 8807–8811. https://doi.org/10.1073/pnas.91.19.8807

  42. Chen CY, Abell AM, Moon YS, Kim KH (2012) An advanced glycation end product (AGE)-receptor for AGEs (RAGE) axis restores adipogenic potential of senescent preadipocytes through modulation of p53 protein function. J Biol Chem 287(53): 44498–44507. https://doi.org/10.1074/jbc.M112.399790

  43. Belinskaia DA, Voronina PA, Shmurak VI, Jenkins RO, Goncharov NV (2021) Serum Albumin in Health and Disease: Esterase, Antioxidant, Transporting and Signaling Properties. Int J Mol Sci 22(19): 10318. https://doi.org/10.3390/ijms221910318

  44. Schmidt AM, Yan SD, Yan SF, Stern DM (2001) The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest 108(7): 949–955. https://doi.org/10.1172/JCI14002

  45. Nakamura K, Yamagishi S, Adachi H, Kurita-Nakamura Y, Matsui T, Yoshida T, Imaizumi T (2007) Serum levels of sRAGE, the soluble form of receptor for advanced glycation end products, are associated with inflammatory markers in patients with type 2 diabetes. Mol Med 13(3–4): 185–189.

  46. Steenbeke M, De Bruyne S, De Buyzere M, Lapauw B, Speeckaert R, Petrovic M, Delanghe JR, Speeckaert MM (2021) The role of soluble receptor for advanced glycation end-products (sRAGE) in the general population and patients with diabetes mellitus with a focus on renal function and overall outcome. Crit Rev Clin Lab Sci 58(2): 113–130. https://doi.org/10.1080/10408363.2020.1791045

  47. UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47(D1): D506–D515. https://doi.org/10.1093/nar/gky1049

  48. Xue J, Rai V, Singer D, Chabierski S, Xie J, Reverdatto S, Burz DS, Schmidt AM, Hoffmann R, Shekhtman A (2011) Advanced glycation end product recognition by the receptor for AGEs. Structure 19(5): 722–732. https://doi.org/10.1016/j.str.2011.02.013

  49. Castagna R, Donini S, Colnago P, Serafini A, Parisini E, Bertarelli C (2019) Biohybrid Electrospun Membrane for the Filtration of Ketoprofen Drug from Water. ACS Omega 4(8): 13270–13278. https://doi.org/10.1021/acsomega.9b01442

  50. Ascenzi P, Fasano M (2010) Allostery in a monomeric protein: the case of human serum albumin. Biophys Chem 148(1-3): 16–22. https://doi.org/10.1016/j.bpc.2010.03.001

  51. Baraka-Vidot J, Guerin-Dubourg A, Bourdon E, Rondeau P (2012) Impaired drug-binding capacities of in vitro and in vivo glycated albumin. Biochimie 94(9): 1960–1967. https://doi.org/10.1016/j.biochi.2012.05.017

  52. Shaklai N, Garlick RL, Bunn HF (1984) Nonenzymatic glycosylation of human serum albumin alters its conformation and function. J Biol Chem 259(6): 3812–3817.

  53. Yamazaki E, Inagaki M, Kurita O, Inoue T (2005) Kinetics of fatty acid binding ability of glycated human serum albumin. J Biosci 30(4): 475–481. https://doi.org/10.1007/BF02703721

  54. Blache D, Bourdon E, Salloignon P, Lucchi G, Ducoroy P, Petit JM, Verges B, Lagrost L (2015) Glycated albumin with loss of fatty acid binding capacity contributes to enhanced arachidonate oxygenation and platelet hyperactivity: relevance in patients with type 2 diabetes. Diabetes 64(3): 960–972. https://doi.org/10.2337/db14-0879

  55. Henning C, Stübner C, Arabi SH, Reichenwallner J, Hinderberger D, Fiedler R, Girndt M, Di Sanzo S, Ori A, Glomb MA (2022) Glycation Alters the Fatty Acid Binding Capacity of Human Serum Albumin. J Agric Food Chem 70(9): 3033–3046. https://doi.org/10.1021/acs.jafc.1c07218

  56. Vreven T, Pierce BG, Hwang H, Weng Z (2013) Performance of ZDOCK in CAPRI rounds 20-26. Proteins 81(12): 2175–2182. https://doi.org/10.1002/prot.24432

  57. Vreven T, Pierce BG, Borrman TM, Weng Z (2017) Performance of ZDOCK and IRAD in CAP-RI rounds 28-34. Proteins 85(3): 408–416. https://doi.org/10.1002/prot.25186

  58. Vreven T, Vangaveti S, Borrman TM, Gaines JC, Weng Z (2020) Performance of ZDOCK and IRAD in CAPRI rounds 39-45. Proteins 88(8): 1050–1054. https://doi.org/10.1002/prot.25873

Дополнительные материалы отсутствуют.