Российский физиологический журнал им. И.М. Сеченова, 2023, T. 109, № 12, стр. 1725-1741

Нейрогенная регуляция мозгового кровотока

Д. Д. Ваулина 1*, Д. Ю. Бутко 2, А. А. Карпов 1, М. М. Галагудза 13

1 Национальный медицинский исследовательский центр имени В.А. Алмазова Министерства здравоохранения Российской Федерации
Санкт-Петербург, Россия

2 Санкт-Петербургский государственный педиатрический медицинский университет Министерства здравоохранения Российской Федерации
Санкт-Петербург, Россия

3 Институт аналитического приборостроения Российской академии наук
Санкт-Петербург, Россия

* E-mail: uplavice@gmail.com

Поступила в редакцию 27.06.2023
После доработки 06.10.2023
Принята к публикации 06.10.2023

Аннотация

Головной мозг имеет хорошо развитую сосудистую сеть, что позволяет ему потреблять до 15% сердечного выброса при незначительной массе относительно массы всего тела. В норме метаболические потребности головного мозга значительно зависят от интенсивности функционирования различных его отделов, что требует постоянной регуляции уровня местного кровотока. С другой стороны, состояние системной гемодинамики может оказывать значительное влияние на органный кровоток. Сложные и многоуровневые механизмы регуляции органного мозгового кровотока направлены на минимизацию возможных неблагоприятных последствий влияния нарушений системной гемодинамики. К основным механизмам регуляции мозгового кровотока относят: миогенную регуляцию, влияние местных гуморальных воздействий и вазоактивных веществ (гормонов, метаболитов) системного кровотока, изменение газового состава крови (повышение или снижение в крови напряжения кислорода или углекислого газа). Кроме того, выделяют эндотелий-зависимые механизмы регуляции. Наконец, еще один уровень регуляции тонуса мозговых артерий представлен воздействием нейротрансмиттеров, высвобождающихся из терминалей вазомоторных волокон симпатического и парасимпатического отделов вегетативной нервной системы, а также из окончаний субкортикальных нейронов и кортикальных интернейронов. В настоящем обзоре рассмотрены принципы нейрогенной регуляции мозгового кровотока. Нейрогенная регуляция сосудистого тонуса представляет собой наиболее сложный контур регуляции. Вегетативная иннервация мозговых сосудов имеет существенные особенности, отличающие ее от таковой в большинстве других органов большого круга кровообращения. Кроме собственно вегетативной иннервации, сосуды головного мозга получают сенсорную иннервацию, а мелкие внутримозговые артериолы также иннервируются непосредственно нейронами подкорковых ядер и кортикальными интернейронами. В этой связи более глубокое понимание молекулярных механизмов нейрогенной регуляции мозгового кровотока в перспективе может послужить основой для разработки новых методов лечения тяжелых заболеваний головного мозга, основанных на нейромодуляции.

Ключевые слова: головной мозг, нейрогенная регуляция, симпатическая иннервация, парасимпатическая иннервация, сенсорная иннервация

Список литературы

  1. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21(10): 1133–1145. https://doi.org/10.1097/00004647-200110000-00001

  2. Бабиянц АЯ, Хананашвили ЯА (2018) Мозговое кровообращение: физиологические аспекты и современные методы исследования. Журн фундамент мед биол 3: 46–54. [Babiyanc AYa, Hananashvili YA (2018) Cerebral circulation: physiological aspects and metody issledovaniya. J Fundament Med Biol 3: 46–54. (In Russ)].

  3. Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM (2021) Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev 101(4): 1487–1559. https://doi.org/10.1152/physrev.00022.2020

  4. Thomas SN, Schroeder T, Secher NH, Mitchell JH (1989) Cerebral blood flow during submaximal and maximal dynamic exercise in humans. J Appl Physiol (1985) 67(2): 744–748. https://doi.org/10.1152/jappl.1989.67.2.744

  5. Iadecola C (2017) The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron 96(1): 17–42. https://doi.org/10.1016/j.neuron.2017.07.030

  6. Koep JL, Taylor CE, Coombes JS, Bond B, Ainslie PN, Bailey TG (2022) Autonomic control of cerebral blood flow: fundamental comparisons between peripheral and cerebrovascular circulations in humans. J Physiol 600(1): 15–39. https://doi.org/10.1113/JP281058

  7. Bleys RL, Cowen T (2001) Innervation of cerebral blood vessels: morphology, plasticity, age-related, and Alzheimer’s disease-related neurodegeneration. Microsc Res Tech 53(2): 106–118. https://doi.org/10.1002/jemt.1075

  8. Brassard P, Tymko MM, Ainslie PN (2017) Sympathetic control of the brain circulation: Appreciating the complexities to better understand the controversy. Auton Neurosci 207: 37–47. https://doi.org/10.1016/j.autneu.2017.05.003

  9. Paulson OB, Strandgaard S, Edvinsson L (1990) Cerebral autoregulation. Cerebrovasc Brain Metab Rev 2(2): 161–192. PMID: 2201348

  10. Strandgaard S, Sigurdsson ST (2008) Point:Counterpoint: Sympathetic activity does/does not influence cerebral blood flow. Counterpoint: Sympathetic nerve activity does not influence cerebral blood flow. J Appl Physiol (1985) 105(4): 1366–1367; discussion 1367–1368. https://doi.org/10.1152/japplphysiol.90597.2008a

  11. Cassaglia PA, Griffiths RI, Walker AM (2008) Sympathetic nerve activity in the superior cervical ganglia increases in response to imposed increases in arterial pressure. Am J Physiol Regul Integr Comp Physiol 294(4): R1255–R1261. https://doi.org/10.1152/ajpregu.00332.2007

  12. Thomas GD (2011) Neural control of the circulation. Adv Physiol Educ 35(1): 28–32. https://doi.org/10.1152/advan.00114.2010

  13. Gordon GRJ, MacVicar BA, Mulligan SJ (2009) Glia control of blood flow. In: Encyclopedia of Neuroscience. LR Squire (ed). Oxford. Acad Press. 737–742.

  14. Gezalian MM, Mangiacotti L, Rajput P, Sparrow N, Schlick K, Lahiri S (2021) Cerebrovascular and neurological perspectives on adrenoceptor and calcium channel modulating pharmacotherapies. J Cereb Blood Flow Metab 41(4): 693–706. https://doi.org/10.1177/0271678X20972869

  15. Purkayastha S, Saxena A, Eubank WL, Hoxha B, Raven PB (2013) α1-Adrenergic receptor control of the cerebral vasculature in humans at rest and during exercise. Exp Physiol 98(2): 451–461. https://doi.org/10.1113/expphysiol.2012.066118

  16. Hamner JW, Tan CO, Lee K, Cohen MA, Taylor JA (2010) Sympathetic control of the cerebral vasculature in humans. Stroke 41(1): 102–109. https://doi.org/10.1161/STROKEAHA.109.557132

  17. Hamner JW, Tan CO (2014) Relative contributions of sympathetic, cholinergic, and myogenic mechanisms to cerebral autoregulation. Stroke. 45(6): 1771–1777. https://doi.org/10.1161/STROKEAHA.114.005293

  18. Saleem S, Teal PD, Howe CA, Tymko MM, Ainslie PN, Tzeng YC (2018) Is the Cushing mechanism a dynamic blood pressure-stabilizing system? Insights from Granger causality analysis of spontaneous blood pressure and cerebral blood flow. Am J Physiol Regul Integr Comp Physiol 315(3): R484–R495. https://doi.org/10.1152/ajpregu.00032.2018

  19. Kimmerly DS, Tutungi E, Wilson TD, Serrador JM, Gelb AW, Hughson RL, Shoemaker JK (2003) Circulating norepinephrine and cerebrovascular control in conscious humans. Clin Physiol Funct Imaging 23(6): 314–319. https://doi.org/10.1046/j.1475-0961.2003.00507.x

  20. Ide K, Boushel R, Sørensen HM, Fernandes A, Cai Y, Pott F, Secher NH (2000) Middle cerebral artery blood velocity during exercise with beta-1 adrenergic and unilateral stellate ganglion blockade in humans. Acta Physiol Scand 170(1): 33–38. https://doi.org/10.1046/j.1365-201x.2000.00757.x

  21. Ogoh S, Dalsgaard MK, Secher NH, Raven PB (2007) Dynamic blood pressure control and middle cerebral artery mean blood velocity variability at rest and during exercise in humans. Acta Physiol (Oxf) 191(1): 3–14. https://doi.org/10.1111/j.1748-1716.2007.01708.x

  22. Hare GM, Worrall JM, Baker AJ, Liu E, Sikich N, Mazer CD (2006) Beta2 adrenergic antagonist inhibits cerebral cortical oxygen delivery after severe haemodilution in rats. Br J Anaesth 97(5): 617–623. https://doi.org/10.1093/bja/ael238

  23. Seifert T, Rasmussen P, Secher NH, Nielsen HB (2009) Cerebral oxygenation decreases during exercise in humans with beta-adrenergic blockade. Acta Physiol (Oxf) 196(3): 295–302. https://doi.org/10.1111/j.1748-1716.2008.01946.x

  24. Owman C, Edvinsson L, Nielsen KC (1974) Autonomic neuroreceptor mechanisms in brain vessels. Blood Vessels 11(1-2): 2–31. https://doi.org/10.1159/000157996

  25. Roloff EV, Tomiak-Baquero AM, Kasparov S, Paton JF (2016) Parasympathetic innervation of vertebrobasilar arteries: is this a potential clinical target? J Physiol 594(22): 6463–6485. https://doi.org/10.1113/JP272450

  26. Goadsby PJ (2013) Autonomic nervous system control of the cerebral circulation. Handb Clin Neurol 117: 193–201. https://doi.org/10.1016/B978-0-444-53491-0.00016-X

  27. Hamel E (2006) Perivascular nerves and the regulation of cerebrovascular tone. J Appl Physiol (1985) 100(3): 1059–1064. https://doi.org/10.1152/japplphysiol.00954.2005

  28. Edvinsson L, Ekman R (1984) Distribution and dilatory effect of vasoactive intestinal polypeptide (VIP) in human cerebral arteries. Peptides 5(2): 329–331. https://doi.org/10.1016/0196-9781(84)90229-8

  29. Suzuki N, Hardebo JE (1993) The cerebrovascular parasympathetic innervation. Cerebrovasc Brain Metab Rev 5(1): 33–46.

  30. Goadsby PJ, Lambert GA, Lance JW (1984) The peripheral pathway for extracranial vasodilatation in the cat. J Auton Nerv Syst 10(2): 145–155. https://doi.org/10.1016/0165-1838(84)90053-5

  31. D’Alecy LG, Rose CJ (1977) Parasympathetic cholinergic control of cerebral blood flow in dogs. Circ Res 41(3): 324–331. https://doi.org/10.1161/01.res.41.3.324

  32. Scremin OU, Rovere AA, Raynald AC, Giardini A (1973) Cholinergic control of blood flow in the cerebral cortex of the rat. Stroke 4(2): 233–239.

  33. Hamner JW, Tan CO, Tzeng YC, Taylor JA (2012) Cholinergic control of the cerebral vasculature in humans. J Physiol 590(24): 6343–6352. https://doi.org/10.1113/jphysiol.2012.245100

  34. Cheyuo C, Jacob A, Wu R, Zhou M, Coppa GF, Wang P (2011) The parasympathetic nervous system in the quest for stroke therapeutics. J Cereb Blood Flow Metab 31(5): 1187–1195. https://doi.org/10.1038/jcbfm.2011.24

  35. Khurana D, Kaul S, Bornstein NM (2009) ImpACT-1 Study Group. Implant for augmentation of cerebral blood flow trial 1: a pilot study evaluating the safety and effectiveness of the Ischaemic Stroke System for treatment of acute ischaemic stroke. Int J Stroke 4(6): 480–485. https://doi.org/10.1111/j.1747-4949.2009.00385.x

  36. Baker TS, Robeny J, Cruz D, Bruhat A, Iloreta AM, Costa A, Oxley TJ (2021) Stimulating the Facial Nerve to Treat Ischemic Stroke: A Systematic Review. Front Neurol 12: 753182. https://doi.org/10.3389/fneur.2021.753182

  37. Ashina H, Schytz HW, Ashina M (2019) CGRP in Human Models of Migraine. Handb Exp Pharmacol 255: 109–120. https://doi.org/10.1007/164_2018_128

  38. Ashina M, Hansen JM, Do TP, Melo-Carrillo A, Burstein R, Moskowitz MA (2019) Migraine and the trigeminovascular system – 40 years and counting. The Lancet Neurol 18: 795–804. https://doi.org/10.1016/S1474-4422(19)30185-1

  39. Waeber C, Moskowitz MA (2005) Migraine as an inflammatory disorder. Neurology 64(10 Suppl 2): S9–S15. https://doi.org/10.1212/wnl.64.10_suppl_2.s9

  40. Sakas DE, Moskowitz MA, Wei EP, Kontos HA, Kano M, Ogilvy CS (1989) Trigeminovascular fibers increase blood flow in cortical gray matter by axon reflex-like mechanisms during acute severe hypertension or seizures. Proc Natl Acad Sci U S A 86(4): 1401–1405. https://doi.org/10.1073/pnas.86.4.1401

  41. Moskowitz MA, Wei EP, Saito K, Kontos HA (1988) Trigeminalectomy modifies pial arteriolar responses to hypertension or norepinephrine. Am J Physiol 255(1 Pt 2): H1–H6. https://doi.org/10.1152/ajpheart.1988.255.1.H1

  42. Faraci FM, Mayhan WG, Werber AH, Heistad DD (1987) Cerebral circulation: effects of sympathetic nerves and protective mechanisms during hypertension. Circ Res 61(5 Pt 2): 102–106.

  43. Cohen Z, Molinatti G, Hamel E (1997) Astroglial and vascular interactions of noradrenaline terminals in the rat cerebral cortex. J Cereb Blood Flow Metab 17(8): 894–904. https://doi.org/10.1097/00004647-199708000-00008

  44. Estrada C, Mengual E, González C (1993) Local NADPH-diaphorase neurons innervate pial arteries and lie close or project to intracerebral blood vessels: a possible role for nitric oxide in the regulation of cerebral blood flow. J Cereb Blood Flow Metab 13(6): 978–984. https://doi.org/10.1038/jcbfm.1993.122

  45. Allaman I, Pellerin L, Magistretti PJ (2000) Protein targeting to glycogen mRNA expression is stimulated by noradrenaline in mouse cortical astrocytes. Glia 30(4): 382–391.

  46. Kötter K, Klein J (1999) Adrenergic modulation of astroglial phospholipase D activity and cell proliferation. Brain Res 830(1): 138–145. https://doi.org/10.1016/s0006-8993(99)01416-x

  47. Elhusseiny A, Hamel E (2001) Sumatriptan elicits both constriction and dilation in human and bovine brain intracortical arterioles. Br J Pharmacol 132(1): 55–62. https://doi.org/10.1038/sj.bjp.0703763

  48. Guild SJ, Saxena UA, McBryde FD, Malpas SC, Ramchandra R (2018) Intracranial pressure influences the level of sympathetic tone. Am J Physiol Regul Integr Comp Physiol 315(5): R1049–R1053. https://doi.org/10.1152/ajpregu.00183.2018

  49. Elhusseiny A, Hamel E (2000) Muscarinic–but not nicotinic–acetylcholine receptors mediate a nitric oxide-dependent dilation in brain cortical arterioles: a possible role for the M5 receptor subtype. J Cereb Blood Flow Metab 20(2): 298–305. https://doi.org/10.1097/00004647-200002000-00011

  50. Cauli B, Tong XK, Rancillac A, Serluca N, Lambolez B, Rossier J, Hamel E (2004) Cortical G-ABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J Neurosci 24(41): 8940–8949. https://doi.org/10.1523/JNEUROSCI.3065-04.2004

  51. Yang G, Huard JM, Beitz AJ, Ross ME, Iadecola C (2000) Stellate neurons mediate functional hyperemia in the cerebellar molecular layer. J Neurosci 20(18): 6968–6973. https://doi.org/10.1523/JNEUROSCI.20-18-06968.2000

  52. Perrenoud Q, Rossier J, Férézou I, Geoffroy H, Gallopin T, Vitalis T, Rancillac A (2012) Activation of cortical 5-HT(3) receptor-expressing interneurons induces NO mediated vasodilatations and NPY mediated vasoconstrictions. Front Neural Circuits 6: 50. https://doi.org/10.3389/fncir.2012.00050

  53. Davis RJ, Murdoch CE, Ali M, Purbrick S, Ravid R, Baxter GS, Tilford N, Sheldrick RL, Clark KL, Coleman RA (2004) EP4 prostanoid receptor-mediated vasodilatation of human middle cerebral arteries. Br J Pharmacol 141(4): 580–585. https://doi.org/10.1038/sj.bjp.0705645

  54. Yu M, Cambj-Sapunar L, Kehl F, Maier KG, Takeuchi K, Miyata N, Ishimoto T, Reddy LM, Falck JR, Gebremedhin D, Harder DR, Roman RJ (2004) Effects of a 20-HETE antagonist and agonists on cerebral vascular tone. Eur J Pharmacol 486(3): 297–306. https://doi.org/10.1016/j.ejphar.2004.01.009

  55. Mariotti L, Losi G, Lia A, Melone M, Chiavegato A, Gómez-Gonzalo M, Sessolo M, Bovetti S, Forli A, Zonta M, Requie LM, Marcon I, Pugliese A, Viollet C, Bettler B, Fellin T, Conti F, Carmignoto G (2018) Interneuron-specific signaling evokes distinctive somatostatin-mediated responses in adult cortical astrocytes. Nat Commun 9(1): 82. https://doi.org/10.1038/s41467-017-02642-6

  56. Lind BL, Brazhe AR, Jessen SB, Tan FC, Lauritzen MJ (2013) Rapid stimulus-evoked astrocyte Ca2+ elevations and hemodynamic responses in mouse somatosensory cortex in vivo. Proc Natl Acad Sci U S A 110(48): E4678–E4687. https://doi.org/10.1073/pnas.1310065110

  57. Zornow MH, Maze M, Dyck JB, Shafer SL (1993) Dexmedetomidine decreases cerebral blood flow velocity in humans. J Cereb Blood Flow Metab 13(2): 350–353. https://doi.org/10.1038/jcbfm.1993.45

  58. Lee HW, Caldwell JE, Dodson B, Talke P, Howley J (1997) The effect of clonidine on cerebral blood flow velocity, carbon dioxide cerebral vasoreactivity, and response to increased arterial pressure in human volunteers. Anesthesiology 87(3): 553–558. https://doi.org/10.1097/00000542-199709000-00015

  59. Maekawa T, Cho S, Fukusaki M, Shibata O, Sumikawa K (1999) Effects of clonidine on human middle cerebral artery flow velocity and cerebrovascular CO2 response during sevoflurane anesthesia. J Neurosurg Anesthesiol 11(3): 173–177. https://doi.org/10.1097/00008506-199907000-00003

  60. Peebles KC, Ball OG, MacRae BA, Horsman HM, Tzeng YC (2012) Sympathetic regulation of the human cerebrovascular response to carbon dioxide. J Appl Physiol (1985) 113(5): 700–706. https://doi.org/10.1152/japplphysiol.00614.2012

  61. Lewis NC, Ainslie PN, Atkinson G, Jones H, Grant EJ, Lucas SJ (2013) Initial orthostatic hypotension and cerebral blood flow regulation: effect of α1-adrenoreceptor activity. Am J Physiol Regul Integr Comp Physiol 304(2): R147–R154. https://doi.org/10.1152/ajpregu.00427.2012

  62. Lewis NC, Smith KJ, Bain AR, Wildfong KW, Numan T, Ainslie PN (2015) Impact of transient hypotension on regional cerebral blood flow in humans. Clin Sci (Lond) 129(2): 169–178. https://doi.org/10.1042/CS20140751

  63. Fernandes IA, Mattos JD, Campos MO, Machado AC, Rocha MP, Rocha NG, Vianna LC, Nobrega AC (2016) Selective α1-adrenergic blockade disturbs the regional distribution of cerebral blood flow during static handgrip exercise. Am J Physiol Heart Circ Physiol 310(11): H1541–H1548. https://doi.org/10.1152/ajpheart.00125.2016

  64. Drummond JC, Dao AV, Roth DM, Cheng CR, Atwater BI, Minokadeh A, Pasco LC, Patel PM (2008) Effect of dexmedetomidine on cerebral blood flow velocity, cerebral metabolic rate, and carbon dioxide response in normal humans. Anesthesiology 108(2): 225–232. https://doi.org/10.1097/01.anes.0000299576.00302.4c

  65. Ogawa Y, Iwasaki K, Aoki K, Kojima W, Kato J, Ogawa S (2008) Dexmedetomidine weakens dynamic cerebral autoregulation as assessed by transfer function analysis and the thigh cuff method. Anesthesiology 109(4): 642–650. https://doi.org/10.1097/ALN.0b013e3181862a33

  66. Ainslie PN, Lucas SJ, Fan JL, Thomas KN, Cotter JD, Tzeng YC, Burgess KR (2012) Influence of sympathoexcitation at high altitude on cerebrovascular function and ventilatory control in humans. J Appl Physiol (1985) 113(7): 1058–1067. https://doi.org/10.1152/japplphysiol.00463.2012

  67. Jordan J, Shannon JR, Diedrich A, Black B, Costa F, Robertson D, Biaggioni I (2000) Interaction of carbon dioxide and sympathetic nervous system activity in the regulation of cerebral perfusion in humans. Hypertension 36(3): 383–388. https://doi.org/10.1161/01.hyp.36.3.383

  68. Zhang R, Zuckerman JH, Iwasaki K, Wilson TE, Crandall CG, Levine BD (2002) Autonomic neural control of dynamic cerebral autoregulation in humans. Circulation 106(14): 1814–1820. https://doi.org/10.1161/01.cir.0000031798.07790.fe

  69. Zhang R, Crandall CG, Levine BD (2004) Cerebral hemodynamics during the Valsalva maneuver: insights from ganglionic blockade. Stroke 35(4): 843–847. https://doi.org/10.1161/01.STR.0000120309.84666.AE

  70. Umeyama T, Kugimiya T, Ogawa T, Kandori Y, Ishizuka A, Hanaoka K (1995) Changes in cerebral blood flow estimated after stellate ganglion block by single photon emission computed tomography. J Auton Nerv Syst 50(3): 339–346. https://doi.org/10.1016/0165-1838(94)00105-s

  71. Mitsis GD, Zhang R, Levine BD, Tzanalaridou E, Katritsis DG, Marmarelis VZ (2009) Autonomic neural control of cerebral hemodynamics. IEEE Eng Med Biol Mag 28(6): 54–62. https://doi.org/10.1109/MEMB.2009.934908

Дополнительные материалы отсутствуют.