Российский физиологический журнал им. И.М. Сеченова, 2023, T. 109, № 12, стр. 1780-1798

Сродство гемоглобина к кислороду при коронавирусной инфекции: новые грани известной проблемы

В. В. Зинчук 1*, Н. В. Глуткина 1

1 Гродненский государственный медицинский университет
Гродно, Беларусь

* E-mail: zinchuk@grsmu.by

Поступила в редакцию 06.07.2023
После доработки 25.10.2023
Принята к публикации 26.10.2023

Аннотация

Развитие коронавирусной инфекции препятствует транспорту кислорода к тканям из-за нарушения насыщения гемоглобина в поврежденном легком. Изменение сродства гемоглобина к кислороду, являющееся наиболее важным фактором компенсации кислородной недостаточности при различных патологических состояниях, лежит в основе процессов адаптации к гипоксии. Активно дискуссируется вопрос о значении сдвига кривой диссоциации оксигемоглобина при данной патологии, при которой отмечается ее сдвиг влево в артериальной крови и смещение вправо в венозной, что в условиях развития гипоксического синдрома отражает активацию механизмов компенсации кислородной недостаточности. Изменение ее положения не является специфичной для данной патологии, а определяется степенью выраженности кислородной недостаточности и разбалансированием механизмов кардиореспираторной системы, а также особенностями статуса пациентов и анализируемого образца крови.

Ключевые слова: COVID-19, кровь, кислород, газотрансмиттер, монооксид азота, сероводород, гипоксия

Список литературы

  1. Weber RE, Fago A (2004) Functional adaptation and its molecular basis in vertebrate hemoglobins, neuroglobins and cytoglobins. Respir Physiol Neurobiol 144(2-3): 141–159. https://doi.org/10.1016/j.resp.2004.04.018

  2. Beasley R, McNaughton A, Robinson G (2006) New look at the oxyhaemoglobin dissociation curve. Lancet 367(9517): 1124–1126. https://doi.org/10.1016/S0140-6736(06)68488-2

  3. Michel D (2008) An alternative theoretical formula for hemoglobin oxygenation. Eur Biophys J 37(6): 823–827. https://doi.org/10.1007/s00249-008-0283-2

  4. Mairbäurl H, Weber RE (2012) Oxygen transport by hemoglobin. Compr Physiol 2(2): 1463–1489. https://doi.org/10.1002/cphy.c080113

  5. Storz JF (2016) Hemoglobin-oxygen affinity in high-altitude vertebrates: is there evidence for an adaptive trend? J Exp Biol 219(20): 3190–3203. https://doi.org/10.1242/jeb.127134

  6. Srinivasan AJ, Morkane C, Martin DS, Welsby IJ (2017) Should modulation of p50 be a therapeutic target in the critically ill? Expert Rev Hematol 10(5): 449–458. https://doi.org/10.1080/17474086.2017.1313699

  7. Webb KL, Dominelli PB, Baker SE, Klassen SA, Joyner MJ, Senefeld JW, Wiggins CC (2022) Influence of High Hemoglobin-Oxygen Affinity on Humans During Hypoxia. Front Physiol 12: 1–13. https://doi.org/10.3389/fphys.2021.763933

  8. Kosmachevskaya OV, Topunov AF (2019) Electrophilic signaling: the role of reactive carbonyl compounds. Biochemistry 84(1): 3–23. https://doi.org/10.1134/S0320972519010019

  9. Laredo M, Curis E, Masson-Fron E, Voicu S, Megarbane B (2021) Does COVID-19 alter the oxyhemoglobin dissociation curve? – An observational cohort study using a mixed-effect modelling. Clin Chem Lab Med 59: e416–419. https://doi.org/10.1515/cclm-2021-0387

  10. Böning D, Kuebler WM, Bloch W (2021) The oxygen dissociation curve of blood in COVID-19. Am J Physiol Lung Cell Mol Physiol 321(2): L349-L357. https://doi.org/10.1152/ajplung.00079.2021

  11. Gille T, Sesé L, Aubourg E, Bernaudin JF, Richalet JP, Planès C (2022) Is there a shift of the oxygen-hemoglobin dissociation curve in COVID-19? Am J Physiol Lung Cell Mol Physiol 322(1): L174–L175. https://doi.org/10.1152/ajplung.00390.2021

  12. Böning D, Kuebler WM, Vogel D, Bloch W (2023) The oxygen dissociation curve of blood in COVID-19-An update. Front Med (Lausanne) 10: 1–15. https://doi.org/10.3389/fmed.2023.1098547

  13. Рябов ГА (1988) Гипоксия критических состояний. М. Медицина. [Ryabov GA (1988) Hypoxia of critical conditions. M. Medicine. (In Russ)].

  14. Иржак ЛИ, Гладилов ВВ, Мойсеенко НА (1985) Дыхательная функция крови в условиях гипероксии. М. Медицина. [Irzhak LI, Gladilov VV, Mojseenko NA (1985) Respiratory function of blood under conditions of hyperoxia. M. Medicine. (In Russ)].

  15. Scheid P, Meyer M (1978) Mixing technique for study of oxygen-hemoglobin equilibrium: a critical evaluation. J Appl Physiol Respir Environ Exerc Physiol 45(5): 818–822. https://doi.org/10.1152/jappl.1978.45.5.818

  16. Siggaard-Andersen M, Siggaard-Andersen O (1995) Oxygen status algorithm, version 3, with some applications. Acta Anaesthesiol Scand Suppl 107: 13–20. https://doi.org/10.1111/j.1399-6576.1995.tb04324.x

  17. Kosenko E, Tikhonova L, Alilova G, Montoliu C (2023) Erythrocytes Functionality in SARS-CoV-2 Infection: Potential Link with Alzheimer’s Disease. Int J Mol Sci 24(6): 1–24. https://doi.org/10.3390/ijms24065739

  18. Balcerek B, Steinach M, Lichti J, Maggioni MA, Becker PN, Labes R, Gunga HC, Persson PB, Fähling M (2020) A broad diversity in oxygen affinity to haemoglobin. Sci Rep 10(1): 1–15. https://doi.org/10.1038/s41598-020-73560-9

  19. Samaja M, Crespi T, Guazzi M, Vandegriff KD (2003) Oxygen transport in blood at high altitude: role of the hemoglobin-oxygen affinity and impact of the phenomena related to hemoglobin allosterism and red cell function. Eur J Appl Physiol 90(3-4): 351–359. https://doi.org/10.1007/s00421-003-0954-8

  20. Сережина ЕК, Обрезан АГ (2020) Патофизиологические механизмы и нозологические формы сердечно-сосудистой патологии при COVID-19. Кардиология 60(8): 23–26. [Serezhina EK, Obrezan AG (2020) Cardiovascular pathology in patients with COVID-19. Kardiolоgiya 60(8): 23–26. (In Russ)]. https://doi.org/10.18087/cardio.2020.8.n1215

  21. Бойцов СА, Погосова НВ, Палеев ФН, Ежов МВ, Комаров АЛ, Певзнер ДВ, Груздев КА, Баринова ИВ, Суворов АЮ, Алексеева ИА, Милько ОВ (2021) Клиническая картина и факторы, ассоциированные с неблагоприятными исходами у госпитализированных пациентов с новой коронавирусной инфекцией COVID-19. Кардиология 61(2): 4–14. [Boytsov SA, Pogosova NV, Paleev FN, Ezhov MV, Komarov AL, Pevsner DV, Gruzdev KA, Barinova IV, Suvorov AYu, Alekseeva IA, Milko OV (2021) Clinical characteristics and factors associated with poor outcomes in hospitalized patients with novel coronavirus infection COVID-19. Kardiolоgiya 61(2): 4–14. (In Russ)]. https://doi.org/10.18087/cardio.2021.2.n1532

  22. Nechipurenko YD, Semyonov DA, Lavrinenko IA, Lagutkin DA, Generalov EA, Zaitceva AY, Matveeva OV, Yegorov YE (2021) The Role of Acidosis in the Pathogenesis of Severe Forms of COVID-19. Biology (Basel) 10(9): 1–15. https://doi.org/10.3390/biology10090852

  23. Busana M, Camporota L, Gattinoni L (2022) Hypoxaemia in COVID-19: many pieces to a complex puzzle. Eur Respir Rev 31(164): 1–2. https://doi.org/10.1183/16000617.0090-2022

  24. Serebrovska ZO, Chong EY, Serebrovska TV, Tumanovska LV, Xi L (2020) Hypoxia, HIF-1α, and COVID-19: from pathogenic factors to potential therapeutic targets. Acta Pharmacol Sin 41(12): 1539–1546. https://doi.org/10.1038/s41401-020-00554-8

  25. Dhont S, Derom E, Van Braeckel E, Depuydt P, Lambrecht BN (2020) The pathophysiology of 'happy' hypoxemia in COVID-19. Respir Res 21(1): 1–9. https://doi.org/10.1186/s12931-020-01462-5

  26. Ebihara A, Kitahara A, Iwamoto T, Kuwahira I (2022) Silent Hypoxemia in COVID-19 Pneumonia. Adv Exp Med Biol 1395: 117–122. https://doi.org/10.1007/978-3-031-14190-4_20

  27. Тихомирова ИА (2023) Реология крови и микроциркуляция. Усп физиол наук 54(1): 3–25. [Tikhomirova IA (2023) Blood rheology and microcirculation. Usp fiziol nauk 54(1): 3–25. (In Russ)]. https://doi.org/10.31857/S0301179823010071

  28. Marques O, Weiss G, Muckenthaler MU (2022) The role of iron in chronic inflammatory diseases: from mechanisms to treatment options in anemia of inflammation. Blood 140(19): 2011–2023.https://doi.org/10.1182/blood.202101347235994752

  29. Ganz T (2019) Anemia of Inflammation. N Engl J Med 381(12): 1148–1157.https://doi.org/10.1056/NEJMra180428131532961

  30. Nemeth E, Ganz T (2023) Hepcidin and Iron in Health and Disease. Annu Rev Med 74: 261–277. https://doi.org/10.1146/annurev-med-043021-032816

  31. Thomas T, Stefanoni D, Dzieciatkowska M, Issaian A, Nemkov T, Hill RC, Francis RO, Hudson KE, Buehler PW, Zimring JC, Hod EA, Hansen KC, Spitalnik SL, D’Alessandro A (2020) Evidence of Structural Protein Damage and Membrane Lipid Remodeling in Red Blood Cells from COVID-19 Patients. J Proteom Res 19(11): 4455–4469. https://doi.org/10.1021/acs.jproteome.0c00606

  32. Gille T, Sesé L, Aubourg E, Fabre EE, Cymbalista F, Ratnam KC, Valeyre D, Nunes H, Richalet JP, Planès C (2021) The Affinity of Hemoglobin for Oxygen Is Not Altered During COVID-19. Front Physiol 12: 1–9. https://doi.org/10.3389/fphys.2021.578708

  33. Донина ЖА (2022) Причины гипоксемии при COVID-19. Рос физиол журн им ИМ Сеченова 108 (1): 3–12. [Donina ZhA (2022) Causes of hypoxemia in COVID-19. Russ J Physiol 108(1): 3–12. (In Russ)]. https://doi.org/10.31857/S0869813922010058

  34. Al-Kuraishy HM, Al-Gareeb AI, Onohuean H, El-Saber Batiha G (2022) COVID-19 and erythrocrine function: The roller coaster and danger. Int J Immunopathol Pharmacol 36: 1–7. https://doi.org/10.1177/03946320221103151

  35. Vogel DJ, Formenti F, Retter AJ, Vasques F, Camporota L (2020) A left shift in the oxyhaemoglobin dissociation curve in patients with severe coronavirus disease 2019 (COVID-19). Br J Haematol 191(3): 390–393. https://doi.org/10.1111/bjh.17128

  36. Daniel Y, Hunt BJ, Retter A, Henderson K, Wilson S, Sharpe CC, Shattock MJ (2020) Haemoglobin oxygen affinity in patients with severe COVID-19 infection. Br J Haematol 190(3): 126–127. https://doi.org/10.1111/bjh.16888

  37. DeMartino AW, Rose JJ, Amdahl MB, Dent MR, Shah FA, Bain W, McVerry BJ, Kitsios GD, Tejero J, Gladwin MT (2020) No evidence of hemoglobin damage by SARS-CoV-2 infection. Haematologica 105: 2769–2773. https://doi.org/10.3324/haematol.2020.264267

  38. Ceruti S, Minotti B, Glotta A, Biggiogero M, Bona G, Marzano M, Greco P, Spagnoletti M, Garzoni C, Bendjelid K (2022) Temporal changes in the oxyhemoglobin dissociation curve of critically ill COVID-19 patients. J Clin Med 11(3): 1–14. https://doi.org/10.3390/jcm11030788

  39. Renoux C, Fort R, Nader E, Boisson C, Joly P, Stauffer E, Robert M, Girard S, Cibiel A, Gauthier A, Connes P (2021) Impact of COVID-19 on red blood cell rheology. Br J Haematol 192(4): e108–e111. https://doi.org/10.1111/bjh.17306

  40. Bergamaschi G, Barteselli C, Del Rio V, Borrelli de Andreis F, Pellegrino I, Mengoli C, Miceli E, Colaneri M, Zuccaro V, Di Stefano M, Bruno R, Di Sabatino A (2023) Impaired respiratory function reduces haemoglobin oxygen affinity in COVID-19. Br J Haematol 200(5): e44–e47. https://doi.org/10.1111/bjh

  41. Valle A, Rodriguez J, Camiña F, Rodríguez-Segade M (2022) The oxyhaemoglobin dissociation curve is generally left-shifted in COVID-19 patients at admission to hospital, and this is associated with lower mortality. Br J Haematol 199(3): 332–338. https://doi.org/10.1111/bjh.18431

  42. Сабиров ИС, Мамедова КМ, Султанова МС, Кожоева МЗ, Ибадуллаев БМ (2021) Роль и значение гипоксического компонента в развитии осложнений новой коронавирусной инфекции (COVID-19). Науч насл 62-2(62): 21–28. [Sabirov I, Mamedova K, Sultanova M, Kozhoeva M, Ibadullaev B (2021) The role and significance of the hypoxic component in the development of complications of the new coronavirus infection (COVID-19). Sci Herit 62-2(62): 21–28. (In Russ)]. https://doi.org/10.24412/9215-0365-2021-62-2-21-28

  43. Hlutkina N, Zinchuk V (2022) Hemoglobin-oxygen affinity and gaseous transmitters (nitric oxide, hydrogen sulfide) in patients with COVID-19. Ann Clin Case Rep 7: 1–5.

  44. Зинчук ВВ, Глуткина НВ (2013) Кислородсвязывающая способность гемоглобина и оксида азота. Рос физиол журн им ИМ Сеченова 99(5): 537–554. [Zinchuk VV, Glutkina NV (2013) Oxygen-binding capacities of hemoglobinand nitric oxide. Russ J Physiol 99(5): 537–554. (In Russ)].

  45. Zinchuk V, Biletskaya E (2023) Effect of ozone on oxygen transport and pro-oxidant-antioxidant balance of red blood cell suspension. Acta Chim Slov 70(2): 226–230. https://doi.org/10.17344/acsi.2023.8032

  46. Зинчук ВВ (2021) Кислородтранспортная функция крови и газотрансмиттер сероводород. Усп физиол наук 52(3): 41–55. [Zinchuk VV (2021) Оxygen transport functions of blood and hydrogen sulfide gazotransmitter. Usp fiziol nauk 52(3): 41–55. (In Russ)]. https://doi.org/10.31857/S0301179821030085

  47. Драпкина ОМ, Васильева ЛЭ (2020) Спорные вопросы применения ингибиторов ангиотензинпревращающего фермента и антагонистов рецепторов ангиотензина у пациентов с COVID-19. Кардиоваск терапия и профилакт 19(3): 2580. [Drapkina OM, Vasilyeva LE (2020) Debatable points of using angiotensin-converting enzyme inhibitors and angiotensin receptor antagonists in patients with COVID-19. Cardiovasc Therapy and Prevent 19(3): 2580. (In Russ)]. https://doi.org/10.15829/1728-8800-2020-2580

  48. Петрищев НН, Халепо ОВ, Вавиленкова ЮА, Власов ТД (2020) COVID-19 и сосудистые нарушения (обзор литературы). Регион кровообр и микроцирк 19(3): 90–98. [Petrishchev NN, Khalepo OV, Vavilenkova YuA, Vlasov TD (2020) COVID-19 and vascular disorders (literature review). Region Blood Circulat and Microcirc 19(3): 90–98. (In Russ)]. https://doi.org/10.24884/1682-6655-2020-19-3-90-98

  49. Liddle L, Monaghan C, Burleigh MC, Baczynska KA, Muggeridge DJ, Easton C (2022) Reduced nitric oxide synthesis in winter: A potential contributing factor to increased cardiovascular risk. Nitric Oxide 127: 1–9. https://doi.org/10.1016/j.niox.2022.06.007

  50. Mandal SM (2023) Nitric oxide mediated hypoxia dynamics in COVID-19. Nitric Oxide 133: 18–21. https://doi.org/10.1016/j.niox.2023.02.002

  51. Zinchuk V, Zhadko D (2019) Association of endothelial nitric oxide synthase gene G894T polymorphism with blood oxygen transport. Nitric Oxide 84: 45–49. https://doi.org/10.1016/j.niox.2019.01.007

  52. Mortaz E, Malkmohammad M, Jamaati H, Naghan PA, Hashemian SM, Tabarsi P, Varahram M, Zaheri H, Chousein EGU, Folkerts G, Adcock IM (2020) Silent hypoxia: higher NO in red blood cells of COVID-19 patients. BMC Pulm Med 20(1): 269–272. https://doi.org/10.1186/s12890-020-01310-8

  53. Lior Y, Yatzkan N, Brami I, Yogev Y, Riff R, Hekselman I, Fremder M, Freixo-Lima G, Be’er M, Amirav I, Lavie M (2022) Fractional exhaled Nitric Oxide (FeNO) level as a predictor of COVID-19 disease severity. Nitric Oxide 124: 68–73. https://doi.org/10.1016/j.niox.2022.05.002

  54. Kolluru GK, Prasai PK, Kaskas AM, Letchuman V, Pattillo CB (2016) Oxygen tension, H2S, and NO bioavailability: is there an interaction? J Appl Physiol 120(2): 263–270. https://doi.org/10.1152/japplphysiol.00365.2015

  55. Ивашкин ВТ, Драпкина ОМ (2011) Клиническое значение оксида азота и белков теплового шока. 2-е изд. Гэотар-Медиа. [Ivashkin VT, Drapkina OM (2011) Clinical significance of nitric oxide and heat shock proteins. 2nd ed. Geotar Media. (In Russ)].

  56. Wang G, Huang Y, Zhang N, Liu W, Wang C, Zhu X, Ni X (2021) Hydrogen Sulfide Is a Regulator of Hemoglobin Oxygen-Carrying Capacity via Controlling 2,3-BPG Production in Erythrocytes. Oxid Med Cell Longev 2021: 1–16. https://doi.org/10.1155/2021/8877691

  57. Olson KR (2008) Hydrogen sulfide and oxygen sensing: implications in cardiorespiratory control. J Exp Biol 211(17): 2727–2734.https://doi.org/10.1242/jeb.010066

  58. Birulina YG, Ivanov VV, Buyko EE, Gabitova IO, Kovalev IV, Nosarev AV, Smagliy LV, Gusakova SV (2021) Role of H2S in regulation of vascular tone in metabolic disorders. Bull Exp Biol Med 171(4): 436–440.https://doi.org/10.1007/s10517-021-05243-y

  59. Fadyukova OE, Koshelev VB (2020) The effect of hydrogen sulfide on the rat erythrocyte deformability. Bull Exp Biol Med 169(6): 725–728. https://doi.org/10.1007/s10517-020-04965-9

  60. Зинчук ВВ, Глуткина НВ, Кулага ЕЯ (2022) Газотрансмиттеры (NO, H2S) и механизмы транспорта кислорода кровью у пациентов с коронавирусной инфекцией COVID-19. Смоленск мед альм 2: 79–81. [Zinchuk VV, Glutkina NV, Kulaga EI (2022) Gasotransmitters (NO, H2S) and mechanisms of oxygen transport in blood in patients with coronavirus infection COVID-19. Smol Мed Аlm 2: 79–81. (In Russ)]. https://doi.org/10.37903/SMA.2022.2.16

Дополнительные материалы отсутствуют.