Российский физиологический журнал им. И.М. Сеченова, 2023, T. 109, № 6, стр. 798-816

Электрическая эпидуральная стимуляция спинного мозга децеребрированной крысы

П. Ю. Шкорбатова 12, В. А. Ляховецкий 1, О. В. Горский 12, Н. В. Павлова 1, Е. Ю. Баженова 1, Д. С. Калинина 23, П. Е. Мусиенко 12, Н. С. Меркульева 1*

1 Институт физиологии им. И.П. Павлова РАН
Санкт-Петербург, Россия

2 Санкт-Петербургский Государственный Университет
Санкт-Петербург, Россия

3 Научно-технологический университет “Сириус”
пгт Сириус, Краснодарский край, Россия

* E-mail: mer-natalia@yandex.ru

Поступила в редакцию 28.03.2023
После доработки 12.05.2023
Принята к публикации 15.05.2023

Аннотация

Децеребрированные препараты часто используются в экспериментальной нейрофизиологии для изучения многоуровневых физиологических процессов. Для исследования локомоции в острых опытах традиционно используется модель децеребрированной кошки. Мы задались вопросом, возможно ли заменить ее при электрической эпидуральной стимуляции спинного мозга на модель децеребрированной крысы. На остром препарате 16-ти децеребрированных на преколликулярном уровне крыс линии Вистар изучены возможность вызова локомоции, а также тоническая активность мышц и мышечные вызванные потенциалы. У 10 проводили гистологический контроль уровня децеребрации. Квадрипедальную ходьбу удалось вызвать у пяти животных, бипедальную ходьбу задними конечностями – у одного животного; при этом параметры вызванной локомоции не зависят от степени повреждения substantia nigra. Тоническая активность и амплитуда сенсорного компонента вызванных потенциалов мышц задних конечностей (mm. tibialis anterior и gastrocnemius medialis) зависят от рострокаудального уровня децеребрации животных – они выше при повреждении черной субстанции (substantia nigra). Таким образом, рассматриваемая модель позволяет успешно исследовать тоническую активность мышц и вызванные мышечные потенциалы, однако использование этой модели при изучении контролируемой локомоции требует проведения дополнительных исследований.

Ключевые слова: децеребрированная крыса, эпидуральная стимуляция, тоническая активность, локомоция, вызванный потенциал

Список литературы

  1. Stahnisch FW (2010) Chapter 11: on the use of animal experimentation in the history of neurology. Handb Clin Neurol 95: 129–148. https://doi.org/10.1016/S0072-9752(08)02111-8

  2. Whelan PJ (1996) Control of locomotion in the decerebrate cat. Prog Neurobiol 49: 481–515.

  3. Domínguez-Rodríguez LE, Stecina K, García-Ramírez DL, Mena-Avila E, Milla-Cruz JJ, Martínez-Silva L, Zhang M, Hultborn H, Quevedo JN (2020) Candidate interneurons mediating the resetting of the locomotor rhythm by extensor group I afferents in the cat. Neuroscience 450: 96–112. https://doi.org/10.1016/j.neuroscience.2020.09.017

  4. Aguilar Garcia IG, Dueñas-Jiménez JM, Castillo L, Osuna-Carrasco LP, De La Torre Valdovinos B, Castañeda-Arellano R, López-Ruiz JR, Toro-Castillo C, Treviño M, Mendizabal-Ruiz G, Duenas-Jimenez SH (2020) Fictive scratching patterns in brain cortex-ablated, midcollicular decerebrate, and spinal cats. Front Neural Circuits 27: 14. https://doi.org/10.3389/fncir.2020.00001

  5. Silverman J., Garnett NL., Giszter SF, Heckman CJ, Kulpa-Eddy JA, Lemay MA, Perry CK, Pinter M (2005) Decerebrate mammalian preparations: unalleviated or fully alleviated pain? A review and opinion. Contempor Topics Lab Animal Sci 44: 34–36.

  6. Sapru HN, Krieger AJ (1979) Cardiovascular and respiratory effects of some anesthetics in the decerebrate rat. Eur J Pharmacol 53: 151–158. https://doi.org/10.1016/0014-2999(79)90160-2

  7. Ho SM, Waite PM (2002) Effects of different anesthetics on the paired-pulse depression of the h reflex in adult rat. Exp Neurol 177: 494–502. https://doi.org/10.1006/exnr.2002.8013

  8. Thiele FH (1905) On the efferent relationship of the optic thalamus and Deiter’s nucleus to the spinal cord, with special reference to the cerebellar influx of Dr Hughlings Jackson and the genesis of the decerebrate rigidity of Ord and Sherrington. J Physiol 32: 358–384. https://doi.org/10.1113/jphysiol.1905.sp001089

  9. Sherrington CS (1910) Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J Physiol 40: 28–121. https://doi.org/10.1113/jphysiol.1910.sp001362

  10. Frigon A (2020) Fundamental contributions of the cat model to the neural control of locomotion. In The Neural Control of Movement (P. 315–348). Academic Press.https://doi.org/10.1016/B978-0-12-816477-8.00013-2

  11. Мусиенко ПЕ, Горский ОВ, Килимник ВА, Козловская ИБ, Courtine G, Edgerton VR, Герасименко ЮП (2013) Регуляция позы и локомоции у децеребрированных и спинализированных животных. Рос физиол журн им ИМ Сеченова 99: 392–405. [Musienko PE, Gorskii OV, Kilimnik VA, Kozlovskaia IB, Courtine G, Edgerton VR, Gerasimenko YuP (2013) Neuronal control of posture and locomotion in decerebrated and spinalized animals. Ross Fiziol Zh Im I M Sechenova 99: 392–405. (In Russ)].

  12. Макарова МН (2021) Кошки в лабораторных исследованиях. Обзор литературы. Лабораторные животные для научных исследований. 1: 86–104. [Makarova MN (2021) Cats in laboratory studies. Literature review Laboratornyye Zhivotnyye Dlya Nauchnykh Issledovaniy. 1: 86–104. (In Russ)]. https://doi.org/10.29296/2618723X-2021-01-09

  13. Harnie J, Audet J, Klishko AN, Doelman A, Prilutsky BI, Frigon A (2021) The spinal control of backward locomotion. J Neurosci 41: 630–647. https://doi.org/10.1523/JNEUROSCI.0816-20.2020

  14. Fathi Y, Erfanian A (2022) Decoding bilateral hindlimb kinematics from cat spinal signals using three-dimensional convolutional neural network. Front Neurosci 16: 801818. https://doi.org/10.3389/fnins.2022.801818

  15. Roussel M, Lemieux M, Bretzner F (2020) Using mouse genetics to investigate supraspinal pathways of the brain important to locomotion. In The Neural Control of Movement (P. 269–313). Academic Press. https://doi.org/10.1016/B978-0-12-816477-8.00012-0

  16. Hofstoetter US, Freundl B, Binder H, Minassian K (2018) Common neural structures activated by epidural and transcutaneous lumbar spinal cord stimulation: Elicitation of posterior root-muscle reflexes. PloS One 13: e0192013. https://doi.org/10.1371/journal.pone.0192013

  17. Ichiyama RM, Gerasimenko YP, Zhong H, Roy RR, Edgerton VR (2005) Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation. Neurosci Lett 383: 339–344. https://doi.org/10.1016/j.neulet.2005.04.049

  18. Capogrosso M, Wenger N, Raspopovic S, Musienko P, Beauparlant J, Bassi Luciani L, Courtine G, Micera S (2013) A computational model for epidural electrical stimulation of spinal sensorimotor circuits. J Neurosci 33: 19326–19340. https://doi.org/10.1523/JNEUROSCI.1688-13.2013

  19. Wang S, Zhang LC, Fu HT, Deng JH, Xu GX, Li T, Ji XR, Tang PF (2021) Epidural electrical stimulation effectively restores locomotion function in rats with complete spinal cord injury. Neural Regen Res 16: 573–579. https://doi.org/10.4103/1673-5374.290905

  20. Gerasimenko Y, Preston C, Zhong H, Roy RR, Edgerton VR, Shah PK (2019) Rostral lumbar segments are the key controllers of hindlimb locomotor rhythmicity in the adult spinal rat. J Neurophysiol 122: 585–600. https://doi.org/10.1152/jn.00810.2018

  21. Nicolopoulos-Stournaras S, Iles JF (1984) Hindlimb muscle activity during locomotion in the rat (Rattus norvegicus) (Rodentia: Muridae). J Zool Lond 203: 427–440. https://doi.org/10.1111/j.1469-7998.1984.tb02342.x

  22. Skinner RD, Garcia-Rill E (1984) The mesencephalic locomotor region (MLR) in the rat. Brain Res 323: 385–389. https://doi.org/10.1016/0006-8993(84)90319-6

  23. Garcia-Rill E, Kinjo N, Atsuta Y, Ishikawa Y, Webber M, Skinner RD (1990) Posterior midbrain-induced locomotion. Brain Res Bull 24: 499–508. https://doi.org/10.1016/0361-9230(90)90103-7

  24. Yang CT, Vaca L, Roy RR, Zhong H, Edgerton VR, Judy JW (2005) Neural-Ensemble activity of spinal cord L1/L2 during stepping in a decerebrate rat preparation. Conference Proceedings. 2nd Internat IEEE EMBS Conf Neural Engineer 66–69. https://doi.org/10.1109/CNE.2005.1419554

  25. Grillner S, Shik ML (1973) On the descending control of the lumbosacral spinal cord from the “mesencephalic locomotor region”. Acta Physiol Scand 87: 320–333. https://doi.org/10.1111/j.1748-1716.1973.tb05396.x

  26. Ivanenko YP, Gurfinkel VS, Selionov VA, Solopova IA, Sylos-Labini F, Guertin PA, Lacquaniti F (2017) Tonic and rhythmic spinal activity underlying locomotion. Curr Pharm Des 23: 1753–1763. https://doi.org/10.2174/1381612823666170125152246

  27. Vargas Luna JL, Brown J, Krenn MJ, McKay B, Mayr W, Rothwell JC, Dimitrijevic MR (2021) Neurophysiology of epidurally evoked spinal cord reflexes in clinically motor-complete posttraumatic spinal cord injury. Exp Brain Res 239: 2605–2620. https://doi.org/10.1007/s00221-021-06153-1

  28. Dobson KL, Harris J (2012) A detailed surgical method for mechanical decerebration of the rat. Exp Physiol 97: 693–698. https://doi.org/10.1113/expphysiol.2012.064840

  29. Ghali GZ, Ghali MGZ (2020) Microneurosurgical techniques and perioperative strategies utilized to optimize experimental supracollicular decerebration in rats. J Integ Neurosci 19: 137–177. https://doi.org/10.31083/j.jin.2020.01.1153

  30. Gilerovich EG, Moshonkina TR, Fedorova EA, Shishko TT, Pavlova NV, Gerasimenko YP, Otellin VA (2008) Morphofunctional characteristics of the lumbar enlargement of the spinal cord in rats. Neurosci Behav Physiol 38: 855–860. https://doi.org/10.1007/s11055-008-9056-8

  31. Wenger N, Moraud EM, Gandar J, Musienko P, Capogrosso M, Baud L, Le Goff CG, Barraud Q, Pavlova N, Dominici N, Minev IR, Asboth L, Hirsch A, Duis S, Kreider J, Mortera A, Haverbeck O, Kraus S, Schmitz F, DiGiovanna J, van den Brand R, Bloch J, Detemple P, Lacour SP, Bézard E, Micera S, Courtine G (2016) Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury. Nat Med 22: 138–145. https://doi.org/10.1038/nm.4025

  32. Merkulyeva N, Veshchitskii A, Gorsky O, Pavlova N, Zelenin PV, Gerasimenko Y, Deliagina TG, Musienko P (2018) Distribution of spinal neuronal networks controlling forward and backward locomotion. J Neurosci 38: 4695–4707. https://doi.org/10.1523/JNEUROSCI.2951-17.2018

  33. Merkulyeva N, Lyakhovetskii V, Gorskii O, Musienko P (2022) Differences in backward and forward treadmill locomotion in decerebrated cats. J Exp Biol 225: jeb244210. https://doi.org/10.1242/jeb.244210

  34. Darling RA, Ritter S (2009) 2-Deoxy-D-glucose, but not mercaptoacetate, increases food intake in decerebrate rats. Am J Physiol Regul Integr Comp Physiol 297: R382–R386. https://doi.org/10.1152/ajpregu.90827.2008

  35. Zhou D, Huang Q, Fung ML, Li A, Darnall RA, Nattie EE, St John WM (1996) Phrenic response to hypercapnia in the unanesthetized, decerebrate, newborn rat. Respir Physiol 104: 11–22. https://doi.org/10.1016/0034-5687(95)00098-4

  36. Bedford TG, Loi PK, Crandall CC (1985) A model of dynamic exercise: the decerebrate rat locomotor preparation. J Appl Physiol 72: 121–127. https://doi.org/10.1152/jappl.1992.72.1.121

  37. Ghali MGZ (2021) Dynamic changes in arterial pressure following high cervical transection in the decerebrate rat. J Spinal Cord Med 44: 399–410. https://doi.org/10.1080/10790268.2019.1639974

  38. Yoshiyama M, Roppolo JR, Takeda M, de Groat WC (2013) Effects of urethane on reflex activity of lower urinary tract in decerebrate unanesthetized rats. Am J Physiol Renal Physiol 304: F390–F396. https://doi.org/10.1152/ajprenal.00574.2012

  39. Asanome M, Matsuyama K, Mori S (1998) Augmentation of postural muscle tone induced by the stimulation of the descending fibers in the midline area of the cerebellar white matter in the acute decerebrate cat. Neurosci Res 30: 257–269.

  40. Musienko P, Courtine G, Tibbs JE, Kilimnik V, Savochin A, Garfinkel A, Roy RR, Edgerton VR, Gerasimenko Y (2012) Somatosensory control of balance during locomotion in decerebrated cat. J Neurophysiol 107: 2072–2082. https://doi.org/10.1152/jn.00730.2011

  41. Musienko PE, Zelenin PV, Lyalka VF, Gerasimenko YP, Orlovsky GN, Deliagina TG (2012) Spinal and supraspinal control of the direction of stepping during locomotion. J Neurosci 32: 17442–17453. https://doi.org/10.1523/JNEUROSCI.3757-12.2012

  42. Musienko PE, Deliagina TG, Gerasimenko YP, Orlovsky GN, Zelenin PV (2014) Limb and trunk mechanisms for balance control during locomotion. J Neurosci 2014. 34: 5704–5716. https://doi.org/10.1523/JNEUROSCI.4663-13.2014

  43. Pickering AE, Paton JF (2006) A decerebrate, artificially-perfused in situ preparation of rat: utility for the study of autonomic and nociceptive processing. J Neurosci Meth 155: 260–271. https://doi.org/10.1016/j.jneumeth.2006.01.011

  44. Grill HJ, Norgren R (1978) Neurological tests and behavioral deficits in chronic thalamic and chronic decerebrate rats. Brain Res 14: 299–312. https://doi.org/10.1016/0006-8993(78)90570-x

  45. Шик МЛ, Северин ФВ, Орловский ГН (1966) Управление ходьбой и бегом посредством электрической стимуляции среднего мозга. Биофизика XI: 659–666. [Shik ML, Severin FV, Orlovsky GN (1966) Control of walking and running by means of electric stimulation of the midbrain. Biophyzica XI: 659–666. (In Russ)].

  46. Fouad K, Pearson KG (1997) Effects of extensor muscle afferents on the timing of locomotor activity during walking in adult rats. Brain Res 749: 320–328. https://doi.org/10.1016/S0006-8993(96)01328-5

  47. Shkorbatova P, Lyakhovetskii V, Pavlova N, Popov A, Bazhenova E, Kalinina D, Gorskii O, Musienko P (2020) Mapping of the spinal sensorimotor network by transvertebral and transcutaneous spinal cord stimulation. Front Systems Neurosci 14: 555593. https://doi.org/10.3389/fnsys.2020.555593

  48. Ishii K, Asahara R, Komine H, Liang N, Matsukawa K (2020) Pivotal role of the ventral tegmental area in spontaneous motor activity and concomitant cardiovascular responses in decerebrate rats. Brain Res 1729: 146616. https://doi.org/10.1016/j.brainres.2019.146616

  49. Orlovsky GN (1972) Activity of rubrospinal neurons during locomotion. Brain Res 46: 99–112. https://doi.org/10.1016/0006-8993(72)90008-x

  50. Basile GA, Quartu M, Bertino S, Serra MP, Boi M, Bramanti A, Anastasi GP, Milardi D, Cacciola A (2021) Red nucleus structure and function: from anatomy to clinical neurosciences. Brain Struct Funct 226: 69–91. https://doi.org/10.1007/s00429-020-02171-x

  51. Nicolopoulos-Stournaras S, Iles JF (1983) Motor neuron columns in the lumbar spinal cord of the rat. J Comp Neurol 217: 75–85. https://doi.org/10.1002/cne.902170107

  52. Vanderhorst VG, Holstege G (1997) Organization of lumbosacral motoneuronal cell groups innervating hindlimb, pelvic floor, and axial muscles in the cat. J Comp Neurol 382: 46–76. https://doi.org/10.1002/(sici)1096-9861(19970526)

  53. Lavrov I, Musienko PE, Selionov VA, Zdunowski S, Roy RR, Edgerton VR, Gerasimenko Y (2015) Activation of spinal locomotor circuits in the decerebrated cat by spinal epidural and/or intraspinal electrical stimulation. Brain Res 1600: 84–92. https://doi.org/10.1016/j.brainres.2014.11.003

  54. Iwahara T, Atsuta Y, Garcia-Rill E, Skinner RD (1992) Spinal cord stimulation-induced locomotion in the adult cat. Brain Res Bull 28: 99–105. https://doi.org/10.1016/0361-9230(92)90235-p

  55. Bogacheva IN, Musienko PE, Shcherbakova NA, Moshonkina TR, Savokhin AA, Gerasimenko YuP (2014) Analysis of locomotor activity in decerebrate cats using electromagnetic and epidural electrical stimulation of the spinal cord. Neurosci Behav Physi 44: 552–559. https://doi.org/10.1007/s11055-014-9950-1

  56. Waller WH (1940) Progression movements elicited by subthalamic stimulation. J Neurophysiol 3: 300–307.

  57. Garcia-Rill E, Skinner RD, Fitzgerald JA (1983) Activity in the mesencephalic locomotor region during locomotion. Exp Neurol 82: 609–622. https://doi.org/10.1016/0014-4886(83)90084-5

  58. Орловский ГН (1969) Спонтанная и вызванная локомоция таламической кошки. Биофизика XIV: 1095–1102. [Orlovsky GN (1969) Spontaneous and evoked locomotion of the thalamic cat. Biophyzica XIVI: 1095–1102. (In Russ)].

  59. Будакова НН, Шик МЛ (1974) Шагательные движения передних конечностей и феномен Шиффа–Шеррингтона. Бюлл экспер биол мед 77: 6–10. [Budakova NN, Shik ML (1974) Stepping movements of the forelimbs and Shiff-Sherrington phenomen. Byull eksper biol med 77: 6–10. (In Russ)].

  60. Yamaguchi T (1992) Muscle activity during forelimb stepping in decerebrate cats. Jpn J Physiol 42: 489–399. https://doi.org/10.2170/jjphysiol.42.489

  61. Juvin L, Simmers J, Morin D (2005) Propriospinal circuitry underlying interlimb coordination in mammalian quadrupedal locomotion. J Neurosci 25: 6025–6035. https://doi.org/10.1523/JNEUROSCI.0696-05.2005

  62. Reed WR, Shum-Siu A, Onifer SM, Magnuson DSK (2006) Inter-enlargement pathways in the ventrolateral funiculus of the adult rat spinal cord. Neuroscience 142: 1195–1207. https://doi.org/10.1016/j.neuroscience.2006.07.017

  63. Miller S, Reitsma DJ, van der Meché FG (1973) Functional organization of long ascending propriospinal pathways linking lumbo-sacral and cervical segments in the cat. Brain Res 62: 169–188. https://doi.org/10.1016/0006-8993(73)90626-4

  64. Barthélemy D, Leblond H, Provencher J, Rossignol S (2006) Non-locomotor and locomotor hindlimb responses evoked by electrical microstimulation of the lumbar cord in spinalized cats. J Neurophysiol 96: 3273–3292. https://doi.org/10.1152/jn.00203.2006

  65. Barthélemy D, Leblond H, Rossignol S (2007) Characteristics and mechanisms of locomotion induced by intraspinal microstimulation and dorsal root stimulation in spinal cats. J Neurophysiol 97: 1986–2000. https://doi.org/10.1152/jn.00818.2006

  66. Будакова НН (1971) Шагательные движения, вызываемые у мезэнцефалической кошки ритмическим раздражением дорсального корешка. Физиол журн СССР им ИМ Сеченова LVII: 1632–1640. [Budakova NN (1971) Stepping movements evoked by a rhythmic stimulation of a dorsal root in mesencephalic cat. Fiziol zhurnal SSSR im IM Sechenova LVII: 1632–1640. (In Russ)].

  67. Lyakhovetskii V, Merkulyeva N, Gorskii O, Musienko P (2021) Simultaneous bidirectional hindlimb locomotion in decerebrate cats. Sci Rep 11: 3252. https://doi.org/10.1038/s41598-021-82722-2

  68. Thota AK, Watson SC, Knapp E, Thompson B, Jung R (2005) Neuromechanical control of locomotion in the rat. J Neurotrauma 22: 442–465. https://doi.org/10.1089/neu.2005.22.442

  69. Walker C, Vierck CJ Jr, Ritz LA (1998) Balance in the cat: role of the tail and effects of sacrocaudal transection. Behav Brain Res 91: 41–47. https://doi.org/10.1016/s0166-4328(97)00101-0

  70. Wada N, Hori H, Tokuriki M (1993) Electromyographic and kinematic studies of tail movements in dogs during treadmill locomotion. J Morphol 217: 105–113. https://doi.org/10.1002/jmor.1052170109

  71. Takakusaki K (2013) Neurophysiology of gait: from the spinal cord to the frontal lobe. Mov Disord 28: 1483–1491. https://doi.org/10.1002/mds.25669

  72. de Vrind VAJ, van 't Sant LJ, Rozeboom A, Luijendijk-Berg MCM, Omrani A, Adan RAH (2021) Leptin receptor expressing neurons in the substantia nigra regulate locomotion, and in the ventral tegmental area motivation and feeding. Front Endocrinol 12: 680494. https://doi.org/10.3389/fendo.2021.680494

  73. Double KL, Crocker AD (1993) Quantitative electromyographic changes following modification of central dopaminergic transmission. Brain Res 604(1–2): 342–344. https://doi.org/10.1016/0006-8993(93)90388-4

  74. Wolfarth S, Konieczny J, Smiałowska M, Schulze G, Ossowska K (1996) Influence of 6-hydroxydopamine lesion of the dopaminergic nigrostriatal pathway on the muscle tone and electromyographic activity measured during passive movements. Neuroscience 74: 985–996. https://doi.org/10.1016/0306-4522(96)00418-6

Дополнительные материалы отсутствуют.