Российский физиологический журнал им. И.М. Сеченова, 2023, T. 109, № 8, стр. 1005-1027

Механосенсорные структуры в системе механотрансдукции мышечного волокна

Т. М. Мирзоев 1*, Б. С. Шенкман 1

1 Институт медико-биологических проблем РАН
Москва, Россия

* E-mail: tmirzoev@yandex.ru

Поступила в редакцию 12.05.2023
После доработки 27.06.2023
Принята к публикации 01.07.2023

Аннотация

Способность скелетных мышц воспринимать механические стимулы и реагировать на них путем изменения внутриклеточных электрохимических и биохимических процессов (механотрансдукция) имеет важнейшее значение для регуляции физиологических процессов в мышечных волокнах. В настоящем обзоре представлена характеристика основных сарколеммальных, саркомерных и цитоскелетных механочувствительных структур, а также проанализированы механо-зависимые сигнальные пути и механизмы, участвующие в регуляции экспрессии генов, а также процессах синтеза и распада белка. В заключительной части обзора сформулированы специфические вопросы в области механотрансдукции скелетных мышц, требующие разрешения в дальнейших исследованиях. Понимание особенностей механотрансдукции в скелетных мышцах необходимо для разработки эффективных средств, направленных на лечение мышечных дистрофий, саркопении, а также профилактики мышечной атрофии, вызванной гипокинезией.

Ключевые слова: скелетная мышца, механосенсоры, механотрансдукция, механический сигнал, функциональная разгрузка, синтез белка, внутриклеточная сигнализация

Список литературы

  1. Goldberg AL, Etlinger JD, Goldspink DF, Jablecki C (1975) Mechanism of work-induced hypertrophy of skeletal muscle. Med Sci Sports 7(3): 185–198.

  2. McGlory C, Phillips SM (2015) Exercise and the Regulation of Skeletal Muscle Hypertrophy. Prog Mol Biol Transl Sci 135: 153–173. https://doi.org/10.1016/bs.pmbts.2015.06.018

  3. Bodine SC (2013) Disuse-induced muscle wasting. Int J Biochem Cell Biol 45(10): 2200–2208. https://doi.org/10.1016/j.biocel.2013.06.011

  4. Hughes DC, Wallace MA, Baar K (2015) Effects of aging, exercise, and disease on force transfer in skeletal muscle. Am J Physiol Endocrinol Metab 309(1): E1–E10. https://doi.org/10.1152/ajpendo.00095.2015

  5. Ramaswamy KS, Palmer ML, van der Meulen JH, Renoux A, Kostrominova TY, Michele DE, Faulkner JA (2011) Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats. J Physiol 589(5): 1195–1208. https://doi.org/10.1113/jphysiol.2010.201921

  6. Guharay F, Sachs F (1984) Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol 352: 685–701.

  7. Maingret F, Fosset M, Lesage F, Lazdunski M, Honore E (1999) TRAAK is a mammalian neuronal mechano-gated K+-channel. J Biol Chem 274(3): 1381–1387. https://doi.org/10.1074 jbc.274.3.1381

  8. Herrera-Perez S, Lamas JA (2023) TREK channels in Mechanotransduction: a Focus on the Cardiovascular System. Front Cardiovasc Med 10: 1180242. https://doi.org/10.3389/fcvm.2023.1180242

  9. Franco A Jr, Lansman JB (1990) Calcium entry through stretch-inactivated ion channels in mdx myotubes. Nature 344(6267): 670–673. https://doi.org/10.1038/344670a0

  10. Franco-Obregon A Jr, Lansman JB (1994) Mechanosensitive ion channels in skeletal muscle from normal and dystrophic mice. J Physiol 481(Pt 2): 299–309. https://doi.org/:10.1113 /jphysiol.1994.sp020440

  11. Franco A Jr, Winegar BD, Lansman JB (1991) Open channel block by gadolinium ion of the stretch-inactivated ion channel in mdx myotubes. Biophys J 59(6): 1164–1170. https://doi.org/10.1016/S0006-3495(91)82332-3

  12. Winegar BD, Haws CM, Lansman JB (1996) Subconductance block of single mechanosensitive ion channels in skeletal muscle fibers by aminoglycoside antibiotics. J Gen Physiol 107(3): 433–443. https://doi.org/10.1085/jgp.107.3.433

  13. Suchyna TM, Johnson JH, Hamer K, Leykam JF, Gage DA, Clemo HF, Baumgarten CM, Sachs F (2000) Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J Gen Physiol 115(5): 583–598. https://doi.org/10.1085/jgp.115.5.583

  14. Martinac B, Poole K (2018) Mechanically activated ion channels. Int J Biochem Cell Biol 97: 104–107. https://doi.org/10.1016/j.biocel.2018.02.011

  15. Vasileva V, Chubinskiy-Nadezhdin V (2023) Regulation of PIEZO1 channels by lipids and the structural components of extracellular matrix/cell cytoskeleton. J Cell Physiol 238(5): 918–930.https://doi.org/10.1002/jcp.31001

  16. Richardson J, Kotevski A, Poole K (2022) From stretch to deflection: the importance of context in the activation of mammalian, mechanically activated ion channels. FEBS J 289(15): 4447–4469. https://doi.org/10.1111/febs.16041

  17. Mirzoev TM (2023) Mechanotransduction for Muscle Protein Synthesis via Mechanically Activated Ion Channels. Life (Basel) 13(2): 341.https://doi.org/10.3390/life13020341

  18. Spangenburg EE, McBride TA (2006) Inhibition of stretch-activated channels during eccentric muscle contraction attenuates p70S6K activation. J Appl Physiol (1985) 100(1): 129–135. https://doi.org/10.1152/japplphysiol.00619.2005

  19. Tyganov S, Mirzoev T, Shenkman B (2019) An Anabolic Signaling Response of Rat Soleus Muscle to Eccentric Contractions Following Hindlimb Unloading: A Potential Role of Stretch-Activated Ion Channels. Int J Mol Sci 20(5): 1165.https://doi.org/10.3390/ijms20051165

  20. Morachevskaya E, Sudarikova A, Negulyaev Y (2007) Mechanosensitive channel activity and F-actin organization in cholesterol-depleted human leukaemia cells. Cell Biol Int 31(4): 374–381. https://doi.org/10.1016/j.cellbi.2007.01.024

  21. Chubinskiy-Nadezhdin VI, Negulyaev YA, Morachevskaya EA (2011) Cholesterol depletion-induced inhibition of stretch-activated channels is mediated via actin rearrangement. Biochem Biophys Res Commun 412(1): 80–85. https://doi.org/10.1016/j.bbrc.2011.07.046

  22. Petrov AM, Kravtsova VV, Matchkov VV, Vasiliev AN, Zefirov AL, Chibalin AV, Heiny JA, Krivoi II (2017) Membrane lipid rafts are disturbed in the response of rat skeletal muscle to short-term disuse. Am J Physiol Cell Physiol 312(5): C627–C637. https://doi.org/10.1152/ajpcell.00365.2016

  23. Bryndina IG, Shalagina MN, Sekunov AV, Zefirov AL, Petrov AM (2018) Clomipramine counteracts lipid raft disturbance due to short-term muscle disuse. Neurosci Lett 66: 1–6. https://doi.org/10.1016/j.neulet.2017.11.009

  24. Petrov AM, Shalagina MN, Protopopov VA, Sergeev VG, Ovechkin SV, Ovchinina NG, Sekunov AV, Zefirov AL, Zakirjanova GF, Bryndina IG (2019) Changes in Membrane Ceramide Pools in Rat Soleus Muscle in Response to Short-Term Disuse. Int J Mol Sci 20(19): 4860.https://doi.org/10.3390/ijms20194860

  25. Mirzoev TM, Tyganov SA, Petrova IO, Shenkman BS (2019) Acute recovery from disuse atrophy: the role of stretch-activated ion channels in the activation of anabolic signaling in skeletal muscle. Am J Physiol Endocrinol Metab 316(1): E86–E95. https://doi.org/10.1152/ajpendo.00261.2018

  26. Juffer P, Bakker AD, Klein-Nulend J, Jaspers RT (2014) Mechanical loading by fluid shear stress of myotube glycocalyx stimulates growth factor expression and nitric oxide production. Cell Biochem Biophys 69(3): 411–419. https://doi.org/10.1007/s12013-013-9812-4

  27. Tatsumi R, Wuollet AL, Tabata K, Nishimura S, Tabata S, Mizunoya W, Ikeuchi Y, Allen RE (2009) A role for calcium-calmodulin in regulating nitric oxide production during skeletal muscle satellite cell activation. Am J Physiol Cell Physiol 296(4): C922–C929. https://doi.org/10.1152/ajpcell.00471.2008

  28. Drenning JA, Lira VA, Simmons CG, Soltow QA, Sellman JE, Criswell DS (2008) Nitric oxide facilitates NFAT-dependent transcription in mouse myotubes. Am J Physiol Cell Physiol 294(4): C1088–C1095. https://doi.org/10.1152/ajpcell.00523.2007

  29. Mirzoev TM, Sharlo KA, Shenkman BS (2021) The Role of GSK-3beta in the Regulation of Protein Turnover, Myosin Phenotype, and Oxidative Capacity in Skeletal Muscle under Disuse Conditions. Int J Mol Sci 22(10): 5081.https://doi.org/10.3390/ijms22105081

  30. Enslen H, Tokumitsu H, Stork PJ, Davis RJ, Soderling TR (1996) Regulation of mitogen-activated protein kinases by a calcium/calmodulin-dependent protein kinase cascade. Proc Natl Acad Sci U S A 93(20): 10803–10808. https://doi.org/10.1073/pnas.93.20.10803

  31. Martin TD, Dennis MD, Gordon BS, Kimball SR, Jefferson LS (2014) mTORC1 and JNK coordinate phosphorylation of the p70S6K1 autoinhibitory domain in skeletal muscle following functional overloading. Am J Physiol Endocrinol Metab 306(12): E1397–E1405. https://doi.org/10.1152/ajpendo.00064.2014

  32. Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7(2): 179–185. https://doi.org/10.1038/ncb1218

  33. Sauc S, Frieden M (2017) Neurological and Motor Disorders: TRPC in the Skeletal Muscle. Adv Exp Med Biol 993: 557–575. https://doi.org/10.1007/978-3-319-57732-6_28

  34. Gottlieb P, Folgering J, Maroto R, Raso A, Wood TG, Kurosky A, Bowman C, Bichet D, Patel A, Sachs F, Martinac B, Hamill OP, Honore E (2008) Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflugers Arch 455(6): 1097–1103. https://doi.org/10.1007/s00424-007-0359-3

  35. Dietrich A, Kalwa H, Storch U, Mederos Y, Schnitzler M, Salanova B, Pinkenburg O, Dubrovska G, Essin K, Gollasch M, Birnbaumer L, Gudermann T (2007) Pressure-induced and store-operated cation influx in vascular smooth muscle cells is independent of TRPC1. Pflugers Arch 455(3): 465–477. https://doi.org/10.1007/s00424-007-0314-3

  36. Nikolaev YA, Cox CD, Ridone P, Rohde PR, Cordero-Morales JF, Vasquez V, Laver DR, Martinac B (2019) Mammalian TRP ion channels are insensitive to membrane stretch. J Cell Sci 132(23): jcs238360. https://doi.org/10.1242/jcs.238360

  37. Zanou N, Schakman O, Louis P, Ruegg UT, Dietrich A, Birnbaumer L, Gailly P (2012) Trpc1 ion channel modulates phosphatidylinositol 3-kinase/Akt pathway during myoblast differentiation and muscle regeneration. J Biol Chem 287(18): 14524–14534. https://doi.org/10.1074/jbc.M112.341784

  38. Zhang BT, Yeung SS, Cheung KK, Chai ZY, Yeung EW (2014) Adaptive responses of TRPC1 and TRPC3 during skeletal muscle atrophy and regrowth. Muscle Nerve 49(5): 691–699. https://doi.org/10.1002/mus.23952

  39. Xia L, Cheung KK, Yeung SS, Yeung EW (2016) The involvement of transient receptor potential canonical type 1 in skeletal muscle regrowth after unloading-induced atrophy. J Physiol 594(11): 3111–3126. https://doi.org/10.1113/JP271705

  40. Zanou N, Shapovalov G, Louis M, Tajeddine N, Gallo C, Van Schoor M, Anguish I, Cao ML, Schakman O, Dietrich A, Lebacq J, Ruegg U, Roulet E, Birnbaumer L, Gailly P (2010) Role of TRPC1 channel in skeletal muscle function. Am J Physiol Cell Physiol 298(1): C149–C162. https://doi.org/10.1152/ajpcell.00241.2009

  41. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian A (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330(6000): 55–60. https://doi.org/10.1126/science.1193270

  42. Syeda R, Xu J, Dubin AE, Coste B, Mathur J, Huynh T, Matzen J, Lao J, Tully DC, Engels IH, Petrassi HM, Schumacher AM, Montal M, Bandell M, Patapoutian A (2015) Chemical activation of the mechanotransduction channel Piezo1. Elife 4: e07369.https://doi.org/10.7554/eLife.07369

  43. Wang Y, Chi S, Guo H, Li G, Wang L, Zhao Q, Rao Y, Zu L, He W, Xiao B (2018) A lever-like transduction pathway for long-distance chemical- and mechano-gating of the mechanosensitive Piezo1 channel. Nat Commun 9(1): 1300. https://doi.org/10.1038/s41467-018-03570-9

  44. Tsuchiya M, Hara Y, Okuda M, Itoh K, Nishioka R, Shiomi A, Nagao K, Mori M, Mori Y, Ikenouchi J, Suzuki R, Tanaka M, Ohwada T, Aoki J, Kanagawa M, Toda T, Nagata Y, Matsuda R, Takayama Y, Tominaga M, Umeda M (2018) Cell surface flip-flop of phosphatidylserine is critical for PIEZO1-mediated myotube formation. Nat Commun 9(1): 2049. https://doi.org/10.1038/s41467-018-04436-w

  45. Bosutti A, Giniatullin A, Odnoshivkina Y, Giudice L, Malm T, Sciancalepore M, Giniatullin R, D’Andrea P, Lorenzon P, Bernareggi A (2021) “Time window” effect of Yoda1-evoked Piezo1 channel activity during mouse skeletal muscle differentiation. Acta Physiol (Oxf) 233(4): e13702. https://doi.org/10.1111/apha.13702

  46. Sciancalepore M, Massaria G, Tramer F, Zacchi P, Lorenzon P, Bernareggi A (2022) A preliminary study on the role of Piezo1 channels in myokine release from cultured mouse myotubes. Biochem Biophys Res Commun 623: 148–153. https://doi.org/10.1016/j.bbrc.2022.07.059

  47. Hirata Y, Nomura K, Kato D, Tachibana Y, Niikura T, Uchiyama K, Hosooka T, Fukui T, Oe K, Kuroda R, Hara Y, Adachi T, Shibasaki K, Wake H, Ogawa W (2022) A Piezo1/KLF15/IL-6 axis mediates immobilization-induced muscle atrophy. J Clin Invest 132(10): 1–13. https://doi.org/10.1172/JCI154611

  48. Peter AK, Cheng H, Ross RS, Knowlton KU, Chen J (2011) The costamere bridges sarcomeres to the sarcolemma in striated muscle. Prog Pediatr Cardiol 31(2): 83–88. https://doi.org/10.1016/j.ppedcard.2011.02.003

  49. Wilson DGS, Tinker A, Iskratsch T (2022) The role of the dystrophin glycoprotein complex in muscle cell mechanotransduction. Commun Biol 5(1): 1022. https://doi.org/10.1038/s42003-022-03980-y

  50. Patterson G, Conner H, Groneman M, Blavo C, Parmar MS (2023) Duchenne muscular dystrophy: Current treatment and emerging exon skipping and gene therapy approach. Eur J Pharmacol 947: 175675. https://doi.org/10.1016/j.ejphar.2023.175675

  51. Ramirez MP, Anderson MJM, Kelly MD, Sundby LJ, Hagerty AR, Wenthe SJ, Odde DJ, Ervasti JM, Gordon WR (2022) Dystrophin missense mutations alter focal adhesion tension and mechanotransduction. Proc Natl Acad Sci U S A 119(25): e2205536119. https://doi.org/10.1073/pnas.2205536119

  52. Barton ER (2006) Impact of sarcoglycan complex on mechanical signal transduction in murine skeletal muscle. Am J Physiol Cell Physiol 290(2): C411-C419. https://doi.org/10.1152/ajpcell.00192.2005

  53. Moorwood C, Philippou A, Spinazzola J, Keyser B, Macarak EJ, Barton ER (2014) Absence of gamma-sarcoglycan alters the response of p70S6 kinase to mechanical perturbation in murine skeletal muscle. Skelet Muscle 4: 13. https://doi.org/10.1186/2044-5040-4-13

  54. Molza AE, Mangat K, Le Rumeur E, Hubert JF, Menhart N, Delalande O (2015) Structural Basis of Neuronal Nitric-oxide Synthase Interaction with Dystrophin Repeats 16 and 17. J Biol Chem 290(49): 29531–29541. https://doi.org/10.1074/jbc.M115.680660

  55. Abdelmoity A, Padre RC, Burzynski KE, Stull JT, Lau KS (2000) Neuronal nitric oxide synthase localizes through multiple structural motifs to the sarcolemma in mouse myotubes. FEBS Lett 482(1–2): 65–70. https://doi.org/10.1016/s0014-5793(00)02038-x

  56. Garbincius JF, Michele DE (2015) Dystrophin-glycoprotein complex regulates muscle nitric oxide production through mechanoregulation of AMPK signaling. Proc Natl Acad Sci U S A 112(44): 13663–13668. https://doi.org/10.1073/pnas.1512991112

  57. Abramovici H, Hogan AB, Obagi C, Topham MK, Gee SH (2003) Diacylglycerol kinase-zeta localization in skeletal muscle is regulated by phosphorylation and interaction with syntrophins. Mol Biol Cell 14(11): 4499–4511. https://doi.org/10.1091/mbc.e03-03-0190

  58. You JS, Lincoln HC, Kim CR, Frey JW, Goodman CA, Zhong XP, Hornberger TA (2014) The role of diacylglycerol kinase zeta and phosphatidic acid in the mechanical activation of mammalian target of rapamycin (mTOR) signaling and skeletal muscle hypertrophy. J Biol Chem 289(3): 1551–1563. https://doi.org/10.1074/jbc.M113.531392

  59. You JS, Dooley MS, Kim CR, Kim EJ, Xu W, Goodman CA, Hornberger TA (2018) A DGKzeta-FoxO-ubiquitin proteolytic axis controls fiber size during skeletal muscle remodeling. Sci Signal 11(530): eaao6847.https://doi.org/10.1126/scisignal.aao6847

  60. Mayer U (2003) Integrins: redundant or important players in skeletal muscle? J Biol Chem 278(17): 14587–14590. https://doi.org/10.1074/jbc.R200022200

  61. Schwartz MA (2010) Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol 2(12): a005066. https://doi.org/10.1101/cshperspect.a005066

  62. Boppart MD, Volker SE, Alexander N, Burkin DJ, Kaufman SJ (2008) Exercise promotes alpha7 integrin gene transcription and protection of skeletal muscle. Am J Physiol Regul Integr Comp Physiol 295(5): R1623–R1630. https://doi.org/10.1152/ajpregu.00089.2008

  63. Boppart MD, Burkin DJ, Kaufman SJ (2006) Alpha7beta1-integrin regulates mechanotransduction and prevents skeletal muscle injury. Am J Physiol Cell Physiol 290(6): C1660–C1665. https://doi.org/10.1152/ajpcell.00317.2005

  64. Lueders TN, Zou K, Huntsman HD, Meador B, Mahmassani Z, Abel M, Valero MC, Huey KA, Boppart MD (2011) The alpha7beta1-integrin accelerates fiber hypertrophy and myogenesis following a single bout of eccentric exercise. Am J Physiol Cell Physiol 301(4): C938–C946. https://doi.org/10.1152/ajpcell.00515.2010

  65. Mayer U, Saher G, Fassler R, Bornemann A, Echtermeyer F, von der Mark H, Miosge N, Poschl E, von der Mark K (1997) Absence of integrin alpha 7 causes a novel form of muscular dystrophy. Nat Genet 17(3): 318–323. https://doi.org/10.1038/ng1197-318

  66. Hodges BL, Hayashi YK, Nonaka I, Wang W, Arahata K, Kaufman SJ (1997) Altered expression of the alpha7beta1 integrin in human and murine muscular dystrophies. J Cell Sci 110(Pt 22): 2873–2881. https://doi.org/10.1242/jcs.110.22.2873

  67. Burkin DJ, Wallace GQ, Milner DJ, Chaney EJ, Mulligan JA, Kaufman SJ (2005) Transgenic expression of alpha7beta1 integrin maintains muscle integrity, increases regenerative capacity, promotes hypertrophy, and reduces cardiomyopathy in dystrophic mice. Am J Pathol 166(1): 253–263. https://doi.org/10.1016/s0002-9440(10)62249-3

  68. Crossland H, Kazi AA, Lang CH, Timmons JA, Pierre P, Wilkinson DJ, Smith K, Szewczyk NJ, Atherton PJ (2013) Focal adhesion kinase is required for IGF-I-mediated growth of skeletal muscle cells via a TSC2/mTOR/S6K1-associated pathway. Am J Physiol Endocrinol Metab 305(2): E183–E193. https://doi.org/10.1152/ajpendo.00541.2012

  69. Klossner S, Durieux AC, Freyssenet D, Flueck M (2009) Mechano-transduction to muscle protein synthesis is modulated by FAK. Eur J Appl Physiol 106(3): 389–398. https://doi.org/10.1007/s00421-009-1032-7

  70. Fluck M, Carson JA, Gordon SE, Ziemiecki A, Booth FW (1999) Focal adhesion proteins FAK and paxillin increase in hypertrophied skeletal muscle. Am J Physiol 277(Pt 1): 152–162.

  71. Gordon SE, Fluck M, Booth FW (2001) Selected Contribution: Skeletal muscle focal adhesion kinase, paxillin, and serum response factor are loading dependent. J Appl Physiol (1985) 90(3): 1174–1183; discussion 1165. https://doi.org/10.1152/jappl.2001.90.3.1174

  72. Fortes MA, Pinheiro CH, Guimaraes-Ferreira L, Vitzel KF, Vasconcelos DA, Curi R (2015) Overload-induced skeletal muscle hypertrophy is not impaired in STZ-diabetic rats. Physiol Rep 3(7): e12457. https://doi.org/10.14814/phy2.12457

  73. De Boer MD, Selby A, Atherton P, Smith K, Seynnes OR, Maganaris CN, Maffulli N, Movin T, Narici MV, Rennie MJ (2007) The temporal responses of protein synthesis, gene expression and cell signalling in human quadriceps muscle and patellar tendon to disuse. J Physiol 585(Pt 1): 241–251. https://doi.org/10.1113/jphysiol.2007.142828

  74. Li R, Narici MV, Erskine RM, Seynnes OR, Rittweger J, Pisot R, Simunic B, Fluck M (2013) Costamere remodeling with muscle loading and unloading in healthy young men. J Anat 223(5): 525–536. https://doi.org/10.1111/joa.12101

  75. Tyganov SA, Mirzoev TM, Rozhkov SV, Shenkman BS (2019) Role of the focal adhesion kinase in the anabolic response to the mechanical stimulus in rat’s atrophied postural muscle. Aviakosm Ekol Med 53(4): 74–79. https://doi.org/10.21687/0233-528X-2019-53-4-74-79

  76. Sbrana F, Sassoli C, Meacci E, Nosi D, Squecco R, Paternostro F, Tiribilli B, Zecchi-Orlandini S, Francini F, Formigli L (2008) Role for stress fiber contraction in surface tension development and stretch-activated channel regulation in C2C12 myoblasts. Am J Physiol Cell Physiol 295(1): C160–C172. https://doi.org/10.1152/ajpcell.00014.2008

  77. Martino F, Perestrelo AR, Vinarsky V, Pagliari S, Forte G (2018) Cellular Mechanotransduction: From Tension to Function. Front Physiol 9: 824. https://doi.org/10.3389/fphys.2018.00824

  78. Wang HV, Chang LW, Brixius K, Wickstrom SA, Montanez E, Thievessen I, Schwander M, Muller U, Bloch W, Mayer U, Fassler R (2008) Integrin-linked kinase stabilizes myotendinous junctions and protects muscle from stress-induced damage. J Cell Biol 180(5): 1037–1049. https://doi.org/10.1083/jcb.200707175

  79. Kotter S, Andresen C, Kruger M (2014) Titin: central player of hypertrophic signaling and sarcomeric protein quality control. Biol Chem 395(11): 1341–1352. https://doi.org/10.1515/hsz-2014-0178

  80. Kruger M, Kotter S (2016) Titin, a Central Mediator for Hypertrophic Signaling, Exercise-Induced Mechanosignaling and Skeletal Muscle Remodeling. Front Physiol 7: 76. https://doi.org/10.3389/fphys.2016.00076

  81. Gautel M (2011) Cytoskeletal protein kinases: titin and its relations in mechanosensing. Pflugers Arch 462(1): 119–134. https://doi.org/10.1007/s00424-011-0946-1

  82. Boateng SY, Senyo SE, Qi L, Goldspink PH, Russell B (2009) Myocyte remodeling in response to hypertrophic stimuli requires nucleocytoplasmic shuttling of muscle LIM protein. J Mol Cell Cardiol 47(4): 426–435. https://doi.org/10.1016/j.yjmcc.2009.04.006

  83. Kong Y, Flick MJ, Kudla AJ, Konieczny SF (1997) Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD. Mol Cell Biol 17(8): 4750–4760. https://doi.org/10.1128/MCB.17.8.4750

  84. Knoll R, Linke WA, Zou P, Miocic S, Kostin S, Buyandelger B, Ku CH, Neef S, Bug M, Schafer K, Knoll G, Felkin LE, Wessels J, Toischer K, Hagn F, Kessler H, Didie M, Quentin T, Maier LS, Teucher N, Unsold B, Schmidt A, Birks EJ, Gunkel S, Lang P, Granzier H, Zimmermann WH, Field LJ, Faulkner G, Dobbelstein M, Barton PJ, Sattler M, Wilmanns M, Chien KR (2011) Telethonin deficiency is associated with maladaptation to biomechanical stress in the mammalian heart. Circ Res 109(7): 758–769. https://doi.org/10.1161/CIRCRESAHA.111.245787

  85. Knoll R, Hoshijima M, Hoffman HM, Person V, Lorenzen-Schmidt I, Bang ML, Hayashi T, Shiga N, Yasukawa H, Schaper W, McKenna W, Yokoyama M, Schork NJ, Omens JH, McCulloch AD, Kimura A, Gregorio CC, Poller W, Schaper J, Schultheiss HP, Chien KR (2002) The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111(7): 943–955. https://doi.org/10.1016/s0092-8674(02)01226-6

  86. Frey N, Richardson JA, Olson EN (2000) Calsarcins, a novel family of sarcomeric calcineurin-binding proteins. Proc Natl Acad Sci U S A 97(26): 14632–14637. https://doi.org/10.1073/pnas.260501097

  87. Frey N, Barrientos T, Shelton JM, Frank D, Rutten H, Gehring D, Kuhn C, Lutz M, Rothermel B, Bassel-Duby R, Richardson JA, Katus HA, Hill JA, Olson EN (2004) Mice lacking calsarcin-1 are sensitized to calcineurin signaling and show accelerated cardiomyopathy in response to pathological biomechanical stress. Nat Med 10(12): 1336–1343. https://doi.org/10.1038/nm1132

  88. Wette SG, Smith HK, Lamb GD, Murphy RM (2017) Characterization of muscle ankyrin repeat proteins in human skeletal muscle. Am J Physiol Cell Physiol 313(3): C327–C339. https://doi.org/10.1152/ajpcell.00077.2017

  89. Cenni V, Kojic S, Capanni C, Faulkner G, Lattanzi G (2019) Ankrd2 in Mechanotransduction and Oxidative Stress Response in Skeletal Muscle: New Cues for the Pathogenesis of Muscular Laminopathies. Oxid Med Cell Longev 2019: 7318796. https://doi.org/10.1155/2019/7318796

  90. Barash IA, Bang ML, Mathew L, Greaser ML, Chen J, Lieber RL (2007) Structural and regulatory roles of muscle ankyrin repeat protein family in skeletal muscle. Am J Physiol Cell Physiol 293(1): C218–C227. https://doi.org/10.1152/ajpcell.00055.2007

  91. Lange S, Xiang F, Yakovenko A, Vihola A, Hackman P, Rostkova E, Kristensen J, Brandmeier B, Franzen G, Hedberg B, Gunnarsson LG, Hughes SM, Marchand S, Sejersen T, Richard I, Edstrom L, Ehler E, Udd B, Gautel M (2005) The kinase domain of titin controls muscle gene expression and protein turnover. Science 308(5728): 1599–1603. https://doi.org/10.1126/science.1110463

  92. Coletti D, Daou N, Hassani M, Li Z, Parlakian A (2016) Serum Response Factor in Muscle Tissues: From Development to Ageing. Eur J Transl Myol 26(2): 6008. https://doi.org/10.4081/ejtm.2016.6008

  93. Miano JM, Long X, Fujiwara K (2007) Serum response factor: master regulator of the actin cytoskeleton and contractile apparatus. Am J Physiol Cell Physiol 292(1): C70–C81. https://doi.org/10.1152/ajpcell.00386.2006

  94. Cha-Molstad H, Lee SH, Kim JG, Sung KW, Hwang J, Shim SM, Ganipisetti S, McGuire T, Mook-Jung I, Ciechanover A, Xie XQ, Kim BY, Kwon YT (2018) Regulation of autophagic proteolysis by the N-recognin SQSTM1/p62 of the N-end rule pathway. Autophagy 14(2): 359–361. https://doi.org/10.1080/15548627.2017.1415190

  95. Seibenhener ML, Geetha T, Wooten MW (2007) Sequestosome 1/p62 – more than just a scaffold. FEBS Lett 581(2): 175–179. https://doi.org/10.1016/j.febslet.2006.12.027

  96. Puchner EM, Alexandrovich A, Kho AL, Hensen U, Schafer LV, Brandmeier B, Grater F, Grubmuller H, Gaub HE, Gautel M (2008) Mechanoenzymatics of titin kinase. Proc Natl Acad Sci U S A 105(36): 13385–13390. https://doi.org/10.1073/pnas.0805034105

  97. Bogomolovas J, Fleming JR, Franke B, Manso B, Simon B, Gasch A, Markovic M, Brunner T, Knoll R, Chen J, Labeit S, Scheffner M, Peter C, Mayans O (2021) Titin kinase ubiquitination aligns autophagy receptors with mechanical signals in the sarcomere. EMBO Rep 22(10): e48018. https://doi.org/10.15252/embr.201948018

  98. Lomonosova YN, Turtikova OV, Shenkman BS (2016) Reduced expression of MyHC slow isoform in rat soleus during unloading is accompanied by alterations of endogenous inhibitors of calcineurin/NFAT signaling pathway. J Muscle Res Cell Motil 37(1–2): 7–16. https://doi.org/10.1007/s10974-015-9428-y

  99. Van der Pijl R, Strom J, Conijn S, Lindqvist J, Labeit S, Granzier H, Ottenheijm C (2018) Titin-based mechanosensing modulates muscle hypertrophy. J Cachexia Sarcopenia Muscle 9(5): 947–961. https://doi.org/10.1002/jcsm.12319

  100. Van den Berg M, Peters EL, van der Pijl RJ, Shen S, Heunks LMA, Granzier HL, Ottenheijm CAC (2022) Rbm20(DeltaRRM) Mice, Expressing a Titin Isoform with Lower Stiffness, Are Protected from Mechanical Ventilation-Induced Diaphragm Weakness. Int J Mol Sci 23(24): 15689.https://doi.org/10.3390/ijms232415689

  101. Ingber DE (2006) Cellular mechanotransduction: putting all the pieces together again. FASEB J 20(7): 811–827. https://doi.org/10.1096/fj.05-5424rev

  102. Ingber DE (2008) Tensegrity-based mechanosensing from macro to micro. Prog Biophys Mol Biol 97(2–3): 163–179. https://doi.org/10.1016/j.pbiomolbio.2008.02.005

  103. Iyer SR, Folker ES, Lovering RM (2021) The Nucleoskeleton: Crossroad of Mechanotransduction in Skeletal Muscle. Front Physiol 12: 724010. https://doi.org/10.3389/fphys.2021.724010

  104. van Ingen MJA, Kirby TJ (2021) LINCing Nuclear Mechanobiology With Skeletal Muscle Mass and Function. Front Cell Dev Biol 9: 690577. https://doi.org/10.3389/fcell.2021.690577

  105. Tajik A, Zhang Y, Wei F, Sun J, Jia Q, Zhou W, Singh R, Khanna N, Belmont AS, Wang N (2016) Transcription upregulation via force-induced direct stretching of chromatin. Nat Mater 15(12): 1287–1296. https://doi.org/10.1038/nmat4729

  106. Kanoldt V, Fischer L, Grashoff C (2019) Unforgettable force – crosstalk and memory of mechanosensitive structures. Biol Chem 400(6): 687–698. https://doi.org/10.1515/hsz-2018-0328

  107. Courtemanche N, Lee JY, Pollard TD, Greene EC (2013) Tension modulates actin filament polymerization mediated by formin and profilin. Proc Natl Acad Sci U S A 110(24): 9752–9757. https://doi.org/10.1073/pnas.1308257110

  108. Hornberger TA, Armstrong DD, Koh TJ, Burkholder TJ, Esser KA (2005) Intracellular signaling specificity in response to uniaxial vs. multiaxial stretch: implications for mechanotransduction. Am J Physiol Cell Physiol 288(1): C185–C194. https://doi.org/10.1152/ajpcell.00207.2004

  109. Halder G, Dupont S, Piccolo S (2012) Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol 13(9): 591–600. https://doi.org/10.1038/nrm3416

  110. Watt KI, Turner BJ, Hagg A, Zhang X, Davey JR, Qian H, Beyer C, Winbanks CE, Harvey KF, Gregorevic P (2015) The Hippo pathway effector YAP is a critical regulator of skeletal muscle fibre size. Nat Commun 6: 6048. https://doi.org/10.1038/ncomms7048

  111. Goodman CA, Dietz JM, Jacobs BL, McNally RM, You JS, Hornberger TA (2015) Yes-Associated Protein is up-regulated by mechanical overload and is sufficient to induce skeletal muscle hypertrophy. FEBS Lett 589(13): 1491–1497. https://doi.org/10.1016/j.febslet.2015.04.047

  112. Olsen LA, Nicoll JX, Fry AC (2019) The skeletal muscle fiber: a mechanically sensitive cell. Eur J Appl Physiol 119(2): 333–349. https://doi.org/10.1007/s00421-018-04061-x

  113. Jabre S, Hleihel W, Coirault C (2021) Nuclear Mechanotransduction in Skeletal Muscle. Cells 10(2): 318.https://doi.org/10.3390/cells10020318

  114. Shrestha MM, Lim CY, Bi X, Robinson RC, Han W (2021) Tmod3 Phosphorylation Mediates AMPK-Dependent GLUT4 Plasma Membrane Insertion in Myoblasts. Front Endocrinol (Lausanne) 12: 653557. https://doi.org/10.3389/fendo.2021.653557

  115. Ogneva IV, Biryukov NS, Leinsoo TA, Larina IM (2014) Possible role of non-muscle alpha-actinins in muscle cell mechanosensitivity. PLoS One 9(4): e96395. https://doi.org/10.1371/journal.pone.0096395

  116. Ogneva IV, Biryukov NS (2016) Lecithin Prevents Cortical Cytoskeleton Reorganization in Rat Soleus Muscle Fibers under Short-Term Gravitational Disuse. PLoS One 11(4): e0153650. https://doi.org/10.1371/journal.pone.0153650

  117. Coleman AK, Joca HC, Shi G, Lederer WJ, Ward CW (2021) Tubulin acetylation increases cytoskeletal stiffness to regulate mechanotransduction in striated muscle. J Gen Physiol 153(7): .https://doi.org/10.1085/jgp.202012743

Дополнительные материалы отсутствуют.