Российский физиологический журнал им. И.М. Сеченова, 2023, T. 109, № 8, стр. 1056-1067

Возрастные особенности влияния холецистокинина на импульсную активность нейронов дорсомедиального и вентромедиального ядер гипоталамуса крыс

А. А. Спиричев 1, К. Ю. Моисеев 1, П. А. Анфимова 1, Г. А. Тарасова 1, П. М. Маслюков 1*

1 Ярославский государственный медицинский университет,
Ярославль, Россия

* E-mail: mpm@ysmu.ru

Поступила в редакцию 11.05.2023
После доработки 14.06.2023
Принята к публикации 21.06.2023

Аннотация

Целью работы являлcя анализ фоновой и вызванной внутривенным введением сульфатированного октапептида холецистокинина (CCK), а также антагониста холецистокинина проглумида импульсной нейронной электрической активности в дорсомедиальном (ДМЯ) и вентромедиальном (ВМЯ) ядрах гипоталамуса у самцов молодых (2–3 мес.), взрослых (12 мес.) и старых (24 мес.) крыс под уретановым наркозом. Средняя частота фоновой импульсации нейронов при внутривенном введении CCK у молодых крыс в ДМЯ достоверно снижалась с 1.5 ± 0.4 до 0.2 ± 0.1 имп./с, в ВМЯ – с 2.0 ± 0.4 до 0.9 ± 0.2 имп./с. Одновременное введение CCK и проглумида не приводило к изменению характера нейронной активности в данной возрастной группе. У взрослых и старых крыс средняя фоновая частота разрядов нейронов ДМЯ и ВМЯ была ниже в сравнении с молодыми крысами и под влиянием CCK и проглумида достоверно не менялась. В ДМЯ и ВМЯ большая часть нейронов ингибировалась CCK, при этом в ДМЯ процент ингибируемых CCK нейронов был выше по сравнению с ВМЯ. В ДМЯ молодых животных отсутствовали нейроны, активируемые CCK, которые появлялись у взрослых и старых животных.

Ключевые слова: гипоталамус, холецистокинин, импульсная активность, электрофизиология, старение

Список литературы

  1. Ambler M, Hitrec T, Wilson A, Cerri M, Pickering A (2022) Neurons in the Dorsomedial Hypothalamus Promote, Prolong, and Deepen Torpor in the Mouse. J Neurosci 42: 4267–4277. https://doi.org/10.1523/JNEUROSCI.2102-21.2022

  2. Mieda M, Williams SC, Richardson JA, Tanaka K, Yanagisawa M (2006) The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc Natl Acad Sci U S A 103: 12150–121505. https://doi.org/10.1073/pnas.0604189103

  3. Northeast RC, Vyazovskiy VV, Bechtold DA (2020) Eat, sleep, repeat: the role of the circadian system in balancing sleep-wake control with metabolic need. Curr Opin Physiol 15: 183–191. https://doi.org/10.1016/j.cophys.2020.02.003

  4. Sanetra AM, Palus-Chramiec K, Chrobok L, Jeczmien-Lazur JS, Gawron E, Klich JD, Pradel K, Lewandowski MH (2022) High-Fat-Diet-Evoked Disruption of the Rat Dorsomedial Hypothalamic Clock Can Be Prevented by Restricted Nighttime Feeding. Nutrients 14: 5034. https://doi.org/10.3390/nu14235034

  5. Sayegh AI (2013) The role of cholecystokinin receptors in the short-term control of food intake. Prog Mol Biol Transl Sci 114: 277–316. https://doi.org/10.1016/B978-0-12-386933-3.00008-X

  6. Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W (2022) The physiological control of eating: signals, neurons, and networks. Physiol Rev 102: 689–813. https://doi.org/10.1152/physrev.00028.2020

  7. Crosby KM, Baimoukhametova DV, Bains JS, Pittman QJ (2015) Postsynaptic Depolarization Enhances GABA Drive to Dorsomedial Hypothalamic Neurons through Somatodendritic Cholecystokinin Release. J Neurosci 35: 13160–13170. https://doi.org/10.1523/JNEUROSCI.3123-14.2015

  8. Sabatier N, Leng G (2010) Responses to cholecystokinin in the ventromedial nucleus of the rat hypothalamus in vivo. Eur J Neurosci 31: 1127–1135. https://doi.org/10.1111/j.1460-9568.2010.07144.x

  9. Heidel E, Davidowa H (1998) Interactive effects of cholecystokinin-8S and serotonin on spontaneously active neurons in ventromedial hypothalamic slices. Neuropeptides 32(5): 423–429. https://doi.org/10.1016/s0143-4179(98)90066-x

  10. Moiseev KY, Vishnyakova PA, Porseva VV, Masliukov AP, Spirichev AA, Emanuilov AI, Masliukov PM (2020) Changes of nNOS expression in the tuberal hypothalamic nuclei during ageing. Nitric Oxide 100–101: 1–6. https://doi.org/10.1016/j.niox.2020.04.002

  11. Masliukov PM, Nozdrachev AD (2021) Hypothalamic Regulatory Mechanisms of Aging. J Evol Biochem Phys 57: 473–491. https://doi.org/10.1134/S0022093021030030

  12. Moiseev KY, Spirichev AA, Vishnyakova PA, Pankrasheva LG, Masliukov PM (2021) Changes of discharge properties of neurons from dorsomedial hypothalamic nuclei during aging in rats. Neurosci Lett 762: 136168. https://doi.org/10.1016/j.neulet.2021.136168

  13. Moiseev KY, Spirichev AA, Pankrasheva LG, Martyusheva AS, Abramova AY, Maslyukov PM (2021) Spike Activity in the Ventromedial Nucleus of Rat Hypothalamus during Aging. Bull Exp Biol Med 171: 251–253. https://doi.org/10.1007/s10517-021-05205-4

  14. Анисимов ВН (2008) Молекулярные и физиологические механизмы старения. В 2 т. СПб. Наука. [Anisimov VN (2008) Molecular and physiological mechanisms of aging. In 2 v. SPb. Nauka. (In Russ)].

  15. Carrascosa JM, Ros M, Andrés A, Fernández-Agulló T, Arribas C (2009) Changes in the neuroendocrine control of energy homeostasis by adiposity signals during aging. Exp Gerontol 44: 20–25. https://doi.org/10.1016/j.exger.2008.05.005

  16. Cawthon CR, de La Serre CB (2021) The critical role of CCK in the regulation of food intake and diet-induced obesity. Peptides 138: 170492. https://doi.org/10.1016/j.peptides.2020.170492

  17. Paxinos G, Watson C (2017) The Rat Brain in Stereotaxic Coordinates, compact 7th ed. Elsevier. Acad Press.

  18. Kendrick K, Leng G, Higuchi T (1991) Noradrenaline, dopamine and serotonin release in the paraventricular and supraoptic nuclei of the rat in response to intravenous cholecystokinin injections. J Neuroendocrinol 3(2): 139–144. https://doi.org/10.1111/j.1365-2826.1991.tb00255.x

  19. Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W (2022) The physiological control of eating: signals, neurons, and networks. Physiol Rev 102(2): 689–813. https://doi.org/10.1152/physrev.00028.2020

  20. Imoto D, Yamamoto I, Matsunaga H, Yonekura T, Lee ML, Kato KX, Yamasaki T, Xu S, Ishimoto T, Yamagata S, Otsuguro KI, Horiuchi M, Iijima N, Kimura K, Toda C (2021) Refeeding activates neurons in the dorsomedial hypothalamus to inhibit food intake and promote positive valence. Mol Metab 54: 101366. https://doi.org/10.1016/j.molmet.2021.101366

  21. Dodd GT, Worth AA, Nunn N, Korpal AK, Bechtold DA, Allison MB, Myers MG Jr, Statnick MA, Luckman SM (2014) The thermogenic effect of leptin is dependent on a distinct population of prolactin-releasing peptide neurons in the dorsomedial hypothalamus. Cell Metab 20: 639–649. https://doi.org/10.1016/j.cmet.2014.07.022

  22. Blevins JE, Morton GJ, Williams DL, Caldwell DW, Bastian LS, Wisse BE, Schwartz MW, Baskin DG (2009) Forebrain melanocortin signaling enhances the hindbrain satiety response to CCK-8. Am J Physiol Regul Integr Comp Physiol 296: R476–R484. https://doi.org/10.1152/ajpregu.90544.2008

  23. Chen J, Scott KA, Zhao Z, Moran TH, Bi S (2008) Characterization of the feeding inhibition and neural activation produced by dorsomedial hypothalamic cholecystokinin administration. Neuroscience 152(1): 178–188. https://doi.org/10.1016/j.neuroscience.2007.12.004

  24. Noetzel S, Stengel A, Inhoff T, Goebel M, Wisser AS, Bannert N, Wiedenmann B, Klapp BF, Taché Y, Mönnikes H, Kobelt P (2009) CCK-8S activates c-Fos in a dose-dependent manner in nesfatin-1 immunoreactive neurons in the paraventricular nucleus of the hypothalamus and in the nucleus of the solitary tract of the brainstem. Regul Pept 157(1–3): 84–91. https://doi.org/10.1016/j.regpep.2009.06.009

  25. Cai H, Haubensak W, Anthony TE, Anderson DJ (2014) Central amygdala PKC-δ(+) neurons mediate the influence of multiple anorexigenic signals. Nat Neurosci 17(9): 1240–1248. https://doi.org/10.1038/nn.3767

  26. D’Agostino G, Lyons DJ, Cristiano C, Burke LK, Madara JC, Campbell JN, Garcia AP, Land BB, Lowell BB, Dileone RJ, Heisler LK (2016) Appetite controlled by a cholecystokinin nucleus of the solitary tract to hypothalamus neurocircuit. Elife 5: e12225. https://doi.org/10.7554/elife.12225

  27. Berthélemy P, Bouisson M, Vellas B, Moreau J, Nicole-Vaysse, Albarede JL, Ribet A (1992) Postprandial cholecystokinin secretion in elderly with protein-energy undernutrition. J Am Geriatr Soc 40: 365–369. https://doi.org/10.1111/j.1532-5415.1992.tb02136.x

  28. Covasa M (2010) Deficits in gastrointestinal responses controlling food intake and body weight. Am J Physiol Regul Integr Comp Physiol 299: R1423–R1439. https://doi.org/10.1152/ajpregu.00126.2010

  29. Vong L, Ye C, Yang Z, Choi B, Chua S Jr, Lowell BB (2011) Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71: 142–154. https://doi.org/10.1016/j.neuron.2011.05.028

  30. Yamamoto R, Ahmed N, Ito T, Gungor NZ, Pare D (2018) Optogenetic Study of Anterior BNST and Basomedial Amygdala Projections to the Ventromedial Hypothalamus. eNeuro 5: ENEURO.0204–18.2018. https://doi.org/10.1523/ENEURO.0204-18.2018

  31. Xiao Z, Jaiswal MK, Deng PY, Matsui T, Shin HS, Porter JE, Lei S (2012) Requirement of phospholipase C and protein kinase C in cholecystokinin-mediated facilitation of NMDA channel function and anxiety-like behavior. Hippocampus 22: 1438–1450. https://doi.org/10.1002/hipo.20984

  32. Moore SJ, Cazares VA, Temme SJ, Murphy GG (2023) Age-related deficits in neuronal physiology and cognitive function are recapitulated in young mice overexpressing the L-type calcium channel, CaV 1.3. Aging Cell 22: e13781. https://doi.org/10.1111/acel.13781

  33. Sahu G, Turner RW (2021) The Molecular Basis for the Calcium-Dependent Slow Afterhyperpolarization in CA1 Hippocampal Pyramidal Neurons. Front Physiol 12: 759707. https://doi.org/10.3389/fphys.2021.759707

  34. Sa M, Park MG, Lee CJ (2022) Role of Hypothalamic Reactive Astrocytes in Diet-Induced Obesity. Mol Cells 45: 65–75. https://doi.org/10.14348/molcells.2022.2044

  35. Rust VA, Crosby KM (2021) Cholecystokinin acts in the dorsomedial hypothalamus of young male rats to suppress appetite in a nitric oxide-dependent manner. Neurosci Lett 764: 136295. https://doi.org/10.1016/j.neulet.2021.136295

Дополнительные материалы отсутствуют.