Сенсорные системы, 2020, T. 34, № 3, стр. 188-200
Три тактики генной терапии двух врожденных заболеваний сетчатки. Обзор
Е. М. Максимова 1, *, П. В. Максимов 1
1 Федеральное государственное бюджетное учреждение науки
Институт проблем передачи информации им. А.А. Харкевича РАН
127051 Москва, Большой Каретный пер., 19, Россия
* E-mail: maximova@iitp.ru
Поступила в редакцию 02.03.2020
После доработки 06.04.2020
Принята к публикации 27.04.2020
Полные тексты статей выпуска доступны только авторизованным пользователям.
Аннотация
Приведены литературные данные о генетических причинах двух врожденных заболеваний сетчатки – LCA2 и LCA10 (детская прогрессирующая слепота) и о современных способах их лечения. Причиной LCA2 является разрыв зрительного цикла из-за дефекта гена RPE65, экспрессирующегося в клетках пигментного эпителия сетчатки (RPE). Для лечения разработана и применяется усиливающая генная терапия (augmentation therapy): векторное субретинальное введение нормального гена RPE65. LCA10 – цилиопатия, вызванная мутацией гена CEP290, экспрессирующегося в основании связывающей реснички (CC) фоторецептора. Для лечения применяется “антисмысловая” терапия, устраняющая интронную (дефектную) мутацию в молекуле пре-мРНК в процессе синтеза белка CEP290. Рассказано о проекте “BRILLIANCE” – первом испытании прямого редактирования генома методом CRISPR/Cas9 прямо в теле пациента LCA10, анонсированном в номере Nature за 2020 г.
Полные тексты статей выпуска доступны только авторизованным пользователям.
Список литературы
Винников Я.А. Цитологические и молекулярные основы рецепции. Л.: Наука, 1971. 298 с.
Заварзин A.A. Основы частной цитологии и сравнительной гистологии многоклеточных животных. Л.: Наука, 1976. 411 с.
Каламкаров Г.Р., Островский М.А. Молекулярные механизмы зрительной рецепции. М.: Наука, 2002. 279 с.
Максимова Е.М. Последние достижения в области восстановления зрения при сетчаточной недостаточности у млекопитающих. Сенсорные системы. 2010. Т. 24. № 3. С. 188–197.
Abramowicz A., Gos M. Splicing mutations in human genetic disorders: examples, detection, and confirmation. J Appl Genetics. 2019. V. 60 (2). P. 231. https://doi.org/10.1007/s13353-019-00493-z
Acland G.M., Aguirre G.D., Ray J., Zhang Q., Aleman T.S., Cideciyan A.V., Pearce-Kelling S.E., Anand V., Zeng Y., Maguire A.M., Jacobson S.G., Hauswirth W.W., Bennett J. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet. 2001. V. 28 (1). P. 92–95. https://doi.org/10.1038/ng0501-92
Aguirre G., Baldwin V., Pearce-Kelling S., Narfstrom K., Ray K., Acland G. Congenital stationary night blindness in the dog: common mutation in the RPE65 gene indicates founder effect. Mol Vis. 1998. V. 4 (23). P. 1–7.
Aronson J.K. Rare diseases and orphan drugs. Br J Clin Pharmacol. 2006. V. 61 (3). P. 243–245. https://doi.org/10.1111/j.1365-2125.2006.02617.x
Bainbridge J., Ali R. Gene therapy for inherited childhood blindness shows promise. Expert Rev. Ophthalmol. 2008a. 3 (4). P. 357–359. https://doi.org/10.1586/17469899.3.4.357
Bainbridge J.W., Mehat M.S., Sundaram V. Long-term effect of gene therapy on Leber’s congenital amaurosis. N. Engl. J. Med. 2015. V. 372 (20). P. 1887–1897. https://doi.org/10.1056/NEJMoa1414221
Bainbridge J.W., Smith A.J., Barker S.S., Robbie S., Henderson R., Balaggan K., Viswanathan A., Holder G.E., Stockman A., Tyler N., Peterson-Jones S., Battacharya S.S., Thrasher A.J., Fitzke F.W., Carter B.J., Rubin G.S., Moore A.T., Ali R.R. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N. Engl. J. Med. 2008b. V. 358 (21). P. 2231–2239. https://doi.org/10.1056/NEJMoa0802268
Bemelmans A.-P., Kostic C., Crippa S.V., Hauswirth W.W., Lem J., Munier F.L., Seeliger M.W, Wenzel A., Arsenijevic Y. Lentiviral Gene Transfer of Rpe65 Rescues Survival and Function of Cones in a Mouse Model of Leber Congenital Amaurosis. PLoS Med. 2006. V. 3 (10). P. 1892–1903. https://doi.org/10.1371/journal.pmed.0030347
Bennett J. Taking Stock of Retinal Gene Therapy: Looking Back and Moving Forward. Mol. Ther. 2017. V. 25 (5). P. 1076–1094. https://doi.org/10.1016/j.ymthe.2017.03.008
Bennett J., Wellman J., Marshall K.A., McCague S., Ashtari M., DiStefano-Pappas J., Elci O.U., Chung D.C., Sun J., Wright J.F., Cross D.R., Aravand P., Cyckowski L.L., Bennicelli J.L., Mingozzi F., Auricchio A., Pierce E.A., Ruggiero J., Leroy B.P., Simonelli F., High K.A., Maguire A.M. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutatons: a follow-on phase 1 trial. Lancet. 2016. V. 388 (10045). P. 661–672. https://doi.org/(16)30371-3https://doi.org/10.1016/S0140-6736
Bennicelli J., Wright J.F., Komaromy A., Jacobs J.B., Hauck B., Zelenaia O., Mingozzi F., Hui D., Chung D., Rex T.S., Wei Z., Qu G., Zhou S., Zeiss C., Arruda V.R., Acland G.M., Dell’Osso L.F., High K.A., Maguire A.M., Bennett J. Reversal of blindness in animal models of leber congenital amaurosis using optimized AAV2-mediated gene transfer. Mol Ther. 2008. V. 16 (3). P. 458–465. https://doi.org/10.1038/sj.mt.6300389
Betleja E., Cole D.G. Ciliary Trafficking: CEP290 Guards a Gated Community. Curr. Biol. 2010. V. 20 (21). P. R928–R931. https://doi.org/10.1016/j.cub.2010.09.058
Burnight E.R., Wiley L.A., Drack A.V., Braun T.A., Anfinson K.R., Kaalberg E.E., Halder J.A., Affatigato L.M., Mullins R.F., Stone E.M., Tucker B.A. CEP290 gene transfer rescues Leber congenital amaurosis cellular phenotype. Gene. Ther. 2014. V. 21 (7). P. 662–672. https://doi.org/10.1038/gt.2014.39
Cideciyan A.V. Leber Congenital Amaurosis due to RPE65 Mutations and its Treatment with Gene Therapy. Prog. Retin. Eye. Res. 2010. V. 29 (5). P. 398–427. https://doi.org/10.1016/j.preteyeres.2010.04.002
Cideciyan A.V., Hauswirth W.W., Aleman T.S., et al. Vision 1 year after gene therapy for Leber’s congenital amaurosis. N. Engl. J. Med. 2009. V. 361 (7). P.725–727. https://doi.org/10.1056/NEJMc0903652
Cideciyan A.V., Jacobson S.G., Beltran W.A., Sumaroka A., Swider M., Iwabe S., Roman A.J., Olivares M.B., Schwartz S.B., Komáromy A.M., Hauswirth W.W., Aguirre G.D. Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proc. Natl. Acad. Sci. U S A. 2013. V. 110 (6). P. E517–E525. https://doi.org/10.1073/pnas.1218933110
Coppieters F., Lefever S., Leroy B.P., de Baere E.B. CEP290, a gene with many faces: mutation overview and presentation of CEP290base. Hum. Mutat. 2010. V. 31 (10). P. 1097–1108. https://doi.org/10.1002/humu.21337
Ding J.‑D., Salinas R.Y., Arshavsky V.Y. Discs of mammalian rod photoreceptors form through the membrane evagination mechanism. J. Cell. Biol. 2015. V. 211 (3). P. 495–502. https://doi.org/10.1083/jcb.201508093
Drivas T.G., Bennett J. CEP290 and the Primary Cilium. Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 801. New York. Springer, 2014. P. 519–525. https://doi.org/10.1007/978-1-4614-3209-8_66
Du Q.-S., Cui J., C.-jie Zhang, He K.Visualization analysis of CRISPR/Cas9 gene editing technology studies. J. Zhejiang. Univ. Sci. B. 2016. V.17 (10). P. 798–806. https://doi.org/10.1631/jzus.B1601985
Duijkers L., van den Born I., Neidhardt J., Bax N.M., Pierrache L.H.M., Klevering B.J., Collin R.W.J., Garanto A. Antisense Oligonucleotide-Based Splicing Correction in Individuals with Leber Congenital Amaurosis due to Compound Heterozygosity for the c.2991+1655A>G Mutation in CEP290. Int. J. Mol. Sci. 2018. V. 19 (3). P. 753–760. https://doi.org/10.3390/ijms19030753
Dulla K., Aguila M., Lane A., Jovanovic K., Parfitt D.A., Schulkens I., Chan H.L., Schmidt I., Beumer W., Vorthoren L., Collin R.W.J., Garanto A., Duijkers L., Brugulat-Panes A., Semo M., Vugler A.A., Biasutto P., Adamson P., Cheetham M.E. Splice-Modulating Oligonucleotide QR-110 (sepofarsen) Restores CEP290mRNA and Functionin Human c.2991+1655A>G LCA10 Models. Mol. Ther. Nucleic. Acids. 2018. V. 12. P. 730–740. https://doi.org/10.1016/j.omtn.2018.07.010
Doudna J.A., Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Review. Science. 2014. V. 346, Issue 6213, 1258096.https://doi.org/10.1126/science.1258096
Gu S.M., Thompson D.A., Srikumari C.R., Lorenz B., Finckh U., Nicoletti A., Murthy K.R., Rathmann M., Kumaramanickavel G., Denton M.J., Gal A. Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy. Nat. Genet. 1997. V. 17 (2). P. 194–197. https://doi.org/10.1038/ng1097-194
Hastie E., Samulski R.J. Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success–a personal perspective. Hum. Gene. Ther. 2015. V. 26 (5). P. 257–265. https://doi.org/10.1089/hum.2015.025
Hauswirth W.W., Aleman T.S., Kaushal S., Cideciyan A.V., Schwartz S.B., Wang L, Conlon T.J., Boye S.L., Flotte T.R., Byrne B.J., Jacobson S.G. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum. Gene. Ther. 2008. V. 19 (10). P. 979–990. https://doi.org/10.1089/hum.2008.107
Havens M.A., Hastings M.L. Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic. Acids. Res. 2016. V. 44 (14). P. 6549–6563. https://doi.org/10.1093/nar/gkw533
Hollander A.I., Black A., Bennett J., Cremers F.P. Lighting a candle in the dark: advances in genetics and gene therapy of recessive retinal dystrophies. J. Clin. Invest. 2010. V. 120 (9). P. 3042–3053. https://doi.org/10.1172/JCI42258
Hussain R.M., Tran K.D., Maguire A.M., Berrocal A.M. Subretinal Injection of Voretigene Neparvovec-rzyl in a Patient With RPE65-Associated Leber’s Congenital Amaurosis. Ophthalmic Surg Lasers Imaging Retina. 2019. V. 50 (10). P. 661–663. https://doi.org/10.3928/23258160-20191009-01
Insinna C., Besharse J.C. Intraflagellar Transport and the Sensory Outer Segment of Vertebrate Photoreceptors. Dev Dyn. 2008. V. 237 (8). P. 1982–1992. https://doi.org/10.1002/dvdy.21554
Insinna C., Humby M., Sedmak T., Wolfrum U., Besharse J.C. Different Roles For KIF17 and Kinesin II In Photoreceptor Development and Maintenance. Dev Dyn. 2009. V. 238 (9). P. 2211–2222. https://doi.org/10.1002/dvdy.21956
Jacobson S.G., Cideciyan A.V., Aleman T.S., Sumaroka A., Windsor E.A.M., Schwartz S.B., Heon E., Stone E.M. Photoreceptor Layer Topography in Children with Leber Congenital Amaurosis Caused by RPE65 Mutations. Invest. Ophthalmol. Vis. Sci. 2008. V. 49 (10). P. 4573–4577. https://doi.org/10.1167/iovs.08-2121
Jacobson S.G., Cideciyan A.V., Ratnakaram R., Heon E., Schwartz S.B., Roman A.J., Peden M.C., Aleman T.S., Boye S.L., Sumaroka A., Conlon T.J., Calcedo R., Pang J.-J., Erger K.E., Olivares M.B., Mullins C.L., Swider M., Kaushal S., Feuer W.J., Iannaccone A., Fishman G.A., Stone E.M., Byrne B.J., Hauswirth W.W. Gene Therapy for Leber Congenital Amaurosis Caused by RPE65 Mutations Safety and Efficacy in 15 Children and Adults Followed Up to 3 Years. Arch Ophthalmol. 2012. V. 130 (1). P. 9–24. https://doi.org/10.1001/archophthalmol.2011.298
Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012. V. 17. 337 (6096). P. 816–821. https://doi.org/10.1126/science.1225829
Le Meur G., Lebranchu P., Billaud F., Adjali O., Schmitt S., Bézieau S., Péréon Y., Valabregue R., Ivan C., Darmon C., Moullier P., Rolling F., Weber M. Safety and Long-Term Efficacy of AAV4 Gene Therapy in Patients with RPE65 Leber Congenital Amaurosis. Mol Ther. 2018. V. 26 (1). P. 256–268. https://doi.org/10.1016/j.ymthe.2017.09.014
Leber T. Uber retinitis pigmentosa und angeborene amaurose. von Graefe’s archives. Ophthalmology. 1869. V. 15. P. 1–25.
Ledford H. CRISPR treatment inserted directly into the body for first time. Nature. 2020. V. 579 (7798). P. 185–190. https://doi.org/10.1038/d41586-020-00655-8
Li L., Xiao X., Li S., Jia X., Wang P., Guo X., Jiao X., Zhang Q., Hejtmancik J. F. Detection of Variants in 15 Genes in 87 Unrelated Chinese Patients with Leber Congenital Amaurosis. PLoS ONE. 2011. V. 6 (5). https://doi.org/10.1371/journal.pone.0019458
Li Y., Wang H., Peng J., Gibbs R.A., Lewis R.A., et al. Mutation survey of known LCA genes and loci in the Saudi Arabian population. Invest. Ophthalmol. Vis. Sci. 2009. V. 50 (3). P. 1336–1343. https://doi.org/10.1167/iovs.08-2589
Liu J., Bu J. A Gene Scan Study of RPE65 in Chinese Patients with Leber Congenital Amaurosis. Chin. Med. J. (Engl). 2017. V. 130 (22). P. 2709–2712. https://doi.org/10.4103/0366-6999.218007
Long H., Huang K. Transport of Ciliary Membrane Proteins. Front. Cell. Dev. Biol. 2020. V. 7. P. 381–390. https://doi.org/10.3389/fcell.2019.00381
Lorenz B., Gyurus P., Preising M., Bremser D., Gu S., Andrassi M., Gerth C., Gal A. Early-onset severe rod-cone dystrophy in young children with RPE65 mutations. Invest. Ophthalmol. Vis. Sci. 2000. V. 41 (9). P. 2735–2742.
Maguire A.M., High K.A., Auricchio A., Wright J.F., Pierce E.A., Testa F. Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis:a phase 1 dose-escalation trial. Lancet. 2009. V. 374. P. 1597–1605. https://doi.org/10.1016/S0140-6736
Maguire A.M., Simonelli F., Pierce E.A., et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N. Engl. J. Med. 2008. V. 358 (21). P. 2240–2248. https://doi.org/10.1056/NEJMoa0802315
Marszalek J.R., Liu X., Roberts E.A., Marth J.D., Williams D.S., Goldstein L.S.B. Genetic Evidence for Selective Transport of Opsin and Arrestin by Kinesin-II in Mammalian Photoreceptors. Cell. 2000. V. 102 (2). P. 175–187.https://doi.org/10.1016/S0092-8674
McKibbin M., Ali M., Mohamed M.D., Booth A.P., Bishop F. Genotype-phenotype correlation for leber congenital amaurosis in Northern Pakistan. Arch. Ophthalmol. 2010. V. 128 (1). P. 107–113. https://doi.org/10.1001/archophthalmol.2010.309
Narfström K., Wrigstad A., Nilsson S.E. The Briard dog: a new animal model of congenital stationary night blindness. Br. J. Ophthalmol. 1989. V.73 (9). P.750–756. https://doi.org/10.1136/bjo.73.9.750
Nathans J. Determinants of visual pigment absorbance: identification of the retinylidene Schiff’s base counterion in bovine rhodopsin. Biochemistry. 1990. V. 29 (41). P. 9746–9752. https://doi.org/10.1021/bi00493a034
Pang J.J., Chang B., Kumar A., Nusinowitz S., Noorwez S.M., Li J., Rani A., Foster T.C., Chiodo V.A., Doyle T., Li H., Malhotra R., Teusner J.T., McDowell J.H., Min S.H., Li Q., Kaushal S., Hauswirth W.W. Gene Therapy Restores Vision-Dependent Behavior as Well as Retinal Structure and Function in a Mouse Model of RPE65 Leber Congenital Amaurosis. Mol. Ther. 2006. V. 13 (3). P. 565–572. https://doi.org/10.1016/j.ymthe.2005.09.001
Pazour G.J., Baker S.A., Deane J.A., Cole D.G., Dickert B.L., Rosenbaum J.L., Witman G.B., Besharse J.C. The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance. J. Cell. Biol. 2002. V. 157 (1). P. 103–113. https://doi.org/10.1083/jcb.200107108
Peng Y., Tang L., Zhou Y. Subretinal Injection: A Review on the Novel Route of Therapeutic Delivery for Vitreoretinal Diseases. Ophthalmic. Res. 2017. V. 58 (4). P. 217–226. https://doi.org/10.1159/000479157
Pennesi M.E., Weleber R.G., Yang P., Whitebirch C., Thean B., Flotte T.R., Humphries M., Chegarnov E., Beasley K.N., Stout J.T., Chulay J.D. Results at 5 years after gene therapy for RPE65-deficient retinal dystrophy. Hum. Gene. Ther. 2018. V. 29 (12). P. 1428–1437. https://doi.org/10.1089/hum.2018.014
Petersen-Jones S.M., Komáromy A.M. Dog Models for Blinding Inherited Retinal Dystrophies. Hum. Gene. Ther. Clin Dev. 2015. V. 26 (1). P. 15–26. https://doi.org/10.1089/humc.2014.155
Pollack A. Orphan Drug Law Spurs Debate. The New York Times. 1990.
Prevo B., Scholey J.M., Peterman E.J.G. Intraflagellar Transport: Mechanisms of Motor Action, Cooperation and Cargo Delivery. FEBS J. 2017. V. 284 (18). P. 2905–2931. https://doi.org/10.1111/febs.14068
Redmond T.M., Poliakov E., Yu S., Tsai J.Y., Lu Z., Gentleman S. Mutation of key residues of RPE65 abolishes its enzymatic role as isomerohydrolase in the visual cycle. Proc. Natl. Acad. Sci. U S A. 2005. V. 102 (38). P. 13658–13663. https://doi.org/10.1073/pnas.0504167102
Redmond T.M., Yu S., Lee E., Bok D., Hamasaki D., Chen N., Goletz. P., Ma J.X., Crouch R.K., Pfeifer K. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat. Genet. 1998. V. 20 (4). P. 344–351. https://doi.org/10.1038/3813
Redmond T.M. and Hamel C.P. Genetic analysis of RPE65: from human disease to mouse model. Methods. Enzymol. 2000. V. 316. P. 705–724. https://doi.org/10.1016/s0076-6879
Rosenbaum J.L., Witman G.B. Intraflagellar transport. Nat. Rev. Mol. Cell. Biol. 2002. V. 3 (11). P. 813–825.
Salinas R.Y., Pearring J.N., Ding J.-D., Spencer W.J., Hao Y., Arshavsky V.Y. Photoreceptor discs form through peripherin-dependent suppression of ciliary ectosome release. JCB. 2017. V. 216 (5). P. 1489–1499. https://doi.org/10.1083/jcb.201608081
Sanagala R., Moola A.K., Bollipo Diana R.K. A review on advanced methods in plant gene targeting. J. Genet. Eng. Biotechnol. 2017. V. 15 (2). P. 317–321. https://doi.org/10.1016/j.jgeb.2017.07.004
Satir P., Pedersen L.B., Christensen S.T. The primary cilium at a glance. J. Cell. Sci. 2010. V. 123 (Pt 4). P. 499–503. https://doi.org/10.1242/jcs.050377
Seong M.W., Kim S.Y., Yu Y.S., Hwang J.M., Kim J.Y. Molecular characterization of Leber congenital amaurosis in Koreans. Mol. Vis. 2008. V. 14. P. 1429–1436.
Sheck L., Davies W.I.L., Moradi P., Robson A.G., Kumaran N., Liasis A.C., Webster A.R., Moore A.T., Michaelides M. Leber Congenital Amaurosis Associated with Mutations in CEP290, Clinical Phenotype, and Natural History in Preparation for Trials of Novel Therapies. Ophthalmology. 2018. V. 125 (6). P. 894–903. https://doi.org/10.1016/j.ophtha.2017.12.013
Simonelli F., Maguire A.M., Testa F., Pierce E.A., Mingozzi F., Bennicelli J.L., Rossi S., Marshall K., Banfi S., Surace E.M., Sun J., Redmond T.M., Zhu X., Shindler K.S., Ying G.S., Ziviello C., Acerra C., Wright J.F., McDonell J.W., High K.A., Bennett J., Auricchio A. Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol. Ther. 2010. V. 18 (3). P. 643–650. https://doi.org/10.1038/mt.2009.277
Siva K., Covello G., Denti M.A. Exon-skipping antisense oligonucleotides to correct missplicing in neurogenetic diseases. Nucleic. Acid. Ther. 2014. V. 24 (1). P. 69–86. https://doi.org/10.1089/nat.2013.0461
Sundaresan P., Vijayalakshmi P., Thompson S., Ko A.C., Fingert J.H., et al. Mutations that are a common cause of Leber congenital amaurosis in northern America are rare in southern India. Mol. Vis. 2009. V.15. P. 1781–1787.
Takkar B., Bansal P., Venkatesh P. Leber’s Congenital Amaurosis and Gene Therapy. Indian. J. Pediatr. 2018. V. 85 (3). P. 237–242. https://doi.org/10.1007/s12098-017-2394-1
Veske A., Nilsson S., Narfström K., Gal A. Retinal dystrophy of Swedish Briard/Briard-Beagle dogs is due to a 4-bp deletion in RPE65. Genomics. 1999. V. 57 (1). P. 57–61. https://doi.org/10.1006/geno.1999.5754
Wang X., Yu C., Tzekov R.T., Zhu Y., Li1 W. The effect of human gene therapy for RPE65-associated Leber’s congenital amaurosis on visual function: a systematic review and meta-analysis. Orphanet. J. Rare. Dis. 2020. V. 15 (1). P. 49–55. https://doi.org/10.1186/s13023-020-1304-1
Warrington K.H. Jr, Herzog R.W. Treatment of human disease by adeno-associated viral gene transfer. Hum. Genet. 2006. V. 119 (6). P. 571–603. https://doi.org/10.1007/s00439-006-0165-6
Weleber R.G., Pennesi M.E., David J.W., Kaushal Sh., Erker L.R., Jensen L., McBride M.T., Flotte T.R., Humphries M., Calcedo R., Hauswirth, W.W., Chulay J.D., Stout J.T. Results at 2 Years after Gene Therapy for RPE65-Deficient Leber Congenital Amaurosis and Severe Early-Childhood-Onset Retinal Dystrophy. Ophthalmology. 2016. V. 123 (7). P. 1606–1620. https://doi.org/10.1016/j.ophtha.2016.03.003
Wheway G., Parry D.A., Johnson C.A. The role of primary cilia in the development and disease of the retina. Organogenesis. 2014. V. 10 (1). P. 69–85. https://doi.org/10.4161/org.26710
Wolf G. Function of the Protein RPE65 in the Visual Cycle. Nutr. Rev. 2005. V. 63 (3). P. 97–100. https://doi.org/10.1111/j.1753-4887.2005.tb00127.x
Young R.W. The renewal of photoreceptor cell outer segments. J. Cell. Biol. 1967. V. 33 (1). P. 61–72. https://doi.org/10.1083/jcb.33.1.61
Дополнительные материалы отсутствуют.
Инструменты
Сенсорные системы