Успехи физиологических наук, 2023, T. 54, № 2, стр. 86-104

ГАМК-ергическая система в регуляции функционирования бета-клеток поджелудочной железы в условиях нормы и при сахарном диабете

И. Н. Тюренков a, Т. И. Файбисович b, М. А. Дубровина a, Д. А. Бакулин a*, Д. В. Куркин a

a ФГБОУ Волгоградский Государственный медицинский университет
400087 Волгоград, Россия

b ФГБВОУ ВО Военно-медицинская академия им. С.М. Кирова МО РФ
194044 Санкт-Петербург, Россия

* E-mail: mbfdoc@gmail.com

Поступила в редакцию 20.11.2022
После доработки 15.01.2023
Принята к публикации 18.01.2023

Аннотация

Заболеваемость сахарным диабетом (СД) во всем мире неуклонно растет, а вместе с этим отмечается рост его осложнений, которые являются главными причинами ранней инвалидизации и преждевременной смерти. В основе патогенеза СД лежит неуклонное уменьшение числа β-клеток поджелудочной железы при СД 1 типа до 30–10%, при СД 2 типа до 50–40% от нормального количества. Уменьшение β-клеточной массы ведет к снижению продукции инсулина и развитию гипергликемии и связанных с ней тяжелых осложнений. Поэтому очевидна необходимость предупреждения гибели β-клеток и стимуляции их регенерации. В зарубежной литературе последнего времени уделяется большое внимание роли ГАМК в регуляции функции α- и β-клеток поджелудочной железы и углеводного обмена, что в отечественной литературе практически не отражено, чему и посвящен данный обзор. Гамма-аминомасляная кислота (ГАМК) в β-клетках и островках поджелудочной железы определяется в количествах, сопоставимых с содержанием в головном мозге. Там же содержится и высокое количество глутамадекарбоксилазы – фермента, синтезирующего ГАМК. При СД уровень ГАМК в β-клетках поджелудочной железы снижается и это коррелирует с тяжестью нарушений углеводного обмена. ГАМК играет важную роль в паракринной регуляции функций α- и β-клеток, углеводного гомеостаза. Доказана потенциальная возможность с помощью ГАМК добиться снижения апоптоза и, одновременно, усиления регенерации β-клеток, увеличения β-клеточной массы поджелудочной железы, повышения секреции инсулина, адекватного контроля уровня глюкозы в организме. Доказано, что положительное влияние ГАМК на структуру и функции β-клеток поджелудочной железы при СД может быть существенно выше при совместном применении с антидиабетическими средствами: агонистами рецептора ГПП-1, ингибиторами ДПП-4, ингибиторами SGLT-2 и другими. Антидиабетические свойства ГАМК объясняются ее взаимодействием с различными сигнальными белками (белком Клото, SIRT, PI3K/Akt, CREB-IRS2, NF-kB, Nrf2 и многими другими), посредством модуляции которых эти эффекты реализуются. Данные о панкреопротективном действии ГАМК и ее производных могут лечь в основу разработки новой фармакотерапевтической стратегии лечения СД и сопряженных с ними осложнений.

Ключевые слова: ГАМК, β-клетки, α-клетки, сахарный диабет, апоптоз, ГАМКА, ГАМКВ

Список литературы

  1. Дедов И.И., Шестакова М.В., Викулова О.К. и др. Эпидемиологические характеристики сахарного диабета в Российской Федерации: клинико-статистический анализ по данным регистра сахарного диабета на 01.01.2021. // Сахарный диабет. 2021. Т. 24. № 3. С. 204–221.

  2. Дедов И.И., Шестакова М.В., Майорова А.Ю. и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом (9-й выпуск) // Сахарный диабет. 2019. Т. 22. № 1. С. 1–144.

  3. Нестерова А.А., Глинка Е.Ю., Тюренков И.Н. и др. Белок клото–универсальный регулятор физиологических процессов в организме // Успехи физиологических наук. 2020. Т. 51. № 2. С. 88–104.

  4. Самотруева М.А., Тюренков И.Н., Прилучный С.В. и др. Психоиммуномоделирующая активность фенибута при экспериментальном гипертиорезе // Экспериментальная и клиническая фармакология. 2012. Т. 8. № 1. С. 51-56.

  5. Тюренков И.Н., Галимзянов Х.М., Тёплый Д.Л. и др. Экспериментальное изучение иммунокорригирующих свойств фенотропила в аспекте “доза- эффект” // Иммунология. 2009. Т. 30. № 5. С. 302–305.

  6. Тюренков И.Н., Самотруева М.А., Овчарова А.Н. Влияние баклофена на показатели клеточного звена иммунитета // Экспериментальная и клиническая фармакология. 2008. Т. 71. № 3. С. 43–45.

  7. Accili D., Talchai S.C., Kim-Muller J.Y. et al When β-cells fail: lessons from dedifferentiation // Diabetes Obes. Metab. 2016. V. 18. P. 117–122.

  8. Ackeifi C., Wang P., Karakose E. et al. GLP-1 receptor agonists synergize with DYRK1A inhibitors to potentiate functional human β cell regeneration // Sci. Transl. Med. 2020. V. 12. № 530. P. eaaw9996.

  9. Ackermann A.M., Moss N.G., Kaestner K.H. GABA and artesunate do not induce pancreatic α-to-β cell transdifferentiation in vivo // Cell Metab. 2018. V. 28. № 5. P. 787–792.

  10. Adoga J.O., Channa, M.L. Nadar A. Type-2 diabetic rat heart: the effect of kolaviron on mTOR-1, P70S60K, PKC-α, NF-kB, SOD-2, NRF-2, eNOS, AKT-1, ACE, and P38 MAPK gene expression profile // Biomed. Pharmacother. 2022. V. 148. P.112736.

  11. Al-Kuraishy H.M., Hussian N.R., Al-Naimi M.S. et al. The potential role of pancreatic γ-aminobutyric acid (GABA) in diabetes mellitus: a critical reappraisal // Int. J. Prev. Med. 2021. V. 2. P.19.

  12. Antoni F.A. The case for clinical trials with novel GABAergic drugs in diabetes mellitus and obesity // Life (Basel). 2022. V. 12. № 2. P. 322.

  13. Balboa D., Iworima D.G., Kieffer T.J. Human pluripotent stem cells to model islet defects in diabetes // Front. Endocrinol. 2021. V. 12. P. 642152.

  14. Bastidas-Ponce A., Scheibner K., Lickert H. et al. Cellular and molecular mechanisms coordinating pancreas development // Development. 2017. V. 144. № 16. P. 2873–2888.

  15. Belle van T.L., Coppieters K.T., von Herrath M.G. Type 1 diabetes: etiology, immunology, and therapeutic strategies // Physiol. Rev. 2011. V. 91. № 1. P. 79–118.

  16. Benninger R.K.P., Hodson D.J. New understanding of β-cell heterogeneity and in situ islet function // Diabetes. 2018. V. 67. P. 537–547.

  17. Ben-Othman N., Vieira A., Courtney M. et al. Long-term GABA administration induces alpha cell-mediated beta-like cell neogenesis // Cell. 2017. V. 168. № 1–2. P. 73–85.

  18. Bettler B., Kaupmann K., Mosbacher J. et al. Molecular structure and physiological functions of GABAB receptors // Physiological Reviews. 2004. V. 84. № 3. P. 835–867.

  19. Bhandage A.K., Jin Z., Korol S.V. et al. GABA regulates release of inflammatory cytokines from peripheral blood mononuclear cells and CD4+ T cells and is immunosuppressive in type 1 diabetes // EBioMedicine. 2018. № 30. P. 283–294.

  20. Bonner-Weir S., Li W.C., Ouziel-Yahalom L. et al. β-Cell growth and regeneration: replication is only part of the story // Diabetes. 2010. V. 59. № 10. P. 2340–2348.

  21. Bottino R., Knoll M.F., Knoll C.A. et al. The future of islet transplantation is now // Frontiers in Medicine. 2018. № 5. P. 202.

  22. Bramswig N.C., Kaestner K.H. Transcriptional regulation of α-cell differentiation // Diabetes, Obesity and Metabolism. 2011. № 13. P. 13–20.

  23. Braun M., Ramracheya R., Bengtsson M. et al. γ-Aminobutyric acid (GABA) is an autocrine excitatory transmitter in human pancreatic β-cells // Diabetes. 2010. V. 59 № 7. P. 1694–1701.

  24. Bu D.F., Erlander M.G., Hitz B.C. et al. Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene // Proc. Natl. Acad. Sci. USA. 1992. № 89. P. 2115–2119.

  25. Buddhala C., Hsu C.C., Wu J.Y. A novel mechanism for GABA synthesis and packaging into synaptic vesicles // Neurochem. Internat. 2009. V. 55. № 1–3. P. 9–12.

  26. Butler A.E., Dhawan S., Hoang J. et al. Beta-cell deficit in obese type 2 diabetes, a minor role of beta-cell dedifferentiation and degranulation // J Clin Endocrinol Metab. 2016. V. 101. P. 523–532.

  27. Campbel S.A., Golec D.P., Hubert M. et al. Human islets contain a subpopulation of glucagon-like peptide-1 secreting α cells that is increased in type 2 diabetes // Mol Metab. 2020. V. 39. P. 101014.

  28. Chebib M., Johnston G.A. GABA-activated ligand gated ion channels: medicinal chemistry and molecular biology // J. Med. Chem. 2000. V. 43. № 8. P. 1427–1447.

  29. Chen H., Zho W., Ruan Y. et al. Reversal of angiotensin ll-induced β-cell dedifferentiation via inhibition of NF-κB signaling // Molecular Medicine. 2018. V. 24. № 1. P. 43.

  30. Chessler S.D., Lernmark Å. Alternative splicing of GAD67 results in the synthesis of a third form of glutamic-acid decarboxylase in human islets and other non-neural tissues // J. Biol. Chem. 2000. V. 275. № 7. P. 5188–5192.

  31. Chon S., Riveline J.P., Blondeau B. et al. Incretin-based therapy and pancreatic beta cells // Diabetes & Metabolism. 2014. V. 40. № 6. P. 411–422.

  32. Cinti F., Bouchi R., Kim-Muller J.Y. et al. Evidence of β-cell dedifferentiation in human type 2 diabetes // J. Clin. Endocrinol. Metab. 2016. V. 101. № 3. P. 1044–1054.

  33. Cnop M., Hughes S.J., Igoillo-Esteve M. et al. The long lifespan and low turnover of human islet beta cells estimated by mathematical modelling of lipofuscin accumulation // Diabetologia. 2010. V. 53. № 2. P. 321–330.

  34. Collombat P., Hecksher-Sørense J., Serup P. et al. Specifying pancreatic endocrine cell fates // Mechanisms of Development. 2006. V. 123. № 7. P. 501–512.

  35. Collombat P., Mansouri A., Hecksher-Sørensen J. et al. Opposing actions of Arx and Pax4 in endocrine pancreas development // Genes & Development. 2003. V. 17. № 20. P. 2591–2603.

  36. Collombat P., Xu X., Ravassard P., Sosa-Pineda B. et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells // Cell. 2009. V. 138. P. 449–462.

  37. Daems C., Welsch S., Boughaleb H. et al. Early treatment with Empagliflozin and GABA improves β-cell mass and glucose tolerance in streptozotocin-treated mice // J. Diabetes Res. 2019. V. 2019. P. 2813489.

  38. Dai C., Hang Y., Shostak A. et al. Age-dependent human β cell proliferation induced by glucagon-like peptide 1 and calcineurin signaling // J. Сlin. Investig. 2017. V. 127. № 10. P. 3835–3844.

  39. De Tata V. Age-related impairment of pancreatic Beta-cell function: pathophysiological and cellular mechanisms // Front. Endocrinol. (Lausanne). 2014. V. 5. P. 138.

  40. Dean E.D., Li M., Prasad N., Wisniewski S.N. et al. Interrupted glucagon signaling reveals hepatic α cell axis and role for L-glutamine in α cell proliferation // Cell Metab. 2017. V. 25. № 6. P. 1362–1373.e5.

  41. Dionisio L., José De Rosa M., Bouzat C., Esandi Mdel C. An intrinsic GABAergic system in human lymphocytes // Neuropharmacology. 2011. V. 60. № 2–3. P. 513–519.

  42. Dolenšek J., Rupnik M.S., Stožer A. Structural similarities and differences between the human and the mouse pancreas // Islets. 2015. V. 7. № 1. P. e1024405.

  43. Dong H., Kumar M., Zhang Y. et al. Gamma-aminobutyric acid up- and downregulates insulin secretion from beta cells in concert with changes in glucose concentration // Diabetologia. 2006. V. 49. № 4. P. 697–705.

  44. Dor Y., Brown J., Martinez O.I., Melton D.A. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation // Nature. 2004. V. 429. № 6987. P. 41–46.

  45. Dorrell C., Schug J., Canaday P.S. et al. Human islets contain four distinct subtypes of β cells // Nat. Commun. 2016. V. 7. P. 11756.

  46. Eizirik D.L., Pasquali L., Cnop M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure // Nat. Rev. Endocrinol. 2020. V. 16. № 7. P. 349–362.

  47. Fava G.E., Dong E.W., Wu H. Intra-islet glucagon-like peptide 1 // J. Diabetes Complications. 2016. V. 30. № 8. P. 1651–1658.

  48. Fonseca S.G., Gromada J., Urano F. Endoplasmic reticulum stress and pancreatic β-cell death // Trends Endocrinol. Metab. 2011. V. 22. № 7. P. 266–274.

  49. Gasnier B. The loading of neurotransmitters into synaptic vesicles // Biochimie. 2000. V. 82. № 4. P. 327–337.

  50. Granger A., Kushner J.A. Cellular origins of beta-cell regeneration: a legacy view of historical controversies // J. Intern. Med. 2009. V. 266. № 4. P. 325–338.

  51. Gregg B.E., Moore P.C., Demozay D. et al. Formation of a human β-cell population within pancreatic islets is set early in life // J. Clin Endocrinol. Metab. 2012. V. 97. № 9. P. 3197–1206.

  52. Gromada J., Chabosseau P., Rutter G.A. The α-cell in diabetes mellitus // Nat. Rev. Endocrinol. 2018. V. 14. № 12. P. 694–704.

  53. Gu X.H., Kurose T., Kato S. et al. Suppressive effect of GABA on insulin secretion from the pancreatic beta-cells in the rat // Life Sci. 1993. V. 52. № 8. P. 687–694.

  54. Gunasekaran U., Gannon M. Type 2 diabetes and the aging pancreatic beta cell // Aging (Albany NY). 2011. V. 3. № 6. P. 565–575.

  55. Guney M.A., Lorberbaum D.S., Sussel L. Pancreatic β cell regeneration: To β or not to β // Curr. Opin. Physiol. 2020. V. 14. P. 13–20.

  56. Gutierrez G.D., Gromada J., Sussel L. Heterogeneity of the pancreatic beta cell // Front. Genet. 2017. V. 8. P. 22.

  57. Hansen J.B., Tonnesen M.F., Madsen A.N. et al. Divalent metal transporter 1 regulates iron-mediated ROS and pancreatic β cell fate in response to cytokinesm // Cell Metab. 2012. V. 16. № 4. P. 449–461.

  58. Hauge-Evans A.C., Squires P.E., Persaud S.J., Jones P.M. Pancreatic beta-cell-to-beta-cell interactions are required for integrated responses to nutrient stimuli: enhanced Ca2+ and insulin secretory responses of MIN6 pseudoislets // Diabetes. 1999. V. 48. № 7. P. 1402–1408.

  59. Helman A., Avrahami D., Klochendler A. et al. Effects of ageing and senescence on pancreatic β-cell function // Diabetes, Obesity and Metabolism. 2016. V. 18. P. 58–62.

  60. Hill H., Elksnis A., Lundkvist P. et al. Endogenous levels of gamma amino-butyric acid are correlated to glutamic-acid decarboxylase antibody levels in type 1 diabetes // Biomedicines. 2021. V. 10. № 1. P. 91.

  61. Hua S., Liu Q., Li J. et al. Beta-klotho in type 2 diabetes mellitus: From pathophysiology to therapeutic strategies // Rev. Endocr. Metab. Disord. 2021. V. 22. № 4. P. 1091–1109.

  62. Irwin D.M. Molecular evolution of mammalian incretin hormone genes // Regulatory Peptides. 2009. V. 155. № 1–3. P. 121–130.

  63. Januzi L., Poirier J.W., Maksoud M.J. et al. Autocrine GABA signaling distinctively regulates phenotypic activation of mouse pulmonary macrophages // Cell. Immunol. 2018. V. 332. P. 7–23.

  64. Jin Z., Mendu S.K., Birnir B. GABA is an effective immunomodulatory molecule // Amino Acids. V. 2013. 45. P. 87–94.

  65. Kanaani J., Cianciaruso C., Phelps E.A. et al. Compartmentalization of GABA synthesis by GAD67 differs between pancreatic beta cells and neurons // PloS One. 2015. V. 10. № 2. P. e0117130.

  66. Kaufman D.L., Clare-Salzler M., Tian J. et al. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes // Nature. 1993. V. 366. P. 69–72.

  67. Kaufman D.L., Erlander M.G., Clare-Salzler M. et al. Autoimmunity to two forms of glutamate decarboxylase in insulin-dependent diabetes mellitus // J. Clin. Investig. 1992. V. 89. P. 283–292.

  68. Köhler C.U., Olewinsk M., Tannapfel A. et al. Cell cycle control of β-cell replication in the prenatal and postnatal human pancreas // American J. Physiology-Endocrinology and Metabolism. 2011. V. 300. № 1. P. E221–E230.

  69. Korol S.V., Jin Z., Jin Y. et al. Functional characterization of native, high-affinity GABAA receptors in human pancreatic β cells // EBioMedicine. 2018. V. 30. P. 273–282.

  70. Kulkarni R.N., Mizrachi E.B., Ocana A.G., Stewart A.F. Human β-cell proliferation and intracellular signaling: driving in the dark without a road map // Diabetes. 2012. V. 61. № 9. P. 2205–2213.

  71. Levetan C.S., Pierce S.M. Distinctions between the islets of mice and men: implications for new therapies for type 1 and 2 diabetes // Endocr. Pract. 2013. V. 19. № 2. P. 301–312.

  72. Li J., Hu X., Liang F. et al. Therapeutic effects of moxibustion simultaneously targeting Nrf2 and NF-κB in diabetic peripheral neuropathy // Appl. Biochem. Biotechnol. 2019. V. 189. № 4. P. 1167–1182.

  73. Ligon B., Yang J., Morin S.B. et al. Regulation of pancreatic islet cell survival and replication by γ-aminobutyric acid // Diabetologia. 2007. V. 50. № 4. P. 764–773.

  74. Liu W., Lau H.K., Son D.O. et al. Combined use of GABA and sitagliptin promotes human β-cell proliferation and reduces apoptosis // J. Endocrinol. 2021. V. 248. № 2. P. 133–143.

  75. Lorenz-Guertin J.M., Jacob T.C. GABA type a receptor trafficking and the architecture of synaptic inhibition // Developmental Neurobiology. 2018. V. 78. № 3. P. 238–270.

  76. Marchetti P., Lupi R., Bugliani M. et al. A local glucagon-like peptide 1 (GLP-1) system in human pancreatic islets // Diabetologia. 2012. V. 55. № 12. P. 3262–3272.

  77. Matveyenko A.V., Butler P.C. Relationship between beta-cell mass and diabetes onset // Diabetes, obesity & metabolism. 2008. V. 4. № 4. P. 23–31.

  78. Md Moin A.S., Dhawan S., Cory M. et al. Increased frequency of hormone negative and polyhormonal endocrine cells in lean individuals with type 2 diabetes // J. Clin. Endocrinol. Metab. 2016. V. 101. P. 3628–3636.

  79. Meier J.J., Butler A.E., Saisho Y. et al. Beta-cell replication is the primary mechanism subserving the postnatal expansion of beta-cell mass in humans // Diabetes. 2008. V. 57. P. 1584–1594.

  80. Meier J.J., Lin J.C., Butler A.E. et al. Direct evidence of attempted beta cell regeneration in an 89-year-old patient with recent-onset type 1 diabetes // Diabetologia. 2006. V. 49. № 8. P. 1838–1844.

  81. Mendu S.K., Bhandage A., Jin Z., Birnir B. Different subtypes of GABA-A receptors are expressed in human, mouse and rat T lymphocytes // PLoS One. 2012. V. 7. № 8. P. e42959.

  82. Menegaz D., Hagan D.W., Almaça J. et al. Mechanism and effects of pulsatile GABA secretion from cytosolic pools in the human beta cell // Nature Metabolism. 2019. V. 1. № 11. P. 1110–1126.

  83. Moede T., Leibiger I.B., Berggren P.O. Alpha cell regulation of beta cell function // Diabetologia. 2020. 63. № 10. P. 2064–2075.

  84. Morán I., Akerman I., Van De Bunt M. et al. Human β cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes // Cell Metab. 2012. V. 16. № 4. P. 435–448.

  85. Müller T.D., Finan B., Bloom S.R. et al. Glucagon-like peptide 1 (GLP-1) // Mol. Metab. 2019. V. 30. P. 72–130.

  86. Nair G., Hebrok M. Islet formation in mice and men: lessons for the generation of functional insulin-producing β-cells from human pluripotent stem cells // Current opinion in genetics & development. 2015. V. 32. P. 171–180.

  87. Notkins A.L., Lernmark A. Autoimmune type 1 diabetes: resolved and unresolved issues // J. Clin. Investig. 2001. V. 108. № 9. P. 1247–1252.

  88. Olsen R.W. GABAA receptor: Positive and negative allosteric modulators // Neuropharmacology. 2018. V. 136. P. 10–22.

  89. Omar B.A., Liehua L., Yamada Y. et al. Dipeptidyl peptidase 4 (DPP-4) is expressed in mouse and human islets and its activity is decreased in human islets from individuals with type 2 diabetes // Diabetologia. 2014. V. 57. № 9. P. 1876–1883.

  90. Pan F.C., Wright C. Pancreas organogenesis: from bud to plexus to gland // Developmental Dynamics. 2011. V. 240. № 3. P. 530–565.

  91. Panda H., We H., Suzuki M., Yamamoto M. Multifaceted roles of the KEAP1–NRF2 system in cancer and inflammatory disease milieu // Antioxidants. 2022. V. 11. № 3. P. 538.

  92. Pipeleers D., De Mesmaeker I., Robert T., Van Hulle F. Heterogeneity in the beta-cell population: a guided search into its significance in pancreas and in implants // Current Diabetes Reports. 2017. V. 17. № 10. P. 1–7.

  93. Pipeleers D., In’t Veld P. I., Maes E., Van De Winkel M. Glucose-induced insulin release depends on functional cooperation between islet cells // Proceedings of the National Academy of Sciences. 1982. V. 79. № 23. P. 7322–7325.

  94. Prud’homme G.J., Glink Y., Hasilo C. et al. GABA protects human islet cells against the deleterious effects of immunosuppressive drugs and exerts immunoinhibitory effects alone // Transplantation. 2013. V. 96. № 7. P. 616–623.

  95. Prud’homme G.J., Kur, M., Wang Q. Pathobiology of the Klotho Antiaging Protein and Therapeutic Considerations // Front. Aging. 2022. V. 3. P. 931331.

  96. Prud’homme G.J., Glinka Y., Kurt M. et al. The anti-aging protein Klotho is induced by GABA therapy and exerts protective and stimulatory effects on pancreatic beta cells // Biochem. Biophys. Res. Comm. 2017. V. 493. № 4. P. 1542–1547.

  97. Prud'homme G.J., Glinka Y., Wang Q. Immunological GABAergic interactions and therapeutic applications in autoimmune diseases // Autoimmunity Reviews. 2015. V. 14. № 11. P. 1048–1056.

  98. Purwana I., Zheng J., Li X. et al. GABA promotes human β-cell proliferation and modulates glucose homeostasis // Diabetes. 2014. V. 63. № 12. P. 4197–4205.

  99. Rachdi L., Maugein A., Pechberty S. et al. Regulated expression and function of the GABAB receptor in human pancreatic beta cell line and islets // Scientific Reports. 2020. V. 10. № 1. P. 13469.

  100. Ravassard P., Hazhouz Y., Pechberty S. et al. A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion // J . Clin. Investig. 2011. V. 121. № 9. P. 3589–3597.

  101. Rieck S., Kaestner K.H. Expansion of β-cell mass in response to pregnancy // Trends Endocrinol Metab. 2010. V. 21. P. 151–158.

  102. Robertson R. P. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes // J. Biol. Chem. 2004. V. 279. № 41. P. 42351–42354.

  103. Rosado-Olivieri E.A., Aigha I.I., Kenty J.H., Melton D.A. Identification of a LIF-responsive, replication-competent subpopulation of human β cells // Cell Metab. 2020. V. 31. P. 327–338.e6.

  104. Roscioni S.S., Migliorini A., Gegg M., Lickert H. Impact of islet architecture on β-cell heterogeneity, plasticity and function // Nat. Rev. Endocrinol. 2016. V. 12. № 12. P. 695–709.

  105. Rossini A.A. Autoimmune diabetes and the circle of tolerance // Diabetes. 2004. V. 53. № 2. P. 267–275.

  106. Ryan E.A., Lakey J.R., Rajotte R.V. et al. Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol // Diabetes. 2001. V. 50. № 4. P. 710–719.

  107. Salpeter S.J., Klein A.M., Huangfu D. et al. Glucose and aging control the quiescence period that follows pancreatic beta cell replication // Development. 2010. V. 137. № 19. P. 3205–3213.

  108. Segerstolpe A., Palasantza A., Eliasson P. et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes // Cell Metabolism. 2016. V. 24. № 4. P. 593–607.

  109. Shao W., Wang Z., Ip W. et al. GLP-1 (28–36) improves β-cell mass and glucose disposal in streptozotocin-induced diabetic mice and activates cAMP/PKA/β-catenin signaling in β-cells in vitro // American J. Physiology-Endocrinology and Metabolism. 2013. V. 304. № 12. P. E1263–E1272.

  110. Shapiro A.J., Lakey J.R., Ryan E.A. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen // New England Journal of Medicine. 2000. V. 343. № 4. P. 230–238.

  111. Shapiro A.J., Ricordi C., Hering B.J. et al. International trial of the Edmonton protocol for islet transplantation // New England Journal of Medicine. 2006. V. 355. № 13. P. 1318–1330

  112. Shcheglova E., Blaszczyk K., Borowiak M. Mitogen synergy: an emerging route to boosting human beta cell proliferation // Front. Cell Dev. Biol. 2022. V. 9. P. 734597.

  113. Shih H.P., Wang A., Sander M. Pancreas organogenesis: from lineage determination to morphogenesis // Annu. Rev. Cell Dev. Biol. 2013. V. 29. № 1. P. 81–105.

  114. Soltani N., Qiu H., Aleksic M. et al. GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes // Proceedings of the National Academy of Sciences. 2011. V. 108. № 28. P. 11692–11697.

  115. Sparrow E.L., James S., Hussain K. et al. Activation of GABA(A) receptors inhibits T cell proliferation // PloS One. 2021. V. 16. № 5. P. e0251632.

  116. Spears E., Serafimidis I., Powers AC., Gavalas A. Debates in Pancreatic Beta Cell Biology: Proliferation Versus Progenitor Differentiation and Transdifferentiation in Restoring β Cell Mass // Front. Endocrinol. (Lausanne). 2021. V. 12. P. 722250.

  117. Susztak K., Raff A.C., Schiffer M., Bottinger E.P. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy // Diabetes. 2006. V. 55. № 1. P. 225–233.

  118. Talchai C., Xuan S., Lin H.V. et al. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure // Cell. 2012. V. 150. № 6. P. 1223–1234.

  119. Talebi M., Taleb M., Farkhondeh T. et al. New insights into the role of the Nrf2 signaling pathway in green tea catechin applications // Phytotherapy Research. 2021. V. 35. № 6. P. 3078–3112.

  120. Tanday N., Irwin N., Flatt P.R., Moffett R.C. Dapagliflozin exerts positive effects on beta cells, decreases glucagon and does not alter beta- to alpha-cell transdifferentiation in mouse models of diabetes and insulin resistance // Biochem. Pharmacol. 2020. V. 177. P. 114009.

  121. Taneera J., Jin Z., Jin Y. et al. γ-Aminobutyric acid (GABA) signalling in human pancreatic islets is altered in type 2 diabetes // Diabetologia. 2012. V. 55. № 7. P. 1985–1994.

  122. Tatsuoka H., Sakamoto S., Yabe D. et al. Single-cell transcriptome analysis dissects the replicating process of pancreatic beta cells in partial pancreatectomy model // Iscience. 2020. V. 23. № 12. P. 101774.

  123. Teta M., Long S.Y., Wartschow L.M. et al. Very slow turnover of beta-cells in aged adult mice // Diabetes. 2005. V. 54. № 9. P. 2557–2567.

  124. Thorel F., Nepote V., Avril I. et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss // Nature 2010. V. 464. P. 1149–54.

  125. Tian J., Dan H., Chen Z. et al. γ-Aminobutyric acid regulates both the survival and replication of human β-cells // Diabetes. 2013. V. 62. № 11. P. 3760–3765.

  126. Tian J., Dang H., Middleton B., Kaufman D.L. Clinically applicable GABA receptor positive allosteric modulators promote ß-cell replication // Scientific Reports. 2017. V. 7. № 1. P. 374.

  127. Tian J., Dang H., O’Laco K.A. et al. Homotaurine treatment enhances CD4+ and CD8+ regulatory T cell responses and synergizes with low-dose anti-CD3 to enhance diabetes remission in type 1 diabetic mice // ImmunoHorizons. 2019. V. 3. № 10. P. 498–510.

  128. Tian J., Dang H.N., Yong J. et al. Oral treatment with γ-aminobutyric acid improves glucose tolerance and insulin sensitivity by inhibiting inflammation in high fat diet-fed mice // PLoS One. 2011. V. 6. № 9. P. e25338.

  129. Tian J., Lu Y., Zhang H. et al. Gamma-aminobutyric acid inhibits T cell autoimmunity and the development of inflammatory responses in a mouse type 1 diabetes model // J. Immunology. 2004. V. 173. № 8. P. 5298–5304.

  130. Tian J., Middleton B., Lee V.S. et al. GABAB-Receptor Agonist-Based Immunotherapy for Type 1 Diabetes in NOD Mice // Biomedicines. 2021. V. 9. № 1. P. 43.

  131. Typiak M., Kulesza T., Rachubik P. et al. Role of klotho in hyperglycemia: its levels and effects on fibroblast growth factor receptors, glycolysis, and glomerular filtration // Intern. J. Mol. Sci. 2021. V. 22. № 15. P. 7867.

  132. Tyurenkov I.N., Perfilova V.N., Nesterova A.A., Glinka Y. Klotho protein and cardio-vascular system // Biochemistry (Moscow). 2021. V. 86. № 2. P. 132–145.

  133. Ulasov A.V., Rosenkranz A.A., Georgiev G.P., Sobolev A.S. Nrf2/Keap1/ARE signaling: Towards specific regulation // Life Sci. 2022. V. 291. P. 120111.

  134. Vakilian M., Tahamtani Y., Ghaedi K. A review on insulin trafficking and exocytosis // Gene. 2019. V. 706. P. 52–61.

  135. Wan Y., Wang Q., Prud’homme G.J. GABAergic system in the endocrine pancreas: a new target for diabetes treatment // Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2015. V. 8. P. 79–87.

  136. Wang K.L., Tao M., Wei T.J., Wei R. Pancreatic β cell regeneration induced by clinical and preclinical agents // World J. Stem Cells. 2021. V. 13. № 1. P. 64–77.

  137. Wang P., Fiaschi-Taesch N., Vasavada R. et al. Diabetes mellitus – advances and challenges in human β-cell proliferation // Nat. Rev. Endocrinol. 2015. V. 11. P. 201–212.

  138. Wang Q., Ren D., Li Y., Xu G. Klotho attenuates diabetic nephropathy in db/db mice and ameliorates high glucose-induced injury of human renal glomerular endothelial cells // Cell Cycle. 2019. V. 18. № 6–7. P. 696–707.

  139. Weitz J., Menegaz D., Caicedo A. Deciphering the complex communication networks that orchestrate pancreatic islet function // Diabetes. 2021. V. 70. № 1. P. 17–26.

  140. Xie J., Zhang X., Zhang L. Negative regulation of inflammation by SIRT1 // Pharmacological Research. 2013. V. 67. № 1. P. 60–67.

  141. Xin Y., Dominguez Gutierrez G., Okamoto H. et al. Pseudotime ordering of single human β-cells reveals states of insulin production and unfolded protein response // Diabetes. 2018. V. 67. № 9. P. 1783–1794.

  142. Xu E., Kumar M., Zhang Y. et al. Intra-islet insulin suppresses glucagon release via GABA-GABAA receptor system // Cell Metabolism. 2006. V. 3. № 1. P. 47–58.

  143. Yagishita Y., Uruno A., Chartoumpekis D.V. et al. Nrf2 represses the onset of type 1 diabetes in non-obese diabetic mice // J. Endocrinology. 2019. V. 240. № 3. P. 403–416.

  144. Yamamoto M., Kensler T.W., Motohashi H. The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis // Physiological Reviews. 2018. V. 98. № 3. P. 1169–1203.

  145. Zeng C., Mulas F., Sui Y. et al. Pseudotemporal ordering of single cells reveals metabolic control of postnatal β cell proliferation // Cell Metab. 2017. V. 25. P. 1160–1175.

  146. Zhong F., Jiang Y. Endogenous pancreatic β cell regeneration: a potential strategy for the recovery of β cell deficiency in diabetes // Frontiers in endocrinology. 2019. V. 10. P. 101.

Дополнительные материалы отсутствуют.