Успехи физиологических наук, 2023, T. 54, № 4, стр. 93-104

Фармакологические эффекты фактора роста фибробластов 21 (FGF21) на углеводно-жировой обмен: зависимость от пола

Н. М. Бажан a*, Е. Н. Макарова a**

a Федеральное государственное бюджетное учреждение науки Институт цитологии и генетики СО РАН
630090 Новосибирск, Россия

* E-mail: bazhan-nm@yandex.ru
** E-mail: enmakarjva@gmail.com

Поступила в редакцию 12.06.2023
После доработки 20.06.2023
Принята к публикации 25.06.2023

Аннотация

Фактор роста фибробластов (FGF21) является гормоном печени, который способствует адаптации организма к различным ситауциям, вызывающим напряжение систем метаболизма. В обзоре рассмотрены некоторые нерешенные вопросы, касающиеся физиологического действия этого уникального метаболического регулятора, суммированы основные знания о фармакологических свойствах FGF21 и освещены половые различия в их проявлении при коррекции ожирения. Обобщены результаты, показывающие, что эффективность использования FGF21 для терапии ожирения зависит от этиологии ожирения и пола. Подчеркивается необходимость исследования механизмов возникновения половых различий действия FGF21 для его успешного использования при лечении ожирения у особей мужского и женского пола.

Ключевые слова: фактор роста фибробластов FGF21, углеводный и жировой обмен, модели ожирения, мыши

Список литературы

  1. Макарова Е.Н., Бажан Н.М. Роль фактора роста фибробластов 21 (fibroblast growth factor – fgf21) в регуляции и коррекции углеводно-жирового обмена // Росс. Физиол. Журн. им. И.М. Сеченова. 2016. Т. 102. № 12. С. 1406.

  2. Adams A.C., Yang C., Coskun T. et al. The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue // Mol. Metab. 2012. V. 2. № 1. P. 31. https://doi.org/10.1016/j.molmet.2012.08.007

  3. Arner P., Pettersson A., Mitchell P.J. et al. FGF21 attenuates lipolysis in human adipocytes: a possible link to improved insulin sensitivity // FEBS Lett. 2008. V. 582. P. 1725. https://doi.org/10.1016/j.febslet.2008.04.038

  4. Badman M.K., Koester A., Flier J.S., Kharitonenkov A., Maratos-Flier E. Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis // Endocrinology. 2009. V. 150. P. 4931. https://doi.org/10.1210/en.2009-0532

  5. Badman M.K., Pissios P., Kennedy A.R. et al. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states // Cell Metab. 2007. V. 5. № 6. P. 426. https://doi.org/10.1016/j.cmet.2007.05.002

  6. Bao L., Yin J., Gao W. et al. A long-acting FGF21 alleviates hepatic steatosis and inflammation in a mouse model of non-alcoholic steatohepatitis partly through an FGF21-adiponectin-IL17A pathway // Br. J. Pharmacol. 2018. V. 175. № 16. P. 3379. https://doi.org/10.1111/bph.14383

  7. Baruch A., Wong C., Chinn L.W. et al. Antibody-mediated activation of the FGFR1/Klothoβ complex corrects metabolic dysfunction and alters food preference in obese humans // Proc. Natl. Acad. Sci. U S A. 2020.V. 117. № 46. P. 28992. https://doi.org/10.1073/pnas.2012073117

  8. Bazhan N., Jakovleva T., Balyibina N. et al. Sex dimorphism in the Fgf21 gene expression in liver and adipose tissues is dependent on the metabolic condition // Online J. Biol. Sci. 2019. V. 19. P. 28.

  9. Bazhan N., Jakovleva T., Feofanova N. et al. Sex differences in liver, adipose tissue, and muscle transcriptional response to fasting and refeeding in mice // Cells. 2019. V. 8. P. 1529. https://doi.org/10.3390/cells8121529

  10. Bazhan N.M., Iakovleva T.V., Dubinina A.D., Makarova E.N. Impact of sex on the adaptation of adult mice to long consumption of sweet-fat diet // Vavilovskii Zhurnal Genetiki i Selektsii (Vavilov J. Genetics and Breeding). 2020. V. 24. № 8. P. 844. https://doi.org/10.18699/VJ20.682

  11. Bazhan N.M., Jakovleva T.V., Kazantseva A.Yu. et. al. Studying sex differences in responses to fibroblast growth factor 21 administration in obese mice consuming a sweet-fat diet // Vavilovskii Zhurnal Genetiki i Selektsii (Vavilov J. Genetics and Breeding). 2023. V. 27. № 4. P. 333.

  12. Berglund E.D., Li C.Y., Bina H.A. et al. Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity // Endocrinology. 2009. V. 150. № 9. P. 4084. https://doi.org/10.1210/en.2009-0221

  13. BonDurant.L.D., Ameka M., Naber M.C. et al. FGF21 Regulates Metabolism Through Adipose-Dependent and -Independent Mechanisms // Cell Metab. 2017. V. 25. № 4. P. 935. https://doi.org/10.1016/j.cmet.2017.03.005

  14. Bookout A.L., de Groot M.H., Owen B.M. et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system // Nat. Med. 2013.V. 19. № 9. P. 1147. https://doi.org/10.1038/nm.3249

  15. Bultman S.J., Michaud E.J., Woychik R.P. Molecular characterization of the mouse agouti locus // Cell. 1992. V. 71. № 7. P. 1195. https://doi.org/10.1016/S0092-8674(05)80067-4

  16. Camporez J.P., Jornayvaz F.R., Petersen M.C. et al. Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice // Endocrinology. 2013. V. 154. № 9. P. 3099. https://doi.org/10.1210/en.2013-1191

  17. Chartoumpekis D.V., Habeos I.G., Ziros. PG. et al. Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21 // Mol. Med. 2011. V. 17. № 7–8. P. 736. https://doi.org/10.2119/molmed.2011.00075

  18. Chau M. D., Gao J., Yang Q., Wu Z., Gromada J. Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway // Proc. Natl. Acad. Sci. U S A. 2010. V. 107. № 28. P. 2553. https://doi.org/10.1073/pnas.1006962107

  19. Chen M.Z., Chang J.C., Zavala-Solorio J. et al. FGF21 mimetic antibody stimulates UCP1-independent brown fat thermogenesis via FGFR1/βKlotho complex in non-adipocytes // Mol. Metab. 2017. V. 6. № 11. V. 1454. https://doi.org/10.1016/j.molmet.2017.09.003

  20. Chukijrungroat N., Khamphaya T., Weerachayaphorn J., Songserm T., Saengsirisuwan V. Hepatic FGF21 mediates sex differences in high-fat high-fructose diet-induced fatty liver // Am. J. Physiol. Endocrinol. Metab. 2017. V. 313. № 2. P. E203. https://doi.org/10.1152/ajpendo.00076.2017

  21. Coate K.C., Hernandez G., Thorne C.A. et al. FGF21 Is an Exocrine Pancreas Secretagogue // Cell Metab. 2017. V. 25. № 2. P. 472. https://doi.org/10.1016/j.cmet.2016.12.004

  22. Coppari R., Ichinose M., Lee C.E. et al. The hypothalamic arcuate nucleus: a key site for mediating leptin’s effects on glucose homeostasis and locomotor activity // Cell Metab. 2005. V. 1. № 1. P. 63. https://doi.org/10.1016/j.cmet.2004.12.004

  23. Coskun T., Bina H.A., Schneider M.A. et al. Fibroblast growth factor 21 corrects obesity in mice // Endocrinology. 2008. V. 149. № 12. P. 6018. https://doi.org/10.1210/en.2008-0816

  24. Cvitanović Tomaš T., Urlep Ž., Moškon M., Mraz M., Rozman D. Liver Sex Computational Model: Sexual Aspects in Hepatic Metabolism and Abnormalities // Front. Physiol. 2018. V. 9. P. 360. https://doi.org/10.3389/fphys.2018.00360

  25. Ding X., Boney-Montoya J., Owen B.M. et al. βKlotho is required for fibroblast growth factor 21 effects on growth and metabolism // Cell Metab. 2012. V. 16. № 3. P. 387. https://doi.org/10.1016/j.cmet.2012.08.002

  26. Douris N., Stevanovic D., Fisher F. et al. Central Fibroblast Growth Factor 21 Browns White Fat via Sympathetic Action in Male Mice // Endocrinol. 2015. V. 156. № 7. P. en2014. https://doi.org/10.1210/en.2014-2001

  27. Fisher F.M., Estall J.L., Adams A.C. et al. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo // Endocrinology. 2011. V. 152. № 8. P. 2996. https://doi.org/10.1210/en.2011-0281

  28. Fisher F.M., Maratos-Flier E. Understanding the Physiology of FGF21 // Annu. Rev. Physiol. 2016. V. 78. P. 223. https://doi.org/10.1146/annurev-physiol-021115-105339

  29. Flippo K.H., Jensen-Cody S.O., Claflin K.E., Potthoff M.J. FGF21 signaling in glutamatergic neurons is required for weight loss associated with dietary protein dilution // Sci. Rep. 2020. V. 10. № 1. P. 19521. https://doi.org/10.1038/s41598-020-76593-2

  30. Flippo K.H., Potthoff M.J. Metabolic Messengers: FGF21 // Nat. Metab. 2021. V. 3. № 3. P. 309. https://doi.org/10.1038/s42255-021-00354-2

  31. Fon Tacer K., Bookout A.L., Ding X. et al. Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse // Mol. Endocrinol. 2010. V. 24. № 10. P. 2050. https://doi.org/10.1210/me.2010-0142

  32. Gasparin F.R.S., Carreño F.O., Mewes J.M. et al. Sex differences in the development of hepatic steatosis in cafeteria diet-induced obesity in young mice // Biochim. Biophys. Acta. Mol. Basis. Dis. 2018. V. 1864. № 7. P. 2495. https://doi.org/10.1016/j.bbadis.2018.04.004

  33. Ge X., Chen C., Hui X. et al. Fibroblast growth factor 21 induces glucose transporter-1 expression through activation of the serum response factor/Ets-like protein-1 in adipocytes // J. Biol. Chem. 2011. V. 286. № 40. P. 34533. https://doi.org/10.1074/jbc.M111.248591

  34. Geng L., Lam K.S.L., Xu A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic // Nat. Rev. Endocrinol. 2020. V. 16. № 11. P. 654. https://doi.org/10.1038/s41574-020-0386-0

  35. Han M.S., Perry R.J., Camporez J.P. et al. A feed-forward regulatory loop in adipose tissue promotes signaling by the hepatokine FGF21 // Genes. Dev. 2021. V. 35. № 1–2. P. 133. https://doi.org/10.1101/gad.344556.120

  36. Hansen J.S., Clemmesen J.O., Secher N.H. et al. Glucagon-to-insulin ratio is pivotal for splanchnic regulation of FGF-21 in humans // Mol. Metab. 2015. V. 4. № 8. P. 551. https://doi.org/10.1016/j.molmet.2015.06.001

  37. Hill C.M., Berthoud H.R., Münzberg H., Morrison C.D. Homeostatic sensing of dietary protein restriction: A case for FGF21 // Front. Neuroendocrinol. 2018. V. 51. P. 125. https://doi.org/10.1016/j.yfrne.2018.06.002

  38. Hill C.M., Laeger T., Dehner M. et al. FGF21 Signals Protein Status to the Brain and Adaptively Regulates Food Choice and Metabolism // Cell Rep. 2019. V. 27. № 10. P. 2934. https://doi.org/10.1016/j.celrep.2019.05.022

  39. Holland W.L., Adams A.C., Brozinick J.T. et al. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice // Cell Metab. 2013. V. 17. № 5. P. 790. https://doi.org/10.1016/j.cmet.2013.03.019

  40. Hondares E., Iglesias R., Giralt A. et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue // J. Biol. Chem. 2011. V. 286. № 15. P. 12983. https://doi.org/10.1074/jbc.M110.215889

  41. Hsuchou H., Pan W., Kastin A.J. The fasting polypeptide FGF21 can enter brain from blood // Peptides. 2007. V. 28. № 12. P. 2382. https://doi.org/10.1016/j.peptides.2007.10.007

  42. Huang X., Yang C., Jin C. et al. Resident hepatocyte fibroblast growth factor receptor 4 limits hepatocarcinogenesis // Mol. Carcinog. 2009. V. 48. № 6. P. 553. https://doi.org/10.1002/mc.20494

  43. Huang Z., Zhong L., Lee J.T.H. et al. The FGF21-CCL11 Axis Mediates Beiging of White Adipose Tissues by Coupling Sympathetic Nervous System to Type 2 Immunity // Cell Metab. 2017. V. 26. № 3. P. 493.4 https://doi.org/10.1016/j.cmet.2017.08.003

  44. Huszar D., Lynch C.A., Fairchild-Huntress V. et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice // Cell. 1997. V. 88. № 1. P. 131. https://doi.org/10.1016/s0092-8674(00)81865-6

  45. Inagaki T., Dutchak P., Zhao G. et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21 // Cell Metab. 2007. V. 5. № 6. P. 415. https://doi.org/10.1016/j.cmet.2007.05.003

  46. Iroz A., Montagner A., Benhamed F. et al. A Specific ChREBP and PPARα Cross-Talk Is Required for the Glucose-Mediated FGF21 Response // Cell Rep. 2017. V. 21. № 2. P. 403. https://doi.org/10.1016/j.celrep.2017.09.065

  47. Itoh N. FGF21 as a Hepatokine, Adipokine, and Myokine in Metabolism and Diseases // Front. Endocrinol (Lausanne). 2014. V. 5. P. 107. https://doi.org/10.3389/fendo.2014.00107

  48. Jakovleva T.V., Kazantseva A.Y., Dubinina A.D. et al. Estradiol-dependent and independent effects of FGF21 in obese female mice // Vavilovskii Zhurnal Genet Selektsii. 2022. V. 26. № 2. P. 159. https://doi.org/10.18699/VJGB-22-20

  49. Jensen-Cody S.O., Flippo K.H., Claflin K.E. et al. FGF21 Signals to Glutamatergic Neurons in the Ventromedial Hypothalamus to Suppress Carbohydrate Intake // Cell Metab. 2020. V. 32. № 2. P. 273. https://doi.org/10.1016/j.cmet.2020.06.008

  50. Justesen S., Haugegaard K.V., Hansen J.B., Hansen H.S., Andersen B. The autocrine role of FGF21 in cultured adipocytes // Biochem. J. 2020. V. 477. № 13. P. 2477. https://doi.org/10.1042/BCJ20200220

  51. Kahn S.E., Hull R.L., Utzschneider K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes // Nature. 2006. V. 444. № 7121. P. 840. https://doi.org/10.1038/nature05482

  52. Keinicke H., Sun G., Mentzel C.M.J., Fredholm M. et al. FGF21 regulates hepatic metabolic pathways to improve steatosis and inflammation // Endocr. Connect. 2020. V. 9. № 8. P. 755. https://doi.org/10.1530/EC-20-0152

  53. Kharitonenkov A., Shiyanova T.L., Koester A. et al. FGF-21 as a novel metabolic regulator // J. Clin. Invest. 2005. V. 115. № 6. P. 1627. https://doi.org/10.1172/JCI23606

  54. Kharitonenkov A., Wroblewski V.J., Koester A. et al. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21 // Endocrinology. 2007. V. 148. № 2. P. 774. https://doi.org/10.1210/en.2006-1168

  55. Kim K.H., Lee M.S. FGF21 as a Stress Hormone: The Roles of FGF21 in Stress Adaptation and the Treatment of Metabolic Diseases // Diabetes Metab. J. 2014. V. 38. № 4. P. 245. https://doi.org/10.4093/dmj.2014.38.4.245

  56. Kühnen P., Wiegand S., Biebermann H. Pharmacological treatment strategies for patients with monogenic obesity // J. Pediatr. Endocrinol. Metab. 2020. Jul 3:/j/jpem.ahead-of-print/jpem-2020-0129/jpem-2020-0129.xml. Epub ahead of print. PMID: 32619193. https://doi.org/10.1515/jpem-2020-0129.

  57. Kurosu H., Choi M., Ogawa Y. et al. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21 // J. Biol. Chem. 2007. V. 282. № 37. P. 26687. https://doi.org/10.1074/jbc.M704165200

  58. Laeger T., Baumeier C., Wilhelmi I. et al. FGF21 improves glucose homeostasis in an obese diabetes-prone mouse model independent of body fat changes // Diabetologia. 2017. V. 60. № 11. P. 2274. https://doi.org/10.1007/s00125-017-4389-x

  59. Lan T., Morgan D.A., Rahmouni K. et al. FGF19, FGF21, and an FGFR1/β-Klotho-Activating Antibody Act on the Nervous System to Regulate Body Weight and Glycemia // Cell Metab. 2017. V. 26. № 5. P. 709. https://doi.org/10.1016/j.cmet.2017.09.005

  60. Larson K.R., Chaffin A.T., Goodson M.L., Fang Y., Ryan K.K. Fibroblast Growth Factor-21 Controls Dietary Protein Intake in Male Mice // Endocrinology. 2019. V. 160. № 5. P. 1069. https://doi.org/10.1210/en.2018-01056

  61. Lee Y.H., Kim S.H., Kim S.N. et al. Sex-specific metabolic interactions between liver and adipose tissue in MCD diet-induced non-alcoholic fatty liver disease // Oncotarget. 2016. V. 7. № 30. P. 46959. https://doi.org/10.18632/oncotarget.10506

  62. Lewis J.E., Ebling F.J.P., Samms R.J., Tsintzas K. Going back to the biology of FGF21: new insights // Trends Endocrinol. Metab. 2019. V. 30. № 8. P. 491. https://doi.org/10.1016/j.tem.2019.05.007

  63. Lewis J.E., Monnier C., Marshall H. et al. Whole-body and adipose tissue-specific mechanisms underlying the metabolic effects of fibroblast growth factor 21 in the Siberian hamster // Mol. Metab. 2020. V. 31. P. 45. https://doi.org/10.1016/j.molmet.2019.10.009

  64. Li Y., Wong K., Giles A., Jiang J. et al. Hepatic SIRT1 attenuates hepatic steatosis and controls energy balance in mice by inducing fibroblast growth factor 21 // Gastroenterology. 2014. V. 146. № 2. P. 539. https://doi.org/10.1053/j.gastro.2013.10.059

  65. Lin Z., Tian H., Lam K.S. et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice // Cell Metab. 2013. V. 17. № 5. P. 779. https://doi.org/10.1016/j.cmet.2013.04.005

  66. Liu M., Cao H., Hou Y. et al. Liver Plays a Major Role in FGF-21 Mediated Glucose Homeostasis // Cell Physiol. Biochem. 2018. V. 45. № 4. P. 1423. https://doi.org/10.1159/000487568

  67. Lu W., Li X., Luo Y. FGF21 in obesity and cancer: New insights // Cancer Lett. 2021. V. 499. P. 5. https://doi.org/10.1016/j.canlet.2020.11.026

  68. Luo Y., McKeehan W.L. Stressed Liver and Muscle Call on Adipocytes with FGF21 // Front. Endocrinol. (Lausanne). 2013. V. 4. P. 194. https://doi.org/10.3389/fendo.2013.00194

  69. Makarova E., Kazantseva A., Dubinina A. et al. Fibroblast Growth Factor 21 (FGF21) Administration Sex-Specifically Affects Blood Insulin Levels and Liver Steatosis in Obese Ay Mice // Cells. 2021. V. 10. № 12. P. 3440. https://doi.org/10.3390/cells10123440

  70. Makarova E., Kazantseva A., Dubinina A. et al. The Same Metabolic Response to FGF21 Administration in Male and Female Obese Mice Is Accompanied by Sex-Specific Changes in Adipose Tissue Gene Expression // Int. J. Mol. Sci. 2021. V. 22. № 19. P. 10561. https://doi.org/10.3390/ijms221910561

  71. Markan K.R., Naber M.C., Ameka M.K. et al. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding // Diabetes. 2014. V. 63. № 12. P. 4057. https://doi.org/10.2337/db14-0595

  72. Martínez-Garza Ú., Torres-Oteros D., Yarritu-Gallego A. et al. Fibroblast Growth Factor 21 and the Adaptive Response to Nutritional Challenges // Int. J. Mol. Sci. 2019. V. 20. № 19. P. 4692. https://doi.org/10.3390/ijms20194692

  73. Matsuo A., Tooyama I., Isobe S. et al. Immunohistochemical localization in the rat brain of an epitope corresponding to the fibroblast growth factor receptor-1 // Neuroscience. 1994. V. 60. № 1. P. 49. https://doi.org/10.1016/0306-4522(94)90203-8

  74. Mauvais-Jarvis F. Gender differences in glucose homeostasis and diabetes // Physiol. Behav. 2018. V. 187. P. 20. https://doi.org/10.1016/j.physbeh.2017.08.016

  75. Moyers J.S., Shiyanova T.L., Mehrbod F. et al. Molecular determinants of FGF-21 activity-synergy and cross-talk with PPARgamma signaling // J. Cell Physiol. 2007. V. 210. № 1. P. 1. https://doi.org/10.1002/jcp.20847

  76. Murray S.A., Dalbøge L.S., Baquero K. et al. Whole transcriptome analysis and validation of metabolic pathways in subcutaneous adipose tissues during FGF21-induced weight loss in non-human primates // Sci. Rep. 2020. V. 10. № 1. P. 7287. https://doi.org/10.1038/s41598-020-64170-6

  77. Nishimura T., Nakatake Y., Konishi M., Itoh N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver // Biochim. Biophys. Acta. 2000. V. 1492. № 1. P. 203. https://doi.org/10.1016/s0167-4781(00)00067-1

  78. Nogueiras R., Wiedmer P., Perez-Tilve D. et al. The central melanocortin system directly controls peripheral lipid metabolism // J. Clin. Invest. 2007. V. 117. № 11. P. 3475. https://doi.org/10.1172/JCI31743

  79. Ogawa Y., Kurosu H., Yamamoto M. et al. BetaKlotho is required for metabolic activity of fibroblast growth factor 21 // Proc. Natl. Acad. Sci. U S A. 2007. V. 104. № 18. P. 7432. https://doi.org/10.1073/pnas.0701600104

  80. Owen B.M., Ding X., Morgan D.A. et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss // Cell Metab. 2014. V. 20. № 4. P. 670. https://doi.org/10.1016/j.cmet.2014.07.012

  81. Prida E., Álvarez-Delgado S., Pérez-Lois R. et al. Liver Brain Interactions: Focus on FGF21 a Systematic Review // Int. J. Mol. Sci. 2022. V. 23. № 21. P. 13318. https://doi.org/10.3390/ijms232113318

  82. Ritchie M., Hanouneh I.A., Noureddin M., Rolph T., Alkhouri N. Fibroblast growth factor (FGF)-21 based therapies: A magic bullet for nonalcoholic fatty liver disease (NAFLD)? // Expert. Opin. Investig. Drugs. 2020. V. 29. № 2. P. 197. https://doi.org/10.1080/13543784.2020.1718104

  83. Sampey B.P., Vanhoose A.M., Winfield H.M. et al. Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet // Obesity (Silver Spring). 2011. V. 19. № 6. P. 1109. https://doi.org/10.1038/oby.2011.18

  84. Sarruf D.A., Thaler J.P., Morton G.J. et al. Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats // Diabetes. 2010. V. 59. № 7. P. 1817. https://doi.org/10.2337/db09-1878

  85. Søberg S., Sandholt C.H., Jespersen N.Z. et al. FGF21 Is a Sugar-Induced Hormone Associated with Sweet Intake and Preference in Humans // Cell Metab. 2017. V. 25. № 5. P. 1045. https://doi.org/10.1016/j.cmet.2017.04.009

  86. Solon-Biet S.M., Cogger V.C., Pulpitel T. et al. Defining the Nutritional and Metabolic Context of FGF21 Using the Geometric Framework // Cell Metab. 2016. V. 24. № 4. P. 555. https://doi.org/10.1016/j.cmet.2016.09.001

  87. Suzuki M., Uehara Y., Motomura-Matsuzaka K. et al. betaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c // Mol. Endocrinol. 2008. V. 22. № 4. P. 1006. https://doi.org/10.1210/me.2007-0313

  88. Talukdar S., Kharitonenkov A. FGF19 and FGF21: In NASH we trust // Mol. Metab. 2021. V. 46. P. 101152. https://doi.org/10.1016/j.molmet.2020.101152

  89. Talukdar S., Owen B.M., Song P. et al. FGF21 Regulates Sweet and Alcohol Preference // Cell Metab. 2016. V. 23. № 2. P. 344. https://doi.org/10.1016/j.cmet.2015.12.008

  90. Turer A.T., Scherer P.E. Adiponectin: mechanistic insights and clinical implications // Diabetologia. 2012. V. 55. № 9. P. 2319. https://doi.org/10.1007/s00125-012-2598-x

  91. Véniant M.M., Hale C., Helmering J. et al. FGF21 promotes metabolic homeostasis via white adipose and leptin in mice // PLoS One. 2012. V. 7. № 7. P. e40164. https://doi.org/10.1371/journal.pone.0040164

  92. von Holstein-Rathlou S., BonDurant L.D., Peltekian L. et al. FGF21 Mediates Endocrine Control of Simple Sugar Intake and Sweet Taste Preference by the Liver // Cell Metab. 2016. V. 23. № 2. P. 335. https://doi.org/10.1016/j.cmet.2015.12.003

  93. Wang L., Mazagova M., Pan C. et al. YIPF6 controls sorting of FGF21 into COPII vesicles and promotes obesity // Proc. Natl. Acad. Sci. U S A. 2019. V. 116. № 30. P. 15184. https://doi.org/10.1073/pnas.1904360116

  94. Wente W., Efanov A.M., Brenner M. et al. Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways // Diabetes. 2006. V. 55. № 9. P. 2470. https://doi.org/10.2337/db05-1435

  95. Wolff G.L., Roberts D.W., Mountjoy K.G. Physiological consequences of ectopic agouti gene expression: the yellow obese mouse syndrome // Physiol. Genomics. 1999. V. 1. № 3. P. 151. https://doi.org/10.1152/physiolgenomics.1999.1.3.151

  96. Xu J., Lloyd D.J., Hale C. et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice // Diabetes. 2009. V. 58. № 1. P. 250. https://doi.org/10.2337/db08-0392

  97. Xu J., Stanislaus S., Chinookoswong N. et al. Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models–association with liver and adipose tissue effects // Am. J. Physiol. Endocrinol. Metab. 2009. V. 297. № 5. P. E1105. https://doi.org/10.1152/ajpendo.00348.2009

  98. Xu P., Zhang Y., Song L. et al. Efficacy of a combination of high and low dosage of PEGylated FGF-21 in treatment of diabetes in db/db mice // Biomed. Pharmacother. 2016. V. 84. P. 97. https://doi.org/10.1016/j.biopha.2016.09.019

  99. Yang C., Jin C., Li X. et al. Differential specificity of endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in complex with KLB // PLoS One. 2012. V. 7. № 3. P. e33870. https://doi.org/10.1371/journal.pone.0033870

  100. Ye X., Qi J., Yu D. et al. Pharmacological efficacy of FGF21 analogue, liraglutide and insulin glargine in treatment of type 2 diabetes // J. Diabetes Complications. 2017. V. 31. № 4. P. 726. https://doi.org/10.1016/j.jdiacomp.2017.01.008

  101. Yie J., Wang W., Deng L. et al. Understanding the physical interactions in the FGF21/FGFR/β-Klotho complex: structural requirements and implications in FGF21 signaling // Chem. Biol. Drug. Des. 2012. V. 79. № 4. P. 398. https://doi.org/10.1111/j.1747-0285.2012.01325.x

  102. Zarei M., Pizarro-Delgado J., Barroso E. et al. Targeting FGF21 for the Treatment of Nonalcoholic Steatohepatitis // Trends Pharmacol. Sci. 2020. V. 41. № 3. P. 199. https://doi.org/10.1016/j.tips.2019.12.005

  103. Zarei M., Pizarro-Delgado J., Barroso E., Palomer X., Vázquez-Carrera M. Targeting FGF21 for the Treatment of Nonalcoholic Steatohepatitis // Trends Pharmacol. Sci. 2020. V. 41. № 3. P. 199. https://doi.org/10.1016/j.tips.2019.12.005

  104. Zhang Y., Kilroy G.E., Henagan T.M. et al. Targeted deletion of melanocortin receptor subtypes 3 and 4, but not CART, alters nutrient partitioning and compromises behavioral and metabolic responses to leptin // FASEB J. 2005. V. 19. № 11. P. 1482. https://doi.org/10.1096/fj.05-3851com.

Дополнительные материалы отсутствуют.