Успехи физиологических наук, 2023, T. 54, № 4, стр. 73-92

Сладкий вкус: от рецепции к восприятию

В. О. Муровец a*, Е. А. Лукина a**, В. А. Золотарев a***

a Институт физиологии им. И.П. Павлова РАН
199034 Санкт-Петербург, Россия

* E-mail: murovetsvo@infran.ru
** E-mail: lukinaea@infran.ru
*** E-mail: zolotarevva@infran.ru

Поступила в редакцию 20.04.2023
После доработки 25.04.2023
Принята к публикации 30.04.2023

Аннотация

Сладкое – наиболее сильная вкусовая модальность, формирующая пищевое поведение и влияющая на гомеостаз. В обзоре суммированы сведения о рецепции и кодировании вкусовых сигналов на уровне вкусовых почек и центров головного мозга при потреблении сладких веществ. Основное внимание уделено молекулярно-клеточным механизмам идентификации сладкого вкуса и детекции калорийного состава пищи, включая роль мембранных белковых рецепторов T1R2/T1R3 и связанного с ними внутриклеточного ферментативного каскада, а также метаболического механизма оценки концентрации поступающей в цитоплазму глюкозы. Описаны генетические аспекты чувствительности к сладкому и влияние полиморфизма генов рецептора сладкого вкуса на чувствительность к сахарам и низкокалорийным сахарозаменителям. В обзоре приведены результаты современных исследований эндокринной, паракринной и аутокринной модуляции рецепции и восприятия сладкого вкуса в зависимости от метаболического статуса организма. Сделано предположение о перспективном направлении исследований по проблеме.

Ключевые слова: вкусовые рецепторы сладкого, белки T1R2 и T1R3, головной мозг, нейропептиды, гомеостаз

Список литературы

  1. Лукина Е.А., Муровец В.О., Золотарев В.А. Экспериментальная аносмия нарушает реакцию избегания растворов этанола у мышей инбредной линии 129P3/j // Журн. Эвол. Биохим. и Физиол. 2020. Т. 56. № 1. С. 77–80. https://doi.org/10.31857/S0044452920010088

  2. Antinucci M., Risso D. A matter of taste: lineage-specific loss of function of taste receptor genes in vertebrates // Front. Mol. Biosci. 2017. V. 4. P. 81. https://doi.org/10.3389 /fmolb.2017.00081

  3. Avery J.A., Liu A.G., Ingeholm J.E. et al. Taste quality representation in the human brain // J. Neurosci. 2020. V. 40. P. 1042–1052. https://doi.org/10.1523/JNEUROSCI.1751-19.2019

  4. Bachmanov A.A., Bosak N.P., Floriano W.B. et al. Genetics of sweet taste preferences // Flavour and Fragr. J. 2011. V. 26. P. 286–294. https://doi.org/10.1002/ffj.2074

  5. Bachmanov A. A., Bosak N. P., Lin C. et al. Genetics of Taste Receptors // Curr. Pharm. Des. 2014. V. 20. P. 2669–2683. https://doi.org/10.2174/13816128113199990566

  6. Bachmanov A.A., Kiefer S.W., Tordoff M.G. et al. Chemosensory factors influencing alcohol perception, preferences and consumption // Alcohol. Clin. Exp. Res. 2003. V. 27. P. 220–231. https://doi.org/10.1097/01.ALC.0000051021.99641.19

  7. Bachmanov A.A., Li. X., Reed D.R. et al. Positional cloning of the mouse saccharin preference (Sac) locus // Chem. Senses. 2001a. V. 26. Iss. 7. P. 925–933. https://doi.org/10.1093/chemse/26.7.925

  8. Bachmanov A.A., Reed D.R., Tordoff M.G., Price R.A., Beauchamp G.K. Intake of ethanol, sodium chloride, sucrose, citric acid, and quinine hydrochloride solutions by mice: a genetic analysis // Behav. Genet. 1996. V. 26. P. 563–573. https://doi.org/10.1007/BF02361229

  9. Bachmanov A.A., Tordoff M.G., Beauchamp G.K. Sweetener preference of C57BL/6ByJ and 129P3/J mice // Chem. Senses. 2001b. V. 26. Iss. 7. P. 905–913. https://doi.org/10.1093/chemse/26.7.905

  10. Bady I., Marty N., Dallaporta M. et al. Evidence from glut2-null mice that glucose is a critical physiological regulator of feeding // Diabetes. 2006. V. 55. P. 988–995. https://doi.org/10.2337/diabetes.55.04.06.db05-1386

  11. Bakshi V.P., Kelley A.E. Feeding induced by opioid stimulation of the ventral striatum: role of opiate receptor subtypes // J. Pharmacol. Exp. Ther. 1993. V. 265. P. 1253–1260.

  12. Baldwin M.W., Toda Y., Nakagita T. et al. Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor // Science. 2014. V. 345. Iss. 6199. P. 929–933. https://doi.org/10.1126/science.1255097

  13. Banik D.D., Martin L.E., Freichel M. et al. TRPM4 and TRPM5 are both required for normal signaling in taste receptor cells // Proc. Natl. Acad. Sci. U S A. 2018.V. 115. P. 772–781. https://doi.org/10.1073/pnas.1718802115

  14. Barretto R.P.J., Gillis-Smith S., Chandrashekar J. et al. The neural representation of taste quality at the periphery // Nature. 2015. V. 517. P. 373–376. https://doi.org/10.1038/nature1387 3

  15. Beckstead R.M., Morse J.R., Norgren R. The nucleus of the solitary tract in the monkey: projections to the thalamus and brain stem nuclei // J. Comp. Neurol. 1980. V. 190. P. 259–282. https://doi.org/10.1002/cne.901900205

  16. Behrens M., Meyerhof W. Gustatory and extragustatory functions of mammalian taste receptors // Physiol. Behav. 2011. V. 105. P. 4–13. https://doi.org/10.1016/j.physbeh.2011.02.010

  17. Belknap J.K., Crabbe J.C., Young E.R. Voluntary consumption of alcohol in 15 inbred mouse strains // Psychopharmacology. 1993. V. 112. № 4. P. 503–510. https://doi.org/10.1007/BF02244901

  18. Benford H., Bolborea M., Pollatzek E. et al. A sweet taste receptor-dependent mechanism of glucosensing in hypothalamic tanycytes // Glia. 2017. V. 65. Iss. 5. P. 773–789. https://doi.org/10.1002/glia.23125

  19. Berridge K.C., Kringelbach M.L. Affective neuroscience of pleasure: reward in humans and animals // Psychopharmacology (Berl). 2008. V. 199. P. 457–80. https://doi.org/10.1007/s00213-008-1099-6

  20. Blizard D.A. Sweet and bitter taste of ethanol in C57BL/6 and DBA2/J mouse strains // Behav. Genet. 2007. V. 37. P. 146–159. https://doi.org/10.1007/s10519-006-9121-4

  21. Blizard D.A., McClearn G.E. Association between ethanol and sucrose intake in the laboratory mouse: exploration via congenic strains and conditioned taste aversion // Alcohol. Clin. Exp. Res. 2000. V. 24. P. 253–258.

  22. Bray G.A., Popkin B.M. Calorie-sweetened beverages and fructose: what have we learned 10 years later // Pediatr. Obes. 2013. V. 8. P. 242–248. https://doi.org/10.1111/j.2047-6310.2013.00171.x

  23. Breslin P.A.S. An evolutionary perspective on food and human taste // Curr. Biol. 2013.V. 23. P. 409–418. https://doi.org/10.1016/j.cub.2013.04.010

  24. Brog J.S., Salyapongse A., Deutch A.Y., Zahm D.S. The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold // J. Comp. Neurol. 1993. V. 338. P. 255–278. https://doi.org/10.1002/cne.903380209

  25. Burdakov D., Gerasimenko O., Verkhratsky A. Physiological changes in glucose differentially modulate the excitability of hypothalamic melanin-concentrating hormone and orexin neurons in situ // J. Neurosci. 2005. V. 25. P. 2429–2433. https://doi.org/10.1523/JNEUROSCI.4925-04.2005

  26. Canna A., Prinster A., Cantone E. et al. Intensity-related distribution of sweet and bitter taste fMRI responses in the insular cortex //Hum. Brain. Mapp. 2019. V. 40. P. 3631–3646. https://doi. org/https://doi.org/10.1002/hbm.24621

  27. Carroll M.E., Morgan A.D., Anker J.J., Perry J.L., Dess N.K. Selective breeding for differential saccharin intake as an animal model of drug abuse // Behav. Pharmacol. 2008. V. 19. P. 435–460. https://doi.org/10.1097/FBP.0b013e32830c3632

  28. Chalmers J.A., Jang J.J., Belsham D.D. Glucose sensing mechanisms in hypothalamic cell models: Glucose inhibition of AgRP synthesis and secretion // Mol. Cell Endocrinol. 2014. V. 382. P. 262–270 https://doi.org/10.1016/j.mce.2013.10.013

  29. Chandrashekar J., Hoon M.A., Ryba N. et al. The receptors and cells for mammalian taste // Nature. 2006. V. 444. P. 288–294. https://doi.org/10.1038/nature05401

  30. Chaudhari N., Roper S.D. The cell biology of taste // J. Cell Biol. 2010. V. 190. P. 285–296. https://doi.org/10.1083/jcb.201003144

  31. Chen K., Yan J., Suo Y., Li J., Wang Q., Lv B. Nutritional status alters saccharin intake and sweet receptor mRNA expression in rat taste buds // Brain Research. 2010. V. 1325. P.53–62. https://doi.org/10.1016/j.brainres.2010.02.026

  32. Chen X., Gabitto M., Peng Y. et al. A gustotopic map of taste qualities in the mammalian brain // Science. 2011. V. 333. P. 1262–1266. https://doi.org/10.1126/science.12040 76

  33. Claret M., Smith M.A., Batterham R.L. et al. AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons // J. Clin. Invest. 2007. V. 117. P. 2325–2336. https://doi.org/10.1172/JCI31516

  34. Cui M., Jiang P., Maillet E. et al. The heterodimeric sweet taste receptor has multiple potential ligand binding sites // Curr. Pharm. Des. 2006. V. 12. P. 4591–4600. https://doi.org/10.2174/138161206779010350

  35. Damak S., Rong M., Yasumatsu K. et al. Detection of sweet and umami taste in the absence of taste receptor T1r3 // Science. 2003. V. 301. P. 850–853. https://doi.org/10.1126/science.1087155

  36. Dando R., Roper S.D. Acetylcholine is released from taste cells, enhancing taste signalling // J. Physiol. 2012. V. 590. P. 3009–3017. https://doi.org/10.1113/jphysiol.2012.232009

  37. de Araujo I.E., Oliveira-Maia A.J., Sotnikova T.D. et al. Food reward in the absence of taste receptor signaling // Neuron. 2008. V. 57. P. 930–941. https://doi.org/10.1016/j.neuron.2008.01.032

  38. Delaere F., Duchampt A., Mounien L. et al. The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing // Mol. Metab. 2012. V. 2. P. 47–53. https://doi.org/10.1016/j.molmet.2012.11.003

  39. Dias A.G., Eny K.M., Cockburn M. et al. Variation in the TAS1R2 gene, sweet taste perception and intake of sugars // J. Nutrigenet. Nutrigenomics. 2015. V. 8. №. 2. P. 81–90. https://doi.org/10.1159/000430886

  40. Di Lorenzo P.M., Kiefer S.W., Rice A.G., Garcia J. Neural and behavioral responsivity to ethyl alcohol as a tastant // Alcohol. 1986. V. 3. P. 55–61. https://doi.org/10.1016/0741-8329(86)90071-6

  41. DiNicolantonio J.J., O’Keefe J.H., Wilson W.L. Sugar addiction: is it real? A narrative review // Br. J. Sports Med. 2018. V. 52. P. 910–913. https://doi.org/10.1136/bjsports2017-097971

  42. Dotson C.D., Geraedts M.C., Munger S.D. Peptide regulators of peripheral taste function // Semin. Cell. Dev. Biol. 2013. V. 24. P. 232–239. https://doi.org/10.1016/j.semcdb.2013.01.004

  43. DuBois G.E. Molecular mechanism of sweetness sensation // Physiol. Behav. 2016. V. 164. P. 453–463. https://doi.org/10.1016/j.physbeh.2016.03.015

  44. Dudley R. Ethanol, fruit ripening, and the historical origins of human alcoholism in primate frugivory // Integr. Comp. Biology. 2004. V. 44. P. 315–323. https://doi.org/10.1093/icb/44.4.315

  45. Dunham I., Shimizu N., Roe B.A. et al. The DNA sequence of human chromosome 22 // Nature. 1999. V. 402. № 6761. P. 489–495. https://doi.org/10.1038/990031

  46. Elson A.E., Dotson C.D., Egan J.M., Munger S.D. Glucagon signaling modulates sweet taste responsiveness // FASEB J. 2010. V. 24. P. 3960–3969. https://doi.org/10.1096/fj.10-158105

  47. Eny K.M., Wolever T.M., Corey P.N., El-Sohemy A. Genetic variation in TAS1R2 (Ile191Val) is associated with consumption of sugars in overweight and obese individuals in 2 distinct populations // Am. J. Clin. Nutr. 2010. V. 92. Iss. 6. P. 1501–1510. https://doi.org/10.3945/ajcn.2010.29836

  48. Erickson R.P. The evolution and implications of population and modular neural coding ideas // Prog. Brain Res. 2001. V. 130. P. 9–29. https://doi.org/10.1016/s0079-6123(01)30003-1

  49. Erickson R.P. A study of the science of taste: on the origins and infuence of the core ideas // Behav. Brain Sci. 2008. V. 31. P. 59–75. https://doi.org/10.1017/S0140525X08003348

  50. Eriksson L., Esberg A., Haworth S., Holgerson P.L., Johansson I. Allelic variation in taste genes is associated with taste and diet preferences and dental caries // Nutrients. 2019. V. 11. P. 1491. https://doi.org/10.3390/nu11071491

  51. Feng X.H., Liu X.M., Zhou LH., Wang J., Liu G.D. Expression of glucagon-like peptide-1 in the taste buds of rat circumvallate papillae // Acta Histochem. 2008. V. 110. P. 151–154. https://doi.org/10.1016/j.acthis.2007.10.005

  52. Finger T.E., Danilova V., Barrows J. et al. ATP signaling is crucial for communication from taste buds to gustatory nerves // Science. 2005. V. 310. P. 1495–1499. https://doi.org/10.1126/science.1118435

  53. Finger T., Kinnamon S. Purinergic neurotransmission in the gustatory system // Auton. Neurosci. 2021. V. 236. P. 102874. https://doi.org/10.1016/j.autneu.2021.102874

  54. Fletcher M.L., Ogg. M.C., Lu L. et al. Overlapping representation of primary tastes in a defined region of the gustatory cortex // J. Neurosci. 2017. V. 37. P. 7595–7605.https://doi.org/10.1523/JNEUROSCI.0649-17.2017

  55. Fonseca E., de Lafuente V., Simon S.A., Gutierrez R. Sucrose intensity coding and decision-making in rat gustatory cortices // eLife. 2018. V. 7. P. e41152.https://doi.org/10.7554/eLife.41152

  56. Fortuna J.L. Sweet preference, sugar addiction and the familial history of alcohol dependence: shared neural pathways and genes // J. Psychoactive. Drugs. 2010. V. 42. P.147–151. https://doi.org/10.1080/02791072.2010.10400687

  57. Frank M.E., Contreras R.J., Hettinger T.P. Nerve fibers sensitive to ionic taste stimuli in chorda tympani of the rat // J. Neurophysiol. 1983. V. 50. P. 941–960. https://doi.org/10.1152/jn.1983.50.4.941

  58. Furudono Y., Ando C., Yamamoto C., Kobashi M., Yamamoto T. Involvement of specific orexigenic neuropeptides in sweetener-induced overconsumption in rats // Behav. Brain Res. 2006. V. 175. P. 241–248. https://doi.org/10.1016/j.bbr.2006.08.031

  59. Fushan A.A., Simons C.T., Slack J P., Drayna D. Association between common variation in genes encoding sweet taste signaling components and human sucrose perception // Chem. Senses. 2010. V. 35. Iss. 7. P. 579–592. https://doi.org/10.1093 /chemse /bjq063

  60. Garcia J., Lasiter P.S., Bermudez-Rattoni F., Deems D.A. A general theory of aversion learning // Ann. N. Y. Acad. Sci. 1985. V. 443. P. 8–21.https://doi.org/10.1111/j.1749-6632.1985.tb27060.x

  61. Gehrlach D.A., Dolensek N., Klein A.S. et al. Aversive state processing in the posterior insular cortex // Nat. Neurosci. 2019. V. 22. P. 1424–1437.https://doi.org/10.1038/s41593-019-0469-1

  62. George S.R., Roldan L., Lui A., Naranjo C.A. Endogenous opioids are involved in the genetically determined high preference for ethanol consumption // Alcohol. Clin Exp Res. 1991. V. 15. P. 668–672. https://doi.org/10.1111/j.1530-0277.1991.tb00576.x

  63. Glendinning J.I., Chyou S., Lin I. Initial licking responses of mice to sweeteners: effects of Tas1r3 polymorphisms // Chem. Senses. 2005. V. 30. P. 601–614. https://doi.org/10.1093/chemse/bji054

  64. Glendinning J.I., Stano S., Holter M. et al. Sugar-induced cephalic-phase insulin release is mediated by a T1r2 + T1r3-independent taste transduction pathway in mice // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015. V. 309. P. 552–560. https://doi.org/10.1152/ajpregu.00056.2015

  65. Gonzalez J.A., Reimann F., Burdakov D. Dissociation between sensing and metabolism of glucose in sugar sensing neurons // J. Physiol. 2009. V. 587. Iss. 1. P. 41–48. https://doi.org/10.1113/jphysiol.2008.163410

  66. Gosnell B.A., Majchrzak M.J. Centrally administered opioid peptides stimulate saccharin intake in nondeprived rats // Pharmacol. Biochem. Behav. 1989. V. 33. P. 805–810. https://doi.org/10.1016/0091-3057(89)90474-7

  67. Groenewegen H.J., Berendse H.W., Haber S.N. Organization of the output the ventral striatopallidal system in the rat: ventral pallidal efferents // Neurosci. 1993. V. 57. P. 113–142. https://doi.org/10.1016/0306-4522(93)90115-v

  68. Gutierrez R., Fonseca E., Simon S.A. The neuroscience of sugars in taste, gut-reward, feeding circuits, and obesity // Cell Mol. Life Sci. 2020. V. 77. P. 3469–3502. https://doi.org/10.1007/s00018-020-03458-2

  69. Hajnal A., Covasa M., Bello N.T. Altered taste sensitivity in obese, prediabetic OLETF rats lacking CCK-1 receptors // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005. V. 289. P. 1675–1686. https://doi.org/10.1152/ajpregu.00412.2005

  70. Hamano K., Nakagawa Y., Ohtsu Y. et al. Lactisole inhibits the glucose-sensing receptor T1R3 expressed in mouse pancreatic β-cells // J. Endocrinol. 2015. V. 226. P. 57–66. https://doi.org/10.1530/JOE-15-0102

  71. Han J., Choi M. Comprehensive functional screening of taste sensation in vivo // bioRxiv 371682. 2018. https://doi.org/10.1101/371682

  72. Hansel D.E., Eipper B.A., Ronnett G.V. Neuropeptide Y functions as a neuroproliferative factor // Nature. 2001. V. 410. P. 940–944. https://doi.org/10.1038/35073601

  73. Hellekant G., Danilova V., Roberts T., Ninomiya Y. The taste of ethanol in a primate model: I. Chorda tympani nerve response in Macaca mulatta // Alcohol. 1997. V. 14. P. 473-484. https://doi.org/10.1016/s0741-8329(96)00215-7

  74. Herness M.S. Vasoactive intestinal peptide-like immunoreactivity in rodent taste cells // Neurosci. 1989. V. 33. P. 411–419. https://doi.org/10.1016/0306-4522(89)90220-0

  75. Herness S., Zhao F.L., Lu S.G., Kaya N., Shen T. Expression and physiological actions of cholecystokinin in rat taste receptor cells // J. Neurosci. 2002. V. 22. P. 10018–10029. https://doi.org/10.1523/JNEUROSCI.22-22-10018.2002

  76. Herness S., Zhao F.L. The neuropeptides CCK and NPY and the changing view of cell-to-cell communication in the taste bud // Physiol. Behav. 2009. V. 97. P. 581–591. https://doi.org/10.1016/j.physbeh.2009.02.043

  77. Herrera Moro Chao D., Argmann C., Van Eijk M. et al. Impact of obesity on taste receptor expression in extra-oral tissues: emphasis on hypothalamus and brainstem // Sci. Rep. 2016. V. 6. P. 29094. https://doi.org/10.1038/srep29094

  78. Hubell C.L., Marglin S.H., Spitalnic S.J. et al. Opioidergic, serotonergic, and dopaminergic manipulations of rats’ intake of a sweetened alcoholic beverage //Alcohol. 1991. V. 8. P. 355–367. https://doi.org/10.1016/0741-8329(91)90573-f

  79. Hurtado M.D., Acosta A., Riveros P.P. et al. Distribution of y-receptors in murine lingual epithelia // PLoS One. 2012. V. 7. P. e46358. https://doi.org/10.1371/journal.pone.0046358

  80. Iatridi V., Hayes J.E., Yeomans M.R. Quantifying sweet taste liker phenotypes: time for some consistency in the classification criteria // Nutrients. 2019a. V. 11. № 1. P. 129. https://doi.org/10.3390/nu11010129

  81. Iatridi V., Hayes J.E., Yeomans M.R. Reconsidering the classification of sweet taste liker phenotypes: a methodological review // Food Quality Pref. 2019b. V. 72. 56–76. https://doi.org/10.1016/j.foodqual.2018.09.001

  82. Inui T., Shimura T., Yamamoto T. The re-presentation of conditioned stimulus after acquisition of conditioned taste aversion increases ventral pallidum GABA release in rats // Neurosci. Res. 2007. V. 58. P. 67. https://doi.org/10.1016/j.neures.2007.06.397

  83. Inoue, M., Glendinning, J. I., Theodorides, M. L. et al. Allelic variation of the Tas1r3 taste receptor gene selectively affects taste responses to sweeteners: evidence from 129.B6-Tas1r3 congenic mice // Physiol. Genomics 2007. V. 32. Iss. 1. P. 82–94. https://doi.org/10.1152/physiolgenomics.00161.2007

  84. Ishimaru Y. Molecular mechanisms of taste transduction in vertebrates // Odontology. 2009. V. 97. P. 1–7. https://doi.org/10.1007/s10266-008-0095-y

  85. Jiang P., Cui M., Zhao B. et al. Lactisole interacts with the transmembrane domains of human T1R3 to inhibit sweet taste // J. Biol. Chem. 2005. V. 280. № 15. P. 15238–15246. https://doi.org/10.1074/jbc.M414287200

  86. Jiang P., Josue J., Li X. et al. Major taste loss in carnivorous mammals // PNAS. 2012. V. 103. Iss. 13. P. 4956–4961. https://doi.org/10.1073/pnas.1118360109

  87. Kampov-Polevoy A.B., Garbutt J.C., Janowsky D.S. Association between preference for sweets and excessive alcohol intake: a rewiev of animal and human studies // Alcohol Alcohol. 1999. V. 34. Iss. 3. P. 386–395. https://doi.org/10.1093/alcalc/34.3.386

  88. Kampov-Polevoy A.B., Garbutt J.C., Khalitov, E. Family history of alcoholism and response to sweets // Alcohol: Clin. Exp. Res. 2003. V. 27. Iss. 11. P. 1743–1749. https://doi.org/10.1097/01.ALC.0000093739.05809.DD

  89. Kampov-Polevoy A.B., Tsoi M.V., Zvartau E.E., Neznanov N.G., Khalitov E. Sweet licking and family history of alcoholism in hospitalized alcoholic and non-alcoholic patients // Alcohol Alcohol. 2001. V. 36. Iss. 2. P. 165–170.https://doi.org/10.1093/alcalc36.2.165

  90. Kang L, Routh V.H., Kuzhikandathil E.V. et al. Physiological and molecular characteristics of rat hypothalamic ventromedial nucleus glucosensing neurons // Diabetes. 2004. V. 53. Iss. 3. P. 549–559. https://doi.org/10.2337/diabetes.53.3.549

  91. Karádi Z., Lukáts B., Papp S. et al. Involvement of forebrain glucosemonitoring neurons in taste information processing: electrophysiological and behavioral studies // Chem. Senses. 2005. V. 30. P. 168–169. https://doi.org/10.1093 /chemse/bjh167

  92. Kawai K., Sugimoto K., Nakashima K., Miura H., Ninomiya Y.C. Leptin as a modulator of sweettaste sensitivities in mice // Proc. Natl. Acad. Sci. USA. 2000. V. 97. P. 11044–11049. https://doi.org/10.1073/pnas.190066697

  93. Kiefer S.W., Lawrence G.J. The sweet-bitter taste of alcohol: aversion generalized to various sweet-quinine mixtures in the rat // Chem. Senses. 1988. V. 13. P. 633–641. https://doi.org/10.1093/chemse/13.4.633

  94. Kiefer S.W., Mahadevan R.S. The taste of alcohol for rats as revealed by aversion generalization tests // Chem. Senses. 1993. V. 18. P. 509–522.https://doi.org/10.1037//0735-7044.102.5.733

  95. Kim U.K., Wooding S., Riaz N. et al. Variation in the human TAS1R Taste receptor genes // Chem. Senses. 2006. V. 31. Iss. 7. P. 599–611. https://doi.org/10.1093/chemse/bjj065

  96. Kinnamon S.C., Finger T.E. Recent advances in taste transduction and signaling // F1000Res. 2019. V. 8(F1000 Faculty Rev-2117). https://doi.org/10.12688/f1000research.21099.1

  97. Kohno D. Sweet taste receptor in the hypothalamus: a potential new player in glucose sensing in the hypothalamus // J. Physiol. Sci. 2017. V. 67. P. 459–465. https://doi.org/10.1007/s12576-017-0535-y

  98. Kohno D., Koike M., Ninomiya Y. et al. Sweet taste receptor serves to activate glucose- and leptinresponsive neurons in the hypothalamic arcuate nucleus and participates in glucose responsiveness // Front. Neurosci. 2016. V. 10. P. 502. https://doi.org/10.3389/fnins.2016.00502

  99. Kosse C., Gonzalez A., Burdakov D. Predictive models of glucose control: roles for glucose-sensing neurons // Acta Physiol. 2015. V. 213. Iss. 1. P. 7–18. https://doi.org/10.1111/apha.12360

  100. Kosobud A.E., Harris G.C., Chapin J.K. Behavioral associations of neuronal activity in the ventral tegmental area of the rat // J. Neurosci. 1994. V. 14. P. 7117–7129. https://doi.org/10.1523/JNEUROSCI.14-11-07117.1994

  101. Kusakabe T., Matsuda H., Gono Y. et al. Immunohistochemical localisation of regulatory neuropeptides in human circumvallate papillae // J. Anat. 1998. V. 192. P. 557–564. https://doi.org/10.1046/j.1469-7580.1998.19240557

  102. Lapis T.J., Penner M.H., Lim J. Humans can taste glucose oligomers independent of the hT1R2/hT1R3 Sweet Taste Receptor // Chem. Senses. 2016. V. 41. P. 755–762. https://doi.org/10.1093/chemse/bjw088

  103. Lavi K., Jacobson G.A., Rosenblum K., Lüthi A. Encoding of conditioned taste aversion in cortico-amygdala circuits // Cell Rep. 2018. V. 24. P. 278–283.https://doi.org/10.1016/j.celrep.2018.06.053

  104. Lazutkaite G., Soldà A., Lossow K., Meyerhof W., Dale N. Amino acid sensing in hypothalamic tanycytes via umami taste receptors // Mol. Metab. 2017. V. 6. №11. P. 1480–1492. https://doi.org/10.1016/j.molmet.2017.08.015

  105. Lawrence G.J., Kiefer S.W. Generalization of specific taste aversions to alcohol in the rat // Chem. Senses. 1987. V. 12. P. 591–599.https://doi.org/10.1093/chemse/12.4.591

  106. Le Roux C.W., Bueter M., Theis N. et al. Gastric bypass reduces fat intake and preference // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011. V. 301. P. 1057–1066. https://doi.org/10.1152/ajpregu.00139.2011

  107. Lee K., Dixon A.K., Rowe I.C., Ashford M.L., Richardson P.J. The high-affinity sulphonylurea receptor regulates KATP channels in nerve terminals of the rat motor cortex // J. Neurochem. 1996. V. 66. P. 2562–2571. https://doi.org/10.1046/j.1471-4159.1996.66062562.x

  108. Leloup C., Arluison M., Lepetit N. et al. Glucose transporter 2 (GLUT 2): expression in specific brain nuclei // Brain Res. 1994. V. 638. № 1-2. P. 221-226. https://doi.org/10.1016/0006-8993(94)90653-x

  109. Lemon C.H., Brasser S.M., Smith D.V. Alcohol activates a sucrose-responsive gustatory neural pathway // J. Neurophysiol. 2004. V. 92. P. 536–544. https://doi.org/10.1152/jn.00097.2004

  110. Lemon C.H., Margolskee R.F. Contribution of the T1r3 taste receptor to the response properties of central gustatory neurons // J. Neurophysiol. 2009. V. 101. № 5. P. 2459–2471. https://doi.org/10.1152/jn.90892.2008

  111. Lemus-Mondaca R., Vega-Gálvez A., Zura-Bravo L., Ah-Hen K. Stevia rebaudiana Ber-toni, source of a highpotency natural sweetener: A comprehensive review on the bio-chemical, nutritional and functional aspects // Food Chem. 2012. V. 132. № 3. P. 1121–1132. https://doi.org/10.1016/j.foodchem.2011.11.140

  112. Levitan D., Lin J.-Y., Wachutka J. et al. Single and population coding of taste in the gustatory cortex of awake mice // J. Neurophysiol. 2019. V. 122. P. 1342–1356.https://doi.org/10.1152/jn.00357.2019

  113. Li X., Inoue M., Reed D.R., Huque T. et al. High-resolution genetic mapping of the saccharin preference locus (Sac) and the putative sweet taste receptor (T1R1) gene (Gpr70) to mouse distal Chromosome 4 // Mamm. Genome. 2001. V. 12. № 1. P. 13–16. https://doi.org/10.1007/s003350010236

  114. Livneh Y., Ramesh R.N., Burgess C.R. et al. Homeostatic circuits selectively gate food cue responses in insular cortex // Nature. 2017. V. 546. P. 611–616.https://doi.org/10.1038/nature2237 5

  115. Loney G.C., Blonde G.D., Eckel L.A., Spector A.C. Determinants of taste preference and acceptability: quality versus hedonics // J. Neurosci. 2012. V. 32. P. 10086–10092. https://doi.org/10.1523/ JNEUROSCI.6036-11.2012

  116. Looy H., Callaghan S., Weingarten H.P. Hedonic response of sucrose likers and dislikers to other gustatory stimuli // Physiol. Behav. 1992. V. 52. № 2. P. 219–225. https://doi.org/10.1016/0031-9384(92)90261-y

  117. Looy H., Weingarten H.P. Effects of metabolic state on sweet taste reactivity in humans depend on underlying hedonic response profile // Chem. Sens. 1991. V. 16. № 2. P. 123–130. https://doi.org/10.1093/chemse/16.2.123

  118. Lukáts B., Papp S., Szalay C. et al. Gustatory neurons in the nucleus accumbens and the mediodorsal prefrontal cortex of the rat // Acta Physiol. Hung. 2002. V. 89. P. 250.

  119. Mahoney S.A., Hosking R., Farrant S. et al. The second galanin receptor GalR2 plays a key role in neurite outgrowth from adult sensory neurons // J. Neurosci. 2003. V. 23. P. 416–421. https://doi.org/10.1523/JNEUROSCI.23-02-00416.2003

  120. Margolskee R.F. Molecular mechanisms of bitter and sweet taste transduction // J. Biol. Chem. 2002. V. 277. P. 1–4. https://doi.org/10.1074/jbc.R100054200

  121. Martin B., Dotson C.D., Shin Y.K. et al. Modulation of taste sensitivity by GLP-1 signaling in taste buds // Ann. N. Y. Acad. Sci. 2009. V. 1170. P. 98–101. https://doi.org/10.1111/j.1749-6632.2009.03920.x

  122. Martin B., Shin Y.K., White C.M. et al. Vasoactive intestinal peptide-null mice demonstrate enhanced sweet taste preference, dysglycemia, and reduced taste bud leptin receptor expression // Diabetes. 2010. V. 59. P. 1143–1152. https://doi.org/10.2337/db09-0807

  123. Maruyama Y., Pereira E., Margolskee R.F., Chaudhari N., Roper S.D. Umami responses in mouse taste cells indicate more than one receptor // J. Neurosci. 2006. V. 26. P. 2227–2234. https://doi.org/10.1523/JNEUROSCI.4329-05.2006

  124. Masubuchi Y., Nakagawa Y., Ma J. et al. A novel regulatory function of sweet taste-sensing receptor in adipogenic differentiation of 3T3-L1 cells // PLoS One. 2013. V. 8. P. e54500. https://doi.org/10.1371/journal.pone.0054500

  125. Merigo F., Benati D., Cristofoletti M. et al. Glucose transporters are expressed in taste receptor cells // J. Anat. 2011. V. 219. P. 243–252. https://doi.org/10.1111/j.1469-7580.2011.01385.x

  126. Mueller K.L., Hoon M.A., Erlenbach I. et al. The receptors and logic for bitter taste // Nature. 2005. V. 434. P. 225–229. https://doi.org/10.1038/nature03352

  127. Murovets V.O., Bachmanov A.A., Zolotarev V.A. Impaired glucose metabolism in mice lacking the Tas1r3 taste receptor gene. PLoS One. 2015. V. 10. № 6. P. e0130997. https://doi.org/10.1371/journal.pone.0130997

  128. Murovets V.O., Lukina E.A., Sozontov E.A. et al. Allelic variation of the Tas1r3 taste receptor gene affects sweet taste responsiveness and metabolism of glucose in F1 mouse hybrids // PLoS One. 2020. V. 15. № 7. P. e0235913. https://doi.org/10.1371/journal.pone.0235913

  129. Murovets V.O., Zolotarev V.A., Bachmanov A.A. The role of the Sac locus in the alcohol taste preference in inbred mouse strains // Dokl. Biol. Sci. 2010. V. 432. P. 181–183. https://doi.org/10.1134/S001249661003004X

  130. Nakamura Y., Sanematsu K., Ohta R. et al. Diurnal variation of human sweet taste recognition thresholds is correlated with plasma leptin levels // Diabetes. 2008. V. 57. P. 2661–2665. https://doi.org/10.2337/db07-1103

  131. Nelson G., Hoon M.A., Chandrashekar J. et al. Mammalian sweet taste receptors // Cell. 2001. V. 106. P. 381–390. https://doi.org/10.1016/s0092-8674(01)00451-2

  132. Nie, Y., Vigues, S., Hobbs, J. R. et al. Distinct contributions of T1R2 and T1R3 taste receptor subunits to the detection of sweet stimuli // Curr. Biol. 2005. V. 15. Iss. 21. P. 1948—1952. PMID: https://doi.org/10.1016/j.cub.2005.09.03716271873

  133. Noel C., Dando R. The effect of emotional state on taste perception // Appetite. 2015. V. 95. P. 89–95. https://doi.org/10.1016/j.appet.2015.06.003

  134. Ogura T. Acetylcholine increases intracellular Ca2+ in taste cells via activation of muscarinic receptors // J. Neurophysiol. 2002. V. 87. P. 2643–2649. https://doi.org/10.1152/jn.2002.87.6.2643

  135. Ohkuri, T., Yasumatsu K., Horio N. et al. Multiple sweet receptors and transduction pathways revealed in knockout mice by temperature dependence and gurmarin sensitivity // Am. J. Physiol. (2009). V. 296. № 4. P. 960–971. https://doi.org/10.1152/ajpregu.91018.2008

  136. Oka Y., Butnaru M., von Buchholtz L. et al. High salt recruits aversive taste pathways // Nature. 2013. V. 494. P. 472–475. https://doi.org/10.1038/nature11905

  137. O'Malley D., Reimann F., Simpson A.K., Gribble F.M. Sodium-coupled glucose cotransporters contribute to hypothalamic glucose sensing // Diabetes. 2006. V. 55. № 12. P. 3381–3386. https://doi.org/10.2337/db06-0531

  138. Ootani S., Umezaki T., Shin T., Murata Y. Convergence of afferents from the SLN and GPN in cat medullary swallowing neurons // Brain Res. Bull. 1995. V. 37. P. 397–404.https://doi.org/10.1016/0361-9230(95)00018-6

  139. Ozcan S., Dover J., Rosenwald A.G., Wölfl S., Johnston M. Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression // Proc. Natl. Acad. Sci. U S A. 1996. V. 93. № 22. P. 12428–12432. https://doi.org/10.1073/pnas.93.22.12428

  140. Pelchat M.L., Danowski S. A possible genetic association between PROP-tasting and alcoholism // Physiol. Behav. 1992. V. 51. № 6. P. 1261–1266. https://doi.org/10.1016/0031-9384(92)90318-v

  141. Peng Y., Gillis-Smith S., Jin H. et al. Sweet and bitter taste in the brain of awake behaving animals // Nature. 2015. V. 527. P. 512–515. https://doi.org/10.1038/nature1576 3

  142. Porcu E., Benz K., Ball F. et al. Macroscopic information-based taste representations in insular cortex are shaped by stimulus concentration // PNAS. 2020. V. 117. № 13. P. 7409–7417. https://doi.org/10.1073/pnas.1916329117

  143. Pucilowski O., Rezvani A.H., Janowsky D.S. Suppression of alcohol and saccharin preference in rats by a novel Ca2+ channel inhibitor, Goe 5438 // Psychopharmacology. 1992. V. 107. P. 447–452. https://doi.org/10.1007/BF02245174

  144. Ramos-Lopez O., Panduro A., Martinez-Lopez E. et al. Sweet taste receptor TAS1R2 polymorphism (Val191Val) is associated with a higher carbohydrate intake and hypertriglyceridemia among the population of West Mexico // Nutrients. 2016. V. 8. № 2. P 101. https://doi.org/10.3390/nu8020101

  145. Ren X., Zhou L., Terwilliger R., Newton S.S., de Araujo I.E. Sweet taste signaling functions as a hypothalamic glucose sensor // Front. Integr. Neurosci. 2009. V. 3. P. 12. https://doi.org/10.3389/neuro.07.012.2009

  146. Reed D.R., Li S., Li X. et al. Polymorphisms in the taste receptor gene (Tas1r3) region are associated with saccharin preference in 30 mouse strains // J. Neurosci. 2004. V. 24. № 4. P. 938–946. https://doi.org/10.1523/JNEUROSCI.1374-03.2004

  147. Ricardo J.A., Koh E.T. Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat // Brain Res. 1978. V. 153. P. 1–26. https://doi.org/10.1016/0006-8993(78)91125-3

  148. Riera C.E., Vogel H., Simon S. A. et al. Sensory attributes of complex tasting divalent salts are mediated by TRPM5 and TRPV1 channels // J. Neurosci. 2009. V. 29. Iss. 8. P. 2654–2662. https://doi.org/10.1523/JNEUROSCI.4694-08.2009

  149. Robino A., Bevilacqua L., Pirastu N. et al. Polymorphisms in sweet taste genes (TAS1R2 and GLUT2), sweet liking, and dental caries prevalence in an adult Italian population // Genes Nutr. 2015. V. 10. № . P. 485. https://doi.org/10.1007/s12263-015-0485-z

  150. Robinson T.G., Beart P.M. Excitant amino acid projections from rat amygdala and thalamus to nucleus accumbens // Brain Res. Bull. 1988. V. 20. P. 467–471. https://doi.org/10.1016/0361-9230(88)90136-0

  151. Roper S.D. Signal transduction and information processing in mammalian taste buds // Pflügers Archiv. 2007. V. 454. P. 759–776. https://doi.org/10.1007/s00424-007-0247-x

  152. Roper S.D., Chaudhari N. Taste buds: cells, signals and synapses // Nat. Rev. Neurosci. 2017. V. 18. P. 485–497. https://doi.org/10.1038/nrn.2017.68

  153. Sainz E., Cavenagh M.M., LopezJimenez N.D. et al. The G-protein coupling properties of the human sweet and amino acid taste receptors // Dev. Neurobiol. 2007. V. 67. P. 948–959. https://doi.org/10.1002/dneu.20403

  154. Sako N, Yamamoto T. Electrophysiological and behavioral studies on taste effectiveness of alcohols in rats // Am. J. Physiol. 1999. V.276. P. 388–396. https://doi.org/10.1152/ajpregu.1999.276.2.R388

  155. Saper C.B. Convergence of autonomic and limbic connections in the insular cortex of the rat // J. Comp. Neurol. 1982. V. 210. P. 163–173. https://doi.org/10.1002/cne.902100207

  156. Schwartz M.W., Woods S.C., Porte D.J., Seeley R.J., Baskin D.G. Central nervous system control of food intake // Nature. 2000. V. 404. P. 661–671. https://doi.org/10.1038/35007534

  157. Sclafani A., Ackroff K. Role of gut nutrient sensing in stimulating appetite and conditioning food preferences // Am. J. Physiol. 2012. V. 302. P. 1119–1133. https://doi.org/10.1152/ajpregu.00038.2012

  158. Sclafani A., Glass D.S., Margolskee R.F., Glendinning J.I. Gut T1R3 sweet taste receptors do not mediate sucrose-conditioned flavor preferences in mice // Am. J. Physiol. 2010. V. 299, P. 1643–1650. https://doi.org/10.1152/ajpregu.00495.2010

  159. Sclafani A., Koepsell H., Ackrof K. SGLT1 sugar transporter/sensor is required for post-oral glucose appetition // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016. V. 310. P. 631–639. https://doi.org/10.1152/ajpregu.00432.2015

  160. Seta Y., Kataoka S., Toyono T., Toyoshima K. Expression of galanin and the galanin receptor in rat taste buds // Arch. Histol. Cytolog. 2006. V. 69. P. 273–280. https://doi.org/10.1679/aohc.69.273

  161. Shahbandi A.A., Choo E., Dando R. Receptor regulation in taste: can diet influence how we perceive foods? // J: Multidiscip. Sci. J. 2018. V. 1. P. 106–115. https://doi.org/10.3390/j1010011

  162. Shen T., Kaya N., Zhao F.L. et al. Co-expression patterns of the neuropeptides vasoactive intestinal peptide and cholecystokinin with the transduction molecules alpha-gustducin and T1R2 in rat taste receptor cells // Neurosci. 2005. V. 130. P. 229–238. https://doi.org/10.1016/j.neuroscience.2004.09.017

  163. Shi C.-J., Cassell M.D. Cortical, thalamic, and amygdaloid connections of the anterior and posterior insular cortices // J. Comp. Neurol. 1998. V. 399. P. 440–468. https://doi.org/10.1002/(sici)1096-9861(19981005) 399:4<440::aid-cne2>3.0.co;2-1

  164. Shimura T., Imaoka H., Okazaki Y. et al. Involvement of the mesolimbic system in palatability-induced ingestion // Chem. Senses. 2005. V. 30. P. 188–189. https://doi.org/10.1093/chemse/bjh177

  165. Shimura T., Imaoka H., Yamamoto T. Neurochemical modulation of ingestive behavior in the ventral pallidum // Eur. J. Neurosci. 2006. V. 23. P. 1596–1604. https://doi.org/10.1111/j.1460-9568.2006.04689.x

  166. Shimura T., Kamada Y., Yamamoto T. Ventral tegmental lesions reduce overconsumption of normally preferred taste fluid in rats // Behav. Brain Res. 2002. V. 134. P. 123–130. https://doi.org/10.1016/s0166-4328(01)00461-2

  167. Shin A.C., Townsend R.L., Patterson L.M., Berthoud H.R. “Liking” and “wanting” of sweet and oily food stimuli as affected by high-fat diet-inducedobesity, weight loss, leptin, and genetic predisposition // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011. V. 301. P. 1267–1280. https://doi.org/10.1152/ajpregu.00314.2011

  168. Shin Y.K., Martin B., Golden E. et al. Modulation of taste sensitivity by GLP-1 signaling // J. Neurochem. 2008. V. 106. P. 455–463. https://doi.org/10.1111/j.1471-4159.2008.05397.x

  169. Shin Y.K., Martin B., Kim W. et al. Ghrelin is produced in taste cells and ghrelin receptor null mice show reduced taste responsivity to salty (NaCl) and sour (citric acid) tastants // PLoS One. 2010. V. 5 P. e12729. https://doi.org/10.1371/journal.pone.0012729

  170. Shoji S. Glucose regulation of synaptic transmission in the dorsolateral septal nucleus of the rat // Synapse. 1992. V. 12. P. 322–332. https://doi.org/10.1002/syn.890120409

  171. Shrayyef M.Z., Gerich J.E. Normal Glucose Homeostasis / L. Poretsky Principles of Diabetes Mellitus. Boston: Springer, 2010. P. 19–35. https://doi.org/10.1007/978-0-387-09841-8_2

  172. Sigoillot M., Brockhoff A., Neiers F. et al. The crystal structure of gurmarin, a sweet taste–suppressing protein: identification of the amino acid residues essential for inhibition // Chem. Senses. 2018. V. 43. P. 635–643. https://doi.org/10.1093/chemse/bjy054

  173. Spector A.C. Linking gustatory neurobiology to behavior in vertebrates // Neurosci Biobehav. Rev. 2000. V. 24. P. 391–416. https://doi.org/10.1016/S0149-7634(00)00013 -0

  174. Spector A.C., Klumpp PA., Kaplan J.M. Analytical issues in the evaluation of food deprivation and sucrose concentration effects on the microstructure of licking behavior in the rat // Behav. Neurosci. 1998. V. 112. P. 678–694. https://doi.org/10.1037//0735-7044.112.3.678

  175. Stratford T.R., Kelley A.E. Evidence of a functional relationship between the nucleus accumbens shell and lateral hypothalamus subserving the control of feeding behavior // J. Neurosci. 1999. V. 19. P. 11040–11048. https://doi.org/10.1523/JNEUROSCI.19-24-11040.1999

  176. Sukumaran S.K., Yee K.K., Iwata S. et al. Taste cell expressed α-glucosidase enzymes contribute to gustatory responses to disaccharides // Proc. Natl. Acad. Sci. 2016. V. 113. P. 6035–6040.https://doi.org/10.1073/pnas.1520843113

  177. Thorens B. Brain glucose sensing and neural regulation of insulin and glucagon secretion // Diabetes Obes. Metab. 2011. V. 13(S.1). P. 82–88. https://doi.org/10.1111/j.1463-1326.2011.01453.x

  178. Tichansky D.S., Glatt A.R., Madan A.K. et al. Decrease in sweet taste in rats after gastric bypass surgery // Surg. Endosc. 2011. V. 25. P. 1176–1181. https://doi.org/10.1007/s00464-010-1335-0

  179. Toda Y., Nakagita T., Hayakawa T. et al. Two distinct determinants of ligand specificity in T1R1/T1R3 (the umami taste receptor) // J. Biol. Chem. 2013. V. 288. Iss. 52. P. 36863–36877. https://doi.org/10.1074/jbc.M113.494443

  180. Tokita K., Boughter J.D. Topographic organizations of taste-responsive neurons in the parabrachial nucleus of C57BL/6J mice: an electrophysiological mapping study // Neurosci. 2016. V. 316. P. 151–166. https://doi.org/10.1016/j.neuroscience.2015.12.030

  181. Tomchik S.M., Berg S., Kim J.W. et al. Breadth of tuning and taste coding in mammalian taste buds // J. Neurosci. 2007. V. 27. P. 10840–10848. https://doi.org/ OSCI.1863-07.2007https://doi.org/10.1523/JNEUR

  182. Tordoff M.G. Calcium: taste, intake, and appetite // Physiol Rev. 2001. V. 81. P. 1567–1597. https://doi.org/10.1152/physrev.2001.81.4.1567

  183. Umabiki M., Tsuzaki K., Kotani K. et al. The improvement of sweet taste sensitivity with decrease in serum leptin levels during weight loss in obese females // Tohoku J. Exp. Med. 2010. V. 220. P. 267–271. https://doi.org/10.1620/tjem.220.267

  184. Veldhuizen M.G., Bender G., Constable R.T., Small D.M. Trying to detect taste in a tasteless solution: modulation of early gustatory cortex by attention to taste // Chem. Senses. 2007. V. 32. P. 569–581. https://doi.org/10.1093/chemse/bjm025

  185. Verberne A.J., Sabetghadam A., Korim W.S. Neural pathways that control the glucose counterregulatory response // Front. Neurosci. 2014 V. 8. № 38. https://doi.org/10.3389/fnins.2014.00038

  186. von Molitor E., Riedel K., Krohn M. et al. Sweet taste is complex: signaling cascades and circuits involved in sweet sensation // Front. Hum. Neurosci. 2021. V. 15. P. 667709. https://doi.org/10.3389/fnhum.2021.667709

  187. Welcome M.O., Mastorakis N.E., Pereverzev V.A. Sweet taste receptor signaling network: Possible implication for cognitive functioning // Neurol. Res. Int. 2015. V. 15. P. 606479. https://doi.org/10.1155/2015/606479

  188. Wright E.M., Loo D.D., Hirayama B.A. Biology of human sodium glucose transporters // Physiol. Rev. 2011. V. 1. № 2. P. 733–794. https://doi.org/10.1152/physrev.00055.2009

  189. Wu A., Dvoryanchikov G., Pereira E. et al. Breadth of tuning in taste afferent neurons varies with stimulus strength // Nat. Commun. 2015. V. 6. P. 8171. https://doi.org/10.1038/ncomms9171

  190. Yamamoto T., Matsuo R., Kiyomitsu Y., Kitamura R. Taste responses of cortical neurons in freely ingesting rats // J. Neurophysiol. 1989. V. 61. P. 1244–1258. https://doi.org/10.1152/jn.1989.61.6.1244

  191. Yamamoto T., Sako N., Maeda S. Effects of taste stimulation on beta-endorphin levels in rat cerebrospinal fluid and plasma // Physiol. Behav. 2000. V. 69. P. 345–350. https://doi.org/10.1016/s0031-9384(99)00252-8

  192. Yasumatsu K., Iwata S., Inoue M. et al. Fatty acid taste quality information via GPR120 in the anterior tongue of mice // Acta Physiol. (Oxf). 2019. V. 226. P. e13215. https://doi.org/10.1111/apha.13215

  193. Yasumatsu K., Ohkuri T., Yoshida R. et al. Sodium-glucose cotransporter 1 as a sugar taste sensor in mouse tongue // Acta Physiol. (Oxf). 2020. V. 230. P. e13529. https://doi.org/10.1111/apha.13529

  194. Yee K.K., Sukumaran S.K., Kotha R. et al. Glucose transporters and ATP-gated K +(KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells // Proc. Natl. Acad. Sci. USA. 2011. V. 108. P. 5431–5436. https://doi.org/10.1073/pnas.1100495108

  195. Yoshida R., Niki M., Jyotaki M. et al. Modulation of sweet responses of taste receptor cells // Semin. Cell Dev. Biol. 2013. V. 24. P. 226–231. https://doi.org/10.1016/j.semcdb.2012.08.004

  196. Young P.T., Burright R.G., Tromater L.J. Preferences of the white rat for solutions of sucrose and quinine hydrochloride // Am. J. Psychol. 1963. V. 76. P. 205–217.

  197. Yu A.S., Hirayama B.A., Timbol G. et al. Functional expression of SGLTs in rat brain // Am. J. Physiol. Cell Physiol. 2010. V. 299. № 6. P. 1277–1284. https://doi.org/10.1152/ajpcell.00296.2010

  198. Zhang J., Jin H., Zhang W. et al. Sour sensing from the tongue to the brain // Cell. 2019. V. 179. P. 39–402. https://doi.org/. cell.2019.08.031https://doi.org/10.1016/j

  199. Zhang L., Han W., Lin C., Li F., Araujo I.E. Sugar metabolism regulates flavor preferences and portal glucose sensing // Front. Integr. Neurosci. 2018. V. 12. P. 57. https://doi.org/10.3389/fnint.2018.00057

  200. Zhang Y., Hoon, M.A., Chandrashekar J. et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways // Cell. 2003. V. 112. Iss. 3. P. 293–301. https://doi.org/10.1016/s0092-8674(03)00071-0

  201. Zhao H., Li J., Zhang J. Molecular evidence for the loss of three basic tastes in penguins // Current Biology 2015. V. 25. P. 141–142. https://doi.org/10.1016/j.cub.2015.01.026

  202. Zhao F.L., Shen T., Kaya N. et al. Expression, physiological action, and coexpression patterns of neuropeptide Y in rat taste-bud cells // Proc. Natl. Acad. Sci. U S A. 2005. V. 102. P. 11100–11105. https://doi.org/10.1073/pnas.0501988102

  203. Zhao G.Q., Zhang Y., Hoon M.A. et al. The receptors for mammalian sweet and umami taste // Cell. 2003. V. 115. P. 255–266. https://doi.org/10.1016/s0092-8674(03)00844-4

Дополнительные материалы отсутствуют.