Водные ресурсы, 2023, T. 50, № 6, стр. 701-709

Факторы деградации, трансформации и распределения лекарственных веществ в системе “вода–донные отложения”

М. А. Козлова a*, Н. М. Щеголькова ab

a Институт водных проблем РАН
119333 Москва, Россия

b МГУ им. М.В. Ломоносова, факультет почвоведения
119991 Москва, Россия

* E-mail: mblshok@mail.ru

Поступила в редакцию 17.10.2022
После доработки 27.02.2023
Принята к публикации 01.06.2023

Аннотация

Приведен обзор англоязычных научных статей по вопросам естественной деградации и трансформации лекарственных веществ в водной среде под воздействием различных факторов. Приведены наиболее распространенные и часто встречаемые лекарства в воде. Показано, что основным источником загрязнения являются недостаточно очищенные коммунально-бытовые сточные воды. Среди факторов, влияющих на поведение веществ в среде, выделено разбавление или концентрирования за счет изменения гидрологического режима или условий использования лекарств; рН водной среды, ветро-волновое взмучивание, фотодеградация, биоаккумулирование и пр. На основе анализа зарубежных исследований лекарственного загрязнения сделаны выводы о перспективах развития этих направлений для использования в российских исследованиях.

Ключевые слова: биодеградация, водная среда, лекарственное загрязнение, миграция, природные факторы, распределение вода–донные отложения, трансформация.

Список литературы

  1. Баренбойм Г.М., Чиганова М.А. Загрязнение природных вод лекарствами. М.: Наука, 2015. 283 с.

  2. Козлова М.А., Гальвидис И.А., Буркин М.А. Особенности лекарственного загрязнения водных объектов – источников питьевого водоснабжение Москвы (на примере некоторых антибиотиков) // Метеорология и гидрология. 2020. № 8. С. 87–91.

  3. Фармацевтический рынок России: итоги 2022. Презентация DMS Group, Москва. 2023. [Электронный ресурс]. https://dsm.ru/docs/analytics/DSM_07022023_%D0%98%D1%82%D0%BE%D0%B3%D0%B8.pptx (дата обращения: 20.02.2023)

  4. Bashaar M., Thawani V., Hassali M.A., Saleem F. Disposal practices of unused and expired pharmaceuticals among general public in Kabul // BMC Public Health. 2017. V. 17 (1). № 45. https://doi.org/10.1186/s12889-016-3975-z

  5. Bavumiragira J.P., Ge J., Yin H. Fate and transport of pharmaceuticals in water systems: A processes review // Total Environ. 2022. V. 823. 153635. https://doi.org/10.1016/j.scitotenv.2022.153635

  6. Boreen A.L., Arnold W.A., McNeill K. Photodegradation of pharmaceuticals in the aquatic environment: A review // Aquatic Sci. 2003. V. 65. P. 320–341.

  7. Burrows H.D., Canle L.M., Santaballa J.A., Steenken S. Reaction pathways and mechanisms of photodegradation of pesticides // J. Photochem. Photobiol. B: Biol. 2002. V. 67. P. 71–108.

  8. Carvalho I.T., Santos L. Antibiotics in the aquatic environments: a review of the European scenario // Environ. Int. 2016. V. 94. P. 736–757.

  9. Christensen E.R., Li A. Physical and Chemical Processes in the Aquatic Environment. Hoboken: Wiley & Sons, 2014. 448 p.

  10. Dabić D., Hanževački M., Škorić I. et al. Photodegradation, toxicity and density functional theory study of pharmaceutical metoclopramide and its photoproducts // Total Environ. 2022. V. 807. 150694. https://doi.org/10.1016/j.scitotenv.2021.150694

  11. Daughton C.G. Chemicals from Pharmaceuticals and Personal Care Products // Water: Science and Issues / Ed. E. Julius Dasch. New York: Macmillan Reference USA, 2003. V. 1. P. 158–164.

  12. de Barros A.L.C., Schmidt F.F., de Aquino S.F. et al. Determination of nine pharmaceutical active compounds in surface waters from Paraopeba River Basin in Brazil by LTPE-HPLC-ESI-MS/MS // Environ. Sci. Pollution Res. 2018. V. 25. P. 19962–19974. https://doi.org/10.1007/s11356-018-2123-y

  13. DRUGBANK ONLINE. [Электронный ресурс]. https://go.drugbank.com/stats (дата обращения: 20.02.2023)

  14. Ebele A.J., Oluseyi T., Drage D.S. et al. Occurrence, seasonal variation and human exposure to pharmaceuticals and personal care products in surface water, groundwater and drinking water in Lagos State, Nigeria // Emerging Contaminants. 2020. V. 6. P. 124–132. https://doi.org/10.1016/j.emcon.2020.02.004

  15. Evgenidou E.N., Konstantinou I.K., Lambropoulou D.A. Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters: a review // Sci. Total Environ. 2015. V. 505. P. 905–926. https://doi.org/10.1016/j.scitotenv.2014.10.021

  16. Ferreira da Silva B., Jelic A., López-Serna R. et al. Occurrence and distribution of pharmaceuticals in surface water, suspended solids and sediments of the Ebro river basin, Spain // Chemosphere. 2011. V. 85. P. 1331–1339.

  17. Fuziki M.E., Ribas L.S., Tusset A.M. et al. Pharmaceutical compounds photolysis: pH influence // HELIYON. 2023. E13678. https://doi.org/10.1016/j.heliyon.2023.e13678

  18. Hong B., Yu S., Zhou M. et al. Sedimentary spectrum and potential ecological risks of residual pharmaceuticals in relation to sediment-water partitioning and land uses in a watershed // Sci. Total Environ. 2022. V. 817. 152979. https://www.sciencedirect.com/science/article/pii/S0048969722000687

  19. Je C.H., Hayes D.F., Kim K.S. Simulation of resuspended sediments resulting from dredging operations by a numerical flocculent transport model // Chemosphere. 2007. V. 70. P. 187–195. https://doi.org/10.1016/j.chemosphere.2007.06.033

  20. Kavitha V. Global prevalence and visible light mediated photodegradation of pharmaceuticals and personal care products (PPCPs)-a review // Results in Engineering. 2022. V. 14. 100469. https://doi.org/10.1016/j.rineng.2022.100469

  21. Khan A.H., Aziz H.A., Khan N.A. et al. Effect of seasonal variation on the occurrences of high-risk pharmaceutical in drain-laden surface water: A risk analysis of Yamuna River // Sci. Total Environ. 2021. V. 794. 148484 https://doi.org/10.1016/j.scitotenv.2021.148484

  22. Klimaszyk P., Rzymski P. Water and Aquatic Fauna on Drugs: What are the Impacts of Pharmaceutical Pollution? // Water Management and the Environment: Case Studies. Texas: Springer, 2018. P. 255–278. https://doi.org/10.1007/978-3-319-79014-5_12

  23. Koba O., Grabicova K., Cerveny D. et al. Transport of pharmaceuticals and their metabolites between water and sediments as a further potential exposure for aquatic organisms // J. Hazardous Materials. 2018. V. 342. P. 401–407.

  24. Kümmerer K. Pharmaceuticals in the environment – a brief summary // Pharmaceuticals in the Environment: Sources, Fate, Effects and Risk. Berlin: Springer, 2008. P. 3–22.

  25. Li S., Huang Z., Wang Y. et al. Migration of two antibiotics during resuspension under simulated wind–wave disturbances in a water–sediment system // Chemosphere. 2018. V. 192. P. 234–243. https://doi.org/10.1016/j.chemosphere.2017.10.131

  26. Liang X., Chen B., Nie X. et al. The distribution and partitioning of common antibiotics in water and sediment of the Pearl River Estuary, South China // Chemosphere. 2013. V. 92. P. 1410–1416.

  27. Liao Q., Huang Z., Li S. Effects of wind–wave disturbances on adsorption and desorption of tetracycline and sulfadimidine in water–sediment systems // Environ. Sci. Pollution Res. 2018. V. 25. P. 22561–22570.

  28. Liu J., Dan X., Lu G. et al. Investigation of pharmaceutically active compounds in an urban receiving water: Occurrence, fate and environmental risk assessment // Ecotoxicol. Environ. Safety. 2018. V. 154. P. 214–220.

  29. Meng Y., Liu W., Liu X. et al. A review on analytical methods for pharmaceutical and personal care products and their transformation products // J. Environ. Sci. 2021. V. 101. P. 260–281.

  30. Nikolaou A., Meric S., Fatta D. Occurrence patterns of pharmaceuticals in water and wastewater environments // Analytical and Bioanalytical Chem. 2007. V. 387 (4). P. 1225–1234.

  31. Osorio V., Proia L., Ricart M. et al. Hydrological variation modulates pharmaceutical levels and biofilm responses in a Mediterranean river // Sci. Total Environ. 2014. V. 472. P. 1052–1061.

  32. Palma P., Fialho S., Lima A. et al. Pharmaceuticals in a Mediterranean Basin: The influence of temporal and hydrological patterns in environmental risk assessment // Sci. Total Environ. 2020. V. 709. 136205. https://doi.org/10.1016/j.scitotenv.2019.136205

  33. Parezanović G.Š., Lalic‑Popovic M., Golocorbin‑Kon S. Environmental Transformation of Pharmaceutical Formulations: A Scientific Review // Archives Environ. Contamination Toxicol. 2019. V. 77. P. 155–161. https://doi.org/10.1007/s00244-019-00630-z

  34. Perez A.S.C., Challis J.K., Ji X. Impacts of wastewater effluents and seasonal trends on levels of antipsychotic pharmaceuticals in water and sediments from two cold-region rivers // Sci. Total Environ. 2022. V. 851. 158247. https://doi.org/10.1016/j.scitotenv.2022.158247

  35. Pharmaceuticals in Marine and Coastal Environments. Occurrence, Effects and Challenges in a Changing World / Eds. J.C. Durán-Álvarez, B. Jiménez-Cisneros. Amsterdam: Elsevier, 2021. 702 p. https://doi.org/10.1016/C2018-0-01459-0

  36. Praveena S.M., Mohd Rashid M.Z., Mohd Nasir F.A. et al. Occurrence, Human Health Risks, and Public Awareness Level of Pharmaceuticals in Tap Water from Putrajaya (Malaysia) // Expo Health. 2021. V. 13. P. 93–104. https://doi.org/10.1007/s12403-020-00364-7

  37. Quesada H.B., Baptista A.T.A., Cusioli L.F. et al. Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: A review // Chemosphere. 2019. V. 222. P. 766–780. https://doi.org/10.1016/j.chemosphere.2019.02.009

  38. Santos L., Araujo A., Fachini A. et al. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment // J. Hazardous Materials. 2010. V. 175. P. 45–95.

  39. Shi H., Yang Y., Liu M. et al. Occurrence and distribution of antibiotics in the surface sediments of the Yangtze Estuary and nearby coastal areas // Mar. Pollution Bull. 2014.V. 83. P. 317–323.

  40. Siedlewicz G., Białk-Bielińska A., Borecka M. Presence, concentrations and risk assessment of selected antibiotic residues in sediments and near-bottom waters collected from the Polish coastal zone in the southern Baltic Sea – Summary of 3 years of studies // Mar. Pollution Bull. 2018. V. 129. P. 787–801.

  41. Subedi B., Balakrishna K., Joshua D.I., Kannan K. Mass loading and removal of pharmaceuticals and personal care products including psychoactives, antihypertensives, and antibiotics in two sewage treatment plants in southern India // Chemosphere. 2017. V. 167. P. 429–437. https://doi.org/10.1016/j.chemosphere.2016.10.026

  42. Tong A.Y., Peake B.M., Braund R. Disposal practices for unused medications around the world // Environ. Int. 2011. V. 37 (1). P. 292–298. https://doi.org/10.1016/j.envint.2010.10.002

  43. Vaudreuil M.-A., Duy S.V., Munoz G., Sauvé S. Pharmaceutical pollution of hospital effluents and municipal wastewaters of Eastern Canada // Sci. Total Environ. 2022. V. 846. № 157353. 14 p. https://doi.org/10.1016/j.scitotenv.2022.157353

  44. Vogler S., de Rooij R. Medication wasted—contents and costs of medicines ending up in household garbage // Res. Social Administrative Pharmacy. 2018. V. 14 (12). P. 1140–1146. https://doi.org/10.1016/j.sapharm.2018.02.002

  45. Wang Y., Liu Y., Lu S. et al. Occurrence and ecological risk of pharmaceutical and personal care products in surface water of the Dongting Lake, China-during rainstorm period // Environ. Sci. Pollution Res. 2019. V. 26. P. 28 796–28 807. https://doi.org/10.1007/s11356-019-06047-4

  46. Wilkinson J., Hooda P.S., Barker J. et al. Occurrence, fate and transformation of emerging contaminants in water: an overarching review of the feld // Environ. Pollution. 2017. V. 231. Pt 1. P. 954–970. https://doi.org/10.1016/j.envpol.2017.08.032

  47. Wilkinson J.L., Hooda P.S., Swinden J. et al. Spatial (bio)accumulation of pharmaceuticals, illicit drugs, plasticisers, perfluorinated compounds and metabolites in river sediment, aquatic plants and benthic organisms // Environ. Pollution. 2018. V. 234. P. 864–875.

  48. Zhou J., Broodbank N. Sediment-water interactions of pharmaceutical residues in the river environment // Water Res. 2014. V. 48. P. 61–70.

Дополнительные материалы отсутствуют.