Электрохимия, 2023, T. 59, № 11, стр. 674-685

Электрохимическое поведение диметилсульфона на платиновом электроде

М. А. Ахмедов ab*, Ш. Ш. Хидиров c, С. И. Сулейманов a**

a Аналитический центр коллективного пользования, Институт физики Дагестанского федерального исследовательского центра РАН
Махачкала, Россия

b ООО “ДАГЛИТИЙ”
Махачкала, Россия

c Дагестанский государственный университет
Махачкала, Россия

* E-mail: muhamadahmedov@mail.ru
** E-mail: khidirovdgu@mail.ru

Поступила в редакцию 30.11.2022
После доработки 15.03.2023
Принята к публикации 04.05.2023

Аннотация

В настоящей работе исследовано влияние концентраций диметилсульфона (ДМСО2) на скорость анодного выделения кислорода и катодного выделения водорода на платиновом электроде в кислой и щелочной средах. Квантово-химическим методом расчета на уровне теории PBE/def2-TZVP, показано, что в молекуле диметилсульфона энергетически более предпочтителен разрыв по C–S связи, чем по С–Н, а сам процесс протекает по ион-радикальному механизму. Методами ЯМР- и КР-спектроскопии подтверждено, что конечными продуктами анодного окисления диметилсульфона в кислой среде являются метансульфокислота и диметилдисульфон, в щелочной среде – только диметилдисульфон; конечными продуктами катодного восстановления ДМСО2 являются диметилполисульфиды. На основе полученных экспериментальных результатов предложена схема электрокаталитического поведения диметилсульфона на платиновом электроде.

Ключевые слова: диметилсульфон, диметилдисульфон, диметилполисульфиды, кинетика, метан-сульфокислота, платина, электроокисление, электровосстановление, электролиз

Список литературы

  1. Budnikova, Y.H., Electrochemical insight into mechanisms and metallocyclic intermediates of C–H functionalization, Chem. Record, 2021, vol. 21, no. 9, p. 2148. https://doi.org/10.1002/tcr.202100009

  2. Lyalin, B.V., Sigacheva, V.L., Kudinova, A.S., Neverov, S.V., Kokorekin, V.A., and Petrosyan, V.A., Electrooxidation is a promising approach to functionalization of pyrazole-type compounds, Molecules, 2021, vol. 26, no. 16, p. 4749. https://doi.org/10.3390/molecules26164749

  3. Акулов, А.А., Вараксин, М.В., Чарушин, В.Н., Чупахин, О.Н. Методология прямой функционализации связи С(SP2)-H в альдиминах и родственных соединениях: современное состояние и перспективы. Успехи химии. 2021. Т. 90. № 3. С. 374. [Akulov, A.A., Varaksin, M.V., Charushin, V.N., and Chupakhin, O.N., C(SP2)–H functionalization of aldimines and related compounds: advances and prospects, Russ. Chem. Rev., 2021, vol. 90, no. 3, p. 374.] https://doi.org/10.1070/RCR4978

  4. Huang, B., Sun, Z., and Sun G., Recent progress in cathodic reduction-enabled organic electrosynthesis: Trends, challenges, and opportunities, eScience, 2022, vol. 2, no. 3, p. 243. https://doi.org/10.1016/j.esci.2022.04.006

  5. Yu, Y., Yuan, Y., Liu, H., He, M., Yang, M., Liu, P., Yu, B., Dong, X., and Lei, A., Electrochemical oxidative C–H/N–H cross-coupling for C–N bond formation with hydrogen evolution, Chem. Commun., 2019, vol. 55, p. 1809. https://doi.org/10.1039/C8CC09899A

  6. Ali, T., Wang, H., Iqbal, W., Bashir, T., Shah, R., and Hu, Y., Electro-Synthesis of Organic Compounds with Heterogeneous Catalysis, Adv. Sci., 2022, vol. 9, no. 33, p. 2205077. https://doi.org/10.1002/advs.202205077

  7. Novaes, L.F.T., Liu, J., Shen, Y., Lu, L., and Meinhardt, J.M., Electrocatalysis as an enabling technology for organic synthesis, Chem. Soc. Rev., 2021, vol. 50, p. 7941. https://doi.org/10.1039/D1CS00223F

  8. Dey, A., Gunnoe, T.B., and Stamenkovic, V.R., Organic Electrosynthesis: When Is It Electrocatalysis, ACS Catal., 2020, vol. 10, no. 21, p. 13156. https://doi.org/10.1021/acscatal.0c04559

  9. Kuriganova, A.B., Lipkin, M.S., and Smirnova, N.V., Mechanism of the platinum nanoparticles formation under conditions of nonstationary electrolysis, Mendeleev Commun., 2021, no. 2 (31), p. 224. https://doi.org/10.1016/j.mencom.2021.03.026

  10. Фаддеев, Н.А., Куриганова, А.Б., Леонтьев, И.Н. Смирнова, Н.В. Электрокаталитические свойства Rh/C- и Pt–Rh/C-катализаторов, полученных методом электрохимического диспергирования. Электрохимия. 2019. Т. 55. С. 508. [Faddeev, N.A., Kuriganova, A.B., Smirnova, N.V., and Leont’ev, I.N., Electrocatalytic Properties of Rh/C and Pt-Rh/C Catalysts Fabricated by the Method of Electrochemical Dispersion, Russ. J. Electrochem., 2019, vol. 55, p. 346.] https://doi.org/10.1134/S042485701903006X

  11. Куриганова, А.Б., Леонтьев, И.Н., Смирнова, Н.В. PtIr/C-катализаторы для твердополимерных топливных элементов, полученные методом электрохимического диспергирования. Электрохимия. 2018. Т. 54. С. 646. [Kuriganova, A.B., Smirnova, N.V., and Leont’ev, I.N., PtIr/C Catalysts Synthesized by Electrochemical Dispersion Method for Proton Exchange Membrane Fuel Cells, Russ. J. Electrochem., 2018, vol. 54. p. 561.] https://doi.org/10.1134/S1023193518060113

  12. Paperzh, K.O., Alekseenko, A.A., Volochaev, V.A., Pankov, I.V., Safronenko, O.A., and Guterman, V.E., Stability and activity of platinum nanoparticles in the oxygen electroreduction reaction: is size or uniformity of primary importance, Beilstein J. Nanotechnol., 2021, vol. 11, p. 593. https://doi.org/10.3762/BJNANO.12.49

  13. Данилов, А.И., Молодкина, Е.Б., Полукаров, Ю.М. Поверхностный и подповерхностный кислород на платине. Раствор 0.5 M H2SO4. Электрохимия. 2004. Т. 40. С. 667. [Danilov, A.I., Molodkina, E.B., and Polukarov, Yu.M., Surface and subsurface oxygen on platinum in a 0.5M H2SO4 solution, Russ. J. Electrochem., 2004, vol. 40, p. 585.] https://doi.org/10.1023/B:RUEL.0000032007.83996.27

  14. Бельмесов, А.А., Баранов, А.А., Левченко, А.В. Анодные электрокатализаторы для топливных элементов на основе Pt/Ti1 –xRuxO2. Электрохимия. 2018. Т. 54. С. 570. [Belmesov, A.A., Baranov, A.A., Levchenko, A.V., Anodic Electrocatalysts for Fuel Cells Based on Pt/Ti1 –xRuxO2, Russ. J. Electrochem., 2018, vol. 54, p. 493.] https://doi.org/10.1134/S1023193518060046

  15. Da Silveira, G.D., Carvalho, L.M., Montoya, N., and Domenech-Carbo, A., Solid state electrochemical behavior of organosulfur compounds, Electroanalyt. Chem., 2017, vol. 806, p.180. https://doi.org/10.1016/j.jelechem.2017.10.055

  16. Jia, H., Xu, Y., Zou, L., Gao, P., Zhang, X., Taing, B., Matthews, B.E., Engelhard, M.H., Burton, S.D., Han, K.S., Zhong, L., Wang, Ch., and Xu, W., Sulfone-based electrolytes for high energy density lithium-ion batteries, J. Power Sources, 2022, vol. 527, p. 231171. https://doi.org/10.1016/j.jpowsour.2022.231171

  17. Гафуров, М.М., Рабаданов, К.Ш., Атаев, М.Б., Алиев, А.Р., Ахмедов, И.Р., Какагасанов, М.Г., Крамынин, С.П. Колебательные спектры системы LINO3–(CH3)2SO2. ЖПС. 2012. № 2 (79). С. 200. [Gafurov, M.M., Rabadanov, K.S., Ataev, M.B., Aliev, A.R., Ahmedov, I.R., Kakagasanov, M.G., and Kraminin, S.P., Vibrational spectra of an LiNO3–(CH3)2SO2 system, JAS, 2012, no. 2 (79), p. 184.] https://doi.org/10.1007/s10812-012-9581-7

  18. Маркарян, Ш.А., Азнаурян, М.Г., Казоян, Е.А. Физико-химические свойства водных растворов диметил- и диэтилсульфонов. Журн. физ. химии. 2011. № 12 (85). С. 2291. [Markaryan, Sh.A., Aznauryan, M.G., and Kazoyan, E.A., Physicochemical properties of aqueous solutions of dimethyl- and diethylsulfones, Russ. J. Phys. Chem., 2011, no. 12 (85), p. 2138.] https://doi.org/10.1134/S0036024411120211

  19. Колосницын, В.С., Кострюкова, Н.В., Легостаева, М.В. Электропроводность и термические свойства гелевых полимерных электролитов на основе сульфонов. Электрохим. энергетика. 2004. № 2 (4). С. 90. [Kolosnitsyn, V.S., Kostryukova, N.V., and Legostaeva, M.V., Electrical conductivity and thermal properties of gel polymer electrolytes based on sulfones, Electrochem. Energetics (in Russian), 2004, no. 2 (4), p. 90.]

  20. Kang, S., Jeon, B., Hong, S.-T., and Lee, H., A sulfone-based crystalline organic electrolyte for 5 V solid-state potassium batteries, Chem. Engineering J., 2022, vol. 443, p. 136403. https://doi.org/10.1016/j.cej.2022.136403

  21. Wu, W., Bai, Y., Wang, X., and Wu, C., Sulfone-based high-voltage electrolytes for high energy density rechargeable lithium batteries: Progress and perspective, Chinese Chem. Letters, 2021, no. 4 (32), p. 1309. https://doi.org/10.1016/j.cclet.2020.10.009

  22. Terent’ev, A.O., Mulina, O.M., Ilovaisky, A.I., Kokorekin, V.A., and Nikishin, G.I., Ammonium iodide-mediated electrosynthesis of unsymmetrical thiosulfonates from arenesulfonohydrazides and thiols, Mendeleev Commun., 2019, vol.29, p. 80. https://doi.org/10.1016/j.mencom.2019.01.027

  23. Terent'ev, A.O., Mulina, O.M., Pirgach, D.A., Demchuk, D.V., Syroeshkin, M.A., and Nikishin, G.I., Copper (I)-mediated synthesis of β-hydroxysulfones from styrenes and sulfonylhydrazides: an electrochemical mechanistic study, RSC Adv., 2016, vol. 6, p. 93476. https://doi.org/10.1039/C6RA19190H

  24. Terent’ev, A.O., Mulina, O.M., Pirgach, D.A., Ilovaisky, A. I., Syroeshkin, M.A., Kapustina, N.I., and Nikishin, G.I., Electrosynthesis of vinyl sulfones from alkenes and sulfonyl hydrazides mediated by KI: An electrochemical mechanistic study, Tetrahedron, 2017, vol.73, p. 6871. https://doi.org/10.1016/j.tet.2017.10.047

  25. Park, J.K. and Lee, S., Sulfoxide and Sulfone Synthesis via Electrochemical Oxidation of Sulfides, J. Org. Chem. 2021, no. 19 (86), p. 13790. https://doi.org/10.1021/acs.joc.1c01657

  26. Krtil, P., Kavan, L., Hoskovcová, I., and Kratochvilová, K., Anodic oxidation of dimethyl sulfoxide based electrolyte solutions: An in situ FTIR study, J. Appl. Electrochem., 1996, vol. 26, p. 523. https://doi.org/10.1007/BF01021976

  27. Ахмедов, М.А., Хидиров, Ш.Ш., Капарова, М.Ю. Электрохимическое окисление диметилсульфона в щелочной среде. Изв. вузов. Сер. Химия и хим. технология. 2018. № 8 (61). С. 32. [Akhmedov, M.A., Khidirov, Sh.Sh., and Koparova, M.Yu., Electrochemical oxidation of dimethyl sulfone in alkaline medium, Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. (in Russian), 2018, vol. 61, no. 8, p. 32.] https://doi.org/10.6060/ivkkt.20186108.5707

  28. Хидиров, Ш.Ш., Ахмедов, М.А., Рабаданов, М.Х., Капарова, М.Ю. Способ получения диметилдисульфона. Пат. 2641302 (Россия). 2018. [Khidirov, Sh.Sh., Akhmedov, MA, Rabadanov, M.Kh., and Koparova, M.Y., Method of producing dimethyl disulfon, Patent 2641302 (Russia), 2018.] https://goo-gl.su/mHzIEP

  29. Ахмедов, М.А., Хидиров, Ш.Ш., Капарова, М.Ю., Хибиев, Х.С. Электрохимический синтез метансульфокислоты из водных растворов диметилсульфона. Изв. вузов. Сер. Химия и хим. технология. 2016. № 12 (59). С. 100. [Akhmedov, M.A., Khidirov, Sh.Sh., Koparova, M.Y., and Khibiev, Kh.S., Electrochemical synthesis of methanesulfonic acid from aqueous solutions of dimethyl sulfone, Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. (in Russian), 2016, no. 12 (59), p. 100.] https://doi.org/10.6060/tcct.20165912.5345

  30. Ахмедов, М.А., Хидиров, Ш.Ш. Анодные процессы в концентрированном растворе метансульфокислоты на платиновом электроде. Электрохимия. 2019. Т. 55. С. 757. [Akhmedov, M.A. and Khidirov, Sh.Sh., Anodic processes at smooth platinum electrode in concentrated solution of methanesulfonic acid, Russ. J. Electrochem., 2019, vol. 55, p. 579.] https://doi.org/10.1134/S1023193519060028

  31. Хидиров, Ш.Ш., Ахмедов, М.А., Рабаданов, М.Х. Способ получения метансульфокислоты. Пат. 2554880 (Россия). 2015. [Khidirov, Sh.Sh., Akhmedov, M.A., and Rabadanov, M.Kh., Method of producing methanesulfonic acid, Patent 2554880 (Russia), 2015.] https://goo-gl.su/L0WTTTz

  32. Хидиров, Ш.Ш., Ахмедов, М.А., Хибиев, Х.С., Омарова, К.О. Способ получения метансульфокислоты. Пат. 2496772 (Россия). 2013. [Khidirov, Sh.Sh. Akhmedov, MA, Khibiev, Kh.S., and Omarova, K.O., Method of producing methanesulfonic acid, Patent 2496772 (Russia), 2013.] https://goo-gl.su/5WOgLhxS

  33. Ахмедов, М.А. Хидиров, Ш.Ш., Ибрагимова, К.О. Сравнительная оценка адсорбции диметилсульфоксида и диметилсульфона на гладком платиновом электроде в кислой среде. Электрохимия. 2020. Т. 56. С. 416. [Akhmedov, M.A., Ibragimova, K.O., and Khidirov, Sh.Sh., Comparative evaluation of dimethylsulfoxide and dimethylsulfone adsorption on a smooth platinum electrode in acidic, Russ. J. Electrochem., 2020, vol. 56, p. 396.] https://doi.org/10.1134/S1023193520040023

  34. Trasatti, S. and Petrii, O.A., Real surface area measurements in electrochemistry, Electroanalyt. Chem., 1992, vol. 327, p. 353. https://doi.org/10.1016/0022-0728(92)80162-w

  35. Шольц, Ф. Электроаналитические методы. Теория и практика. М.: Бином. ЛЗ, 2014. 326 с. [Scholz, F., Electro-analytical methods. Guide to experiments and applications (in Russian), Moscow: Binom LZ, 2014. p. 353.]

  36. Будников, Г.К., Майстренко, В.Н., Вяселев, М.Р. Основы современного электрохимического анализа. M.: Мир, Бином. ЛЗ, 2003. 592 с. [Budnikov, G.K., Maistrenko, V.N., and Vyaselev, M.R. Fundamentals of modern electrochemical analysis applications (in Russian), Moscow: Mir, Binom. LZ, 2003. 592 p.]

  37. Brandenburg, J. G., Bannwarth, C., Hansen, A., and Grimme, S., B97-3c: A revised low-cost variant of the B97-D density functional method, J. Chem. Phys., 2018, no. 6(148), p. 064104. https://doi.org/10.1063/1.5012601

  38. Neese, F., Wennmohs, F., Becker, U., and Riplinger, C., The ORCA quantum chemistry program package, J. Chem. Phys., 2020, vol. 152, p. 224108. https://doi.org/10.1063/5.0004608

  39. Neese, F. Software update: The ORCA program system—Version 5.0, WIREs Comput. Mol. Sci., 2022, p. e1606. https://doi.org/10.1002/wcms.1606

  40. Perdew, J.P., Burke, K., and Ernzerhof, M., Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, vol. 77, p.3865. https://doi.org/10.1103/PhysRevLett.77.3865

  41. Hellweg, A. and Rappoport, D., Development of new auxiliary basis functions of the Karlsruhe segmented contracted basis sets including diffuse basis functions (def2-SVPD, def2-TZVPPD, and def2-QVPPD) for RI-MP2 and RI-CC calculations, Phys. Chem. Chem. Phys. 2015, vol. 17, p.1010. https://doi.org/10.1039/C4CP04286G

  42. Weigend, F. and Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Phys. Chem. Chem. Phys., 2005, vol. 7, p.3297.https://doi.org/10.1039/B508541A

  43. Marenich, A.V., Cramer, C.J., and Truhlar, D.G., Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions, J. Phys. Chem. B, 2009, vol. 113, p.6378. https://doi.org/10.1021/jp810292n

  44. Van Spronsen, M.A., Frenken, J.W.M., and Groot, I.M.N., Observing the oxidation of platinum, Nature Commun., 2017, vol. 8, p. 429. https://doi.org/10.1038/s41467-017-00643-z

  45. Ахмедов, М.А., Хидиров, Ш.Ш. Электрокаталитическое окисление этанола на платиновом электроде в растворе метансульфокислоты. Электрохимия. 2022. Т. 58. С.273. [Akhmedov, M.A. and Khidirov, Sh. Sh., Electrocatalytic Oxidation of Ethanol on the Platinum Electrode in Solution of Methanesulfonic Acid, Russ. J. Electrochem., 2022, vol. 58, p. 482.] https://doi.org/10.1134/S1023193522060039

  46. Halseid, R., Bystroň, T., and Tunold, R., Oxygen reduction on platinum in aqueous sulphuric acid in the presence of ammonium, Electrochim. Acta, 2006, no. 13 (51), p. 2737. https://doi.org/10.1016/j.electacta.2005.08.011

  47. Wongbua-ngam, P., Veerasai, W., Wilairat, P., and Kheowan, O.-U., Model interpretation of electrochemical behavior of Pt/H2SO4 interface over both the hydrogen oxidation and oxide formation regions, Intern. J. Hydrogen Energy, 2019, no. 23 (44), p. 12108. https://doi.org/10.1016/j.ijhydene.2019.03.076

  48. Santosh, K.C. and Abolfath, R., Towards the ionizing radiation induced bond dissociation mechanism in oxygen, water, guanine and DNA fragmentation: a density functional theory simulation, Sci. Rep., 2022, vol. 12, p.19853. https://doi.org/10.1038/s41598-022-23727-3

  49. Пентин, Ю.А., Курамшина, Г.М. Основы молекулярной спектроскопии, М.: Мир, 2008. 398 с. [Pentin, Yu.A. and Kuramshina, G.M., The fundamentals of molecular spectroscopy (in Russian), Moscow: Mir, 2008. 398 p.]

  50. Müller, J.F., Liu, Z., Nguyen, V., Stavrakou, T., Harvey, J. N., and Peeters, J., The reaction of methyl peroxy and hydroxyl radicals as a major source of atmospheric methanol, Nature Commun., 2016, vol. 7, p. 13213. https://doi.org/10.1038/ncomms13213

  51. Toffel, P. and Henglein, A., Polarogram of the free hydrogen atom and of some simple organic radicals, Discuss. Faraday Soc., 1977, vol. 63, p. 124. https://doi.org/10.1039/DC9776300124

  52. Kurmaz, V.A., Kotkin, A.S., and Simbirtseva, G.V., Laser photoemission generation and electrochemical study of methyl radicals as secondary products of OH radicals capture by dimethyl sulfoxide molecules, J. Solid State Electrochem., 2011, vol. 15, p. 2119. https://doi.org/10.1007/s10008-011-1534-1

  53. Bockris, J.O.M., Ammar, I.A., and Huq, A.K.M.S., The Mechanism of the hydrogen evolution reaction on platinum, silver and tungsten surfaces in acid solutions, J. Phys. Chem., 1957, no. 7 (61), p. 879. https://doi.org/10.1021/j150553a008

  54. Fang, Y.-H., Wei, G.-F., and Liu, Z.-P., Catalytic role of minority species and minority sites for electrochemical hydrogen evolution on metals: surface charging, coverage, and tafel kinetics, Phys. Chem. C, 2013, vol. 117, p. 7669. https://doi.org/10.1021/jp400608p

  55. Rheinländer, P.J., Herranz, J., Durst, J., and Gasteiger, H.A., Kinetics of the hydrogen oxidation/evolution reaction on polycrystalline platinum in alkaline electrolyte reaction order with respect to hydrogen pressure, Electrochem. Soc., 2014, vol. 161, p. F1448. https://doi.org/10.1149/2.0501414jes

Дополнительные материалы отсутствуют.