Успехи современной биологии, 2023, T. 143, № 4, стр. 335-358

Активация тромбоцитов и механизмы формирования тромбоэмболий у больных с тяжелым течением COVID-19. Альтернативные механизмы деятельности системы гемостаза

Б. И. Кузник 1, Ю. Н. Смоляков 1*, Н. Н. Цыбиков 1, К. Г. Шаповалов 1

1 Читинская государственная медицинская академия
Чита, Россия

* E-mail: smolyakov@rambler.ru

Поступила в редакцию 27.03.2023
После доработки 04.05.2023
Принята к публикации 05.05.2023

Аннотация

В обзоре освещается механизм развития гиперкоагуляции и тромбообразования при тяжелых формах течения COVID-19. Внедрение в организм хозяина SARS-CoV-2 осуществляется при взаимодействии шиповидного белка S с ангиотензинпревращающим ферментом АСЕ2, находящимся в альвеолоцитах 2-го типа, эндотелии сосудов, почках, печени и других органах. B случае развития тяжелого состояния у больных COVID-19 активируется как неспецифический, так и адаптивный иммунитет. Стимуляция системы комплемента с появлением фрагментов С3а, C3b, C5a и мембраноатакующего комплекса создает условия для развития гиперкоагуляции. Вовлечение в этот процесс ренин-ангиотензин-альдостероновой системы и появление ангиотензина 2 (Ang II) еще сильнее увеличивает интенсивность гиперкоагуляции. При внедрении SARS-CoV-2 в клетки защитная реакция адаптивной иммунной системы может превращаться в патологическую – развивается цитокиновый шторм, характеризующийся высоким уровнем провоспалительных цитокинов (IL-1α, IL-6, IL-8, TNF-α, IL-17 и др.) и хемокинов (ССL2, CCL11 и др.), что в конечном итоге ведет у тяжелобольных COVID-19 к развитию тромбоангиопатии или, иначе, иммунотромбозу. У пациентов с более тяжелым поражением может развиться состояние, подобное синдрому диссеминированного внутрисосудистого свертывания (ДВС). При этом у пациентов с COVID-19 выявляется легкая тромбоцитопения, повышенный уровень фибриногена, D-димера, продуктов деградации фибриногена, что свидетельствует об интенсивном тромбообразовании, а также сокращенные показатели протромбинового времени (ПВ) и активированного частичного тромбопластинового времени (АЧТВ), обусловленные в значительной степени увеличенным уровнем FVIII. При COVID-19, наряду с классическим, проявляется альтернативный путь (минуя тромбин) регуляции системы гемостаза и тромбообразования, связанный в основном с влиянием шиповидного белка S SARS-CoV-2 и папаиноподобной протеазы. Шиповидный белок S непосредственно влияет на переход фибриногена в фибрин и протромбина в тромбин, а также на активацию отдельных плазменных факторов свертывания крови. Альтернативный путь свертывания крови также обусловлен активацией системы комплемента по лектиновому пути с включением металлопротеиназ MASP-1, -2, -3. Кроме того, шиповидный белок S активирует tPA, что может сопровождаться гиперфибринолизом. У тяжелобольных COVID-19 далеко не последняя роль в возникновении тромбоэмболических осложнений принадлежит тромбоцитам. В процессе реакции высвобождения тромбоциты выбрасывают из цитоплазмы в кровь α- и плотные гранулы, содержащие воспалительные цитокины и хемокины, что усиливает цитокиновый шторм и, следовательно, тромбообразование. Воздействуя на шиповидный белок S, тромбоциты запускают альтернативный механизм системы гемостаза и тромбообразования.

Ключевые слова: COVID-19, тромбоциты, шиповидный белок S, система комплемента, цитокиновый шторм, нейтрофилы, моноциты, гиперкоагуляция, тромбообразование, альтернативные механизмы

Список литературы

  1. Березовская Г.А., Петрищев Н.Н., Волкова Е.В. и др. Поражение сердечно-сосудистой системы при новой коронавирусной инфекции COVID-19 // Кардиология: новости, мнения, обучение. 2022. Т. 10 (4). С. 37–47. https://doi.org/10.33029/2309-1908-2022-10-4-37-47

  2. Кузник Б.И., Хавинсон В.Х. Влияние тималина на системы иммунитета, гемостаза и уровень цитокинов у пациентов с различными заболеваниями. Перспективы применения при COVID-19 // Врач. 2020. Т. 31 (7). С. 18–26. https://doi.org/10.29296/25877305-2020-07-03

  3. Кузник Б.И., Хавинсон В.Х., Линькова Н.С. COVID-19: влияние на иммунитет, систему гемостаза и возможные пути коррекции // Усп. физиол. наук. 2020. № 4. С. 51–63. https://doi.org/10.31857/S0301179820040037

  4. Кузник Б.И., Шаповалов К.Г., Смоляков Ю.Н. и др. Морфологический состав и показатели свертывающей системы крови у пациентов среднего и пожилого возраста с COVID-19 при лечении тоцилизумабом и тималином // Усп. геронтол. 2022. Т. 35 (3). С. 368–373. https://doi.org/10.34922/AE.2022.35.3.006

  5. Кузник Б.И., Ройтман Е.В., Цыбиков Н.Н. и др. Полипотентные механизмы регуляции системы гемостаза и тромбообразования при COVID-19 // Тромбоз, гемостаз, реология. 2023. № 2. (в печати)

  6. Хавинсон В.Х., Кузник Б.И. Осложнения у больных CОVID-19. Предполагаемые механизмы коррекции // Клин. мед. 2020. Т. 98 (4). С. 256–265.

  7. Ackermann M., Verleden S.E., Kuehnel M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19 // N. Engl. J. Med. 2020. V. 383 (2). P. 120–128. https://doi.org/10.1056/NEJMoa2015432

  8. Ahmad F., Kannan M., Ansari AW. Role of SARS-CoV-2-induced cytokines and growth factors in coagulopathy and thromboembolism // Cyt. Growth Factor Rev. 2022. V. 63. P. 58–68. https://doi.org/10.1016/j.cytogfr.2021.10.007

  9. Ahmed S., Zimba O., Gasparyan A.Y. Thrombosis in coronavirus disease 2019 (COVID-19) through the prism of Virchow’s triad // Clin. Rheumatol. 2020. V. 39 (9). P. 2529–2543. https://doi.org/10.1007/s10067-020-05275-1

  10. Allaoui A., Khawaja A.A., Badad O. et al. Platelet function in viral immunity and SARS-CoV-2 infection // Semin. Thromb. Hemost. 2021. V. 47 (4). P. 419–426. https://doi.org/10.1055/s-0041-1726033

  11. Al-Samkari H., Leaf R.S.K., Dzik W.H. et al. COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection // Blood. 2020. V. 136 (4). P. 489–500. https://doi.org/10.1182/blood.2020006520

  12. Al-Tamimi A.O., Yusuf A.M., Jayakumar M.N. et al. SARS-CoV-2 infection induces soluble platelet activation markers and PAI-1 in the early moderate stage of COVID-19 // Int. J. Lab. Hematol. 2022. V. 44 (4). P. 712–721. https://doi.org/10.1111/ijlh.13829

  13. Arunachalam P.S., Wimmers F., Mok C.K.P. et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans // Science. 2020. V. 369. P. 1210–1220. https://doi.org/10.1126/science.abc6261

  14. Barale C., Melchionda E., Morotti A., Russo I. Prothrombotic phenotype in COVID-19: focus on platelets // Int. J. Mol. Sci. 2021. V. 22 (24). P. 13638. https://doi.org/10.3390/ijms222413638

  15. Barnes B.J., Adrover J.M., Baxter-Stoltzfus A. et al. Targeting potential drivers of COVID-19: neutrophil extracellular traps // J. Exp. Med. 2020. V. 217 (6). P. e20200652. https://doi.org/10.1084/jem.20200652

  16. Barrett T.J., Cornwell M., Myndzar K. et al. Platelets amplify endotheliopathy in COVID-19 // Sci. Adv. 2021. V. 7 (37). P. eabh2434. https://doi.org/10.1126/sciadv.abh2434

  17. Beura S.K., Panigrahi A.R., Yadav P., Singh S.K. Phytochemicals as potential therapeutics for SARS-CoV-2-induced cardiovascular complications: thrombosis and platelet perspective // Front. Pharmacol. 2021. V. 12. P. 658273. https://doi.org/10.3389/fphar.2021.658273

  18. Bumiller-Bini V., De Freitas Oliveira-Toré C., Carvalho T.M. et al. MASPs at the crossroad between the complement and the coagulation cascades – the case for COVID-19 // Genet. Mol. Biol. 2021. V. 44 (1). P. e20200199. https://doi.org/10.1590/1678-4685-GMB-2020-0199

  19. Bye A.P., Hoepel W., Mitchell J.L. et al. Aberrant glycosylation of anti-SARS-CoV-2 spike IgG is a prothrombotic stimulus for platelets // Blood. 2021. V. 138 (16). P. 1481–1489. https://doi.org/10.1182/blood.2021011871

  20. Canaday D.H. SARS-CoV-2 antibody responses to the ancestral SARS-CoV-2 strain and Omicron BA.1 and BA.4/BA.5 variants in nursing home residents after receipt of bivalent COVID-19 vaccine – Ohio and Rhode Island, September–November 2022 // MMWR. 2023. V. 72 (4). P. 100–106. https://doi.org/10.15585/mmwr.mm7204a4

  21. Candeloro M., Schulman S. Arterial thrombotic events in hospitalized COVID-19 patients: a short review and meta-analysis // Semin. Thromb. Hemost. 2023. V. 49 (1). P. 47–54. https://doi.org/10.1055/s-0042-1749661

  22. Chen J.M. Novel statistics predict the COVID-19 pandemic could terminate in 2022 // J. Med. Virol. 2022. V. 94 (6). P. 2845–2848. https://doi.org/10.1002/jmv.27661

  23. Connors J.M., Levy J.H. COVID-19 and its implications for thrombosis and anticoagulation // Blood. 2020. V. 135 (23). P. 2033–2040. https://doi.org/10.1182/blood.2020006000

  24. Conway E.M., Pryzdial E.L.G. Complement contributions to COVID-19 // Curr. Opin. Hematol. 2022. V. 29 (5). P. 259–265.

  25. Cugno M., Meroni P.L., Gualtierotti R. et al. Complement activation and endothelial perturbation parallel COVID-19 severity and activity // J. Autoimmun. 2021. V. 116. P. 102560. https://doi.org/10.1016/j.jaut.2020.102560

  26. D’Ardes D., Boccatonda A., Cocco G. et al. Impaired coagulation, liver dysfunction and COVID-19: discovering an intriguing relationship // World J. Gastroenterol. 2022. V. 28 (11). P. 1102–1112. https://doi.org/10.3748/wjg.v28.i11.1102

  27. Di Gennaro C., Galdiero M., Scherillo G. et al. Editorial COVID-19 and thrombosis 2023: new waves of SARS-CoV-2 infection, triage organization in emergency department and the association of VOCs/VOI with pulmonary embolism // Viruses. 2022. V. 14 (11). P. 2453. https://doi.org/10.3390/v14112453

  28. Diao B., Wang C.H., Wang R.S. et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection // medRxiv. 2020. https://doi.org/10.1101/2020.03.04.20031120

  29. Escher R., Breakey N., Lämmle B. Severe COVID-19 infection associated with endothelial activation // Thromb. Res. 2020. V. 190. P. 62. https://doi.org/10.1016/j.thromres.2020.04.014

  30. Falcinelli E., Petito E., Gresele P. The role of platelets, neutrophils and endothelium in COVID-19 infection // Expert Rev. Hematol. 2022. V. 15 (8). P. 727–745. https://doi.org/10.1080/17474086.2022.2110061

  31. Fox S.E., Akmatbekov A., Harbert J.L. et al. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans // Lancet Respir. Med. 2020. V. 8 (7). P. 681—686. https://doi.org/10.1016/S2213-2600(20)30243-5

  32. Frithiof R., Rostami E., Kumlien E. et al. Critical illness polyneuropathy, myopathy and neuronal biomarkers in COVID-19 patients: a prospective study // Clin. Neurophysiol. 2021. V. 132 (7). P. 1733–1740. https://doi.org/10.1016/j.clinph.2021.03.016

  33. Fujimura Y., Holland L.Z. COVID-19 microthrombosis: unusually large vWF multimers are a platform for activation of the alternative complement pathway under cytokine storm // Int. J. Hematol. 2022. V. 115 (4). P. 457–469. https://doi.org/10.1007/s12185-022-03324-w

  34. Gao Y., Wang C., Kang K. et al. Cytokine storm may not be the chief culprit for the deterioration of COVID-19 // Viral. Immunol. 2021. V. 34 (5). P. 336–341. https://doi.org/10.1089/vim.2020.0243

  35. Gauchel N., Rieder M., Krauel K. et al. Complement system component dysregulation is a distinctive feature of COVID-19 disease // J. Thromb. Thrombolysis. 2022. V. 53 (4). P. 788–797. https://doi.org/10.1007/s11239-021-02617-x

  36. Ghasemzadeh M., Ahmadi J., Hosseini E. Platelet-leukocyte crosstalk in COVID-19: how might the reciprocal links between thrombotic events and inflammatory state affect treatment strategies and disease prognosis? // Thromb. Res. 2022. V. 213. P. 179–194. https://doi.org/10.1016/j.thromres.2022.03.022

  37. Gorog D.A., Storey R.F., Gurbel P.A. et al. Current and novel biomarkers of thrombotic risk in COVID-19: a Consensus Statement from the International COVID-19 Thrombosis Biomarkers Colloquium // Nat. Rev. Cardiol. 2022. V. 19 (7). P. 475–495. https://doi.org/10.1038/s41569-021-00665-7

  38. Grobbelaar L.M., Venter C., Vlok M. et al. SARS-CoV-2 spike protein S1 induces fibrin(ogen) resistant to fibrinolysis: implications for microclot formation in COVID-19 // Biosci. Rep. 2021. V. 41 (8). P. BSR20210611. https://doi.org/10.1042/BSR20210611

  39. Grobler C., Maphumulo S.C., Grobbelaar L.M. et al. Covid-19: the rollercoaster of fibrin(ogen), D-dimer, von Willebrand factor, P-selectin and their interactions with endothelial cells, platelets and erythrocytes // Int. J. Mol. Sci. 2020. V. 21 (14). P. 5168. https://doi.org/10.3390/ijms21145168

  40. Gu S.X., Tyagi T., Jain K. et al. Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation // Nat. Rev. Cardiol. 2021. V. 18 (3). P. 194–209. https://doi.org/10.1038/s41569-020-00469-1

  41. Guan W.J., Ni Z.Y., Hu Y. et al. Clinical characteristics of coronavirus disease 2019 in China // N. Engl. J. Med. 2020. V. 382 (18). P. 1708–1720. https://doi.org/10.1056/NEJMoa2002032

  42. Han H., Yang L., Liu R. et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection // Clin. Chem. Lab. Med. 2020. V. 58 (7). P. 1116–1120.

  43. Harrison C. Focus shifts to antibody cocktails for COVID-19 cytokine storm // Nat. Biotechnol. 2020. V. 38 (8). P. 905–908.

  44. Hoffmann M., Kleine-Weber H., Pöhlmann S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells // Mol. Cell. 2020. V. 78. P. 779–784. https://doi.org/10.1016/j.molcel.2020.04.022

  45. Hottz E.D., Azevedo-Quintanilha I.G., Palhinha L. et al. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19 // Blood. 2020. V. 136 (11). P. 1330–1341. https://doi.org/10.1182/blood.2020007252

  46. Iba T., Wada H., Levy J.H. Platelet activation and thrombosis in COVID-19 // Semin. Thromb. Hemost. 2023. V. 49 (1). P. 55–61. https://doi.org/10.1055/s-0042-1749441

  47. Jackson C.B., Farzan M., Chen B., Choe H. Mechanisms of SARS-CoV-2 entry into cells // Nat. Rev. Mol. Cell Biol. 2022. V. 23 (1). P. 3–20. https://doi.org/10.1038/s41580-021-00418-x

  48. Jenny L., Dobó J., Gál P., Schroeder V. MASP-1 induced clotting – the first model of prothrombin activation by MASP-1 // PLoS One. 2015. V. 10 (12). P. e0144633. https://doi.org/10.1371/journal.pone.0144633

  49. Jenny L., Noser D., Larsen J.B. et al. MASP-1 of the complement system alters fibrinolytic behaviour of blood clots // Mol. Immunol. 2019. V. 114. P. 1–9. https://doi.org/10.1016/j.molimm.2019.07.005

  50. Jiang S.Q., Huang Q.F., Xie W.M. et al. The association between severe COVID-19 and low platelet count: evidence from 31 observational studies involving 7613 participants // Br. J. Haematol. 2020. V. 190 (1). P. e29–e33. https://doi.org/10.1111/bjh.16817

  51. Kakodkar P., Kaka N., Baig M.N. A comprehensive literature review on the clinical presentation, and management of the pandemic coronavirus disease 2019 (COVID-19) // Cureus. 2020. V. 12 (4). P. e7560. https://doi.org/10.7759/cureus.7560

  52. Kaur S., Singh A., Kaur J. et al. Upregulation of cytokine signalling in platelets increases risk of thrombophilia in severe COVID-19 patients // Blood Cells Mol. Dis. 2022. V. 94. P. 102653. https://doi.org/10.1016/j.bcmd.2022.102653

  53. Kerch G. Severe COVID-19 A review of suggested mechanisms based on the role of extracellular matrix stiffness // Int. J. Mol. Sci. 2023. V. 24 (2). P. 1187. https://doi.org/10.3390/ijms24021187

  54. Koupenova M. Potential role of platelets in COVID-19: implications for thrombosis // Res. Pract. Thromb. Haemost. 2020. V. 4 (5). P. 737–740. https://doi.org/10.1002/rth2.12397

  55. Kozarcanin H., Lood C., Munthe-Fog L. et al. The lectin complement pathway serine proteases (MASPs) represent a possible crossroad between the coagulation and complement systems in thromboinflammation // J. Thromb. Haemost. 2016. V. 14 (3). P. 531–545. https://doi.org/10.1111/jth.13208

  56. Krarup A., Wallis R., Presanis J.S. et al. Simultaneous activation of complement and coagulation by MBL-associated serine protease 2 // PLoS One. 2007. V. 2 (7). P. e623. https://doi.org/10.1371/journal.pone.0000623

  57. Kuhn C.C., Basnet N., Bodakuntla S. et al. Direct Cryo-ET observation of platelet deformation induced by SARS-CoV-2 spike protein // bioRxiv. Preprint. 2022. https://doi.org/10.1101/2022.11.22.517574

  58. Lee M.H., Perl D.P., Steiner J. et al. Neurovascular injury with complement activation and inflammation in COVID-19 // Brain. 2022. V. 145 (7). P. 2555–2568. https://doi.org/10.1093/brain/awac151

  59. Levi M., Thachil J., Iba T., Levy J.H. Coagulation abnormalities and thrombosis in patients with COVID-19 // Lancet Haematol. 2020. V. 7 (6). P. e438–e440.https://doi.org/10.1016/S2352-3026(20)30145-9

  60. Li T., Yang Y., Li Y. et al. Platelets mediate inflammatory monocyte activation by SARS-CoV-2 spike protein // J. Clin. Invest. 2022. V. 132 (4). P. e150101. https://doi.org/10.1172/JCI150101

  61. Liang Y., Fang D., Gao X. et al. Circulating microRNAs as emerging regulators of COVID-19 // Theranostics. 2023. V. 13 (1). P. 125–147. https://doi.org/10.7150/thno.78164

  62. Liao M., Liu Y., Yuan J. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19 // Nat. Med. 2020. V. 26 (6). P. 842–844. https://doi.org/10.1038/s41591-020-0901

  63. Lippi G., Favaloro E.J. What we know (and do not know) regarding th pathogenesis of pulmonary thrombosis in COVID-19 // Semin. Thromb. Hemost. 2023. V. 49 (1). P. 27–33. https://doi.org/10.1055/s-0041-1742091

  64. Liu Y., Sun W., Guo Y. et al. Association between platelet parameters and mortality in coronavirus disease 2019: retrospective cohort study // Platelets. 2020. V. 31 (4). P. 490–496. https://doi.org/10.1080/09537104.2020.1754383

  65. Ma L., Sahu S.K., Cano M. et al. Increased complement activation is a distinctive feature of severe SARS-CoV-2 infection // Sci. Immunol. 2021. V. 6. P. eabh2259. https://doi.org/10.1126/sciimmunol.abh2259

  66. Magro C., Mulvey J.J., Berlin D. et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases // Transl. Res. 2020. V. 220. P. 1–13. https://doi.org/10.1016/j.trsl.2020.04.007

  67. McFadyen J.D., Stevens H., Peter K. The emerging threat of (micro)thrombosis in COVID-19 and its therapeutic implications // Circ. Res. 2020. V. 127 (4). P. 571–587. https://doi.org/10.1161/CIRCRESAHA.120.317447

  68. Merad M., Martin J.C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages // Nat. Rev. Immunol. 2020. V. 20 (6). P. 355–362. https://doi.org/10.1038/s41577-020-0331-4

  69. Middleton E.A., He X.Y., Denorme F. et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome // Blood. 2020. V. 136. P. 1169–1179. https://doi.org/10.1182/blood.2020007008

  70. Mizurini D.M., Hottz E.D., Bozza P.T., Monteiro R.Q. Fundamentals in COVID-19-associated thrombosis: molecular and cellular aspects // Front. Cardiovasc. Med. 2021. V. 8. P. 785738. https://doi.org/10.3389/fcvm.2021.785738

  71. Moraes E.C.D.S., Martins-Gonçalves R., Da Silva L.R. et al. Proteomic profile of procoagulant extracellular vesicles reflects complement system activation and platelet hyperreactivity of patients with severe COVID-19 // Front. Cell. Infect. Microbiol. 2022. V. 12. P. 926352. https://doi.org/10.3389/fcimb.2022.926352

  72. Morris G., Bortolasci C.C., Puri B.K. et al. The pathophysiology of SARS-CoV-2: a suggested model and therapeutic approach // Life Sci. 2020. V. 258. P. 118166. https://doi.org/10.1016/j.lfs.2020.118166

  73. Mukund K., Mathee K., Subramaniam S. Plasmin cascade mediates thrombotic events in SARS-CoV-2 infection via complement and platelet-activating systems // IEEE Open J. Eng. Med. Biol. 2020. V. 1. P. 220–227. https://doi.org/10.1109/OJEMB.2020.3014798

  74. Nahum J., Morichau-Beauchant T., Daviaud F. et al. Venous thrombosis among critically ill patients with coronavirus disease 2019 (COVID-19) // JAMA Netw. Open. 2020. V. 3 (5). P. e2010478. https://doi.org/10.1001/jamanetworkopen.2020.10478

  75. Panigada M., Bottino N., Tagliabue P. et al. Hypercoagulability of COVID-19 patients in intensive care unit: a report of thromboelastography findings and other parameters of hemostasis // J. Thromb. Haemost. 2020. V. 18 (7). P. 1738–1742. https://doi.org/10.1111/jth.14850

  76. Parums D.V. Editorial: the XBB.1.5. (“Kraken”) subvariant of Omicron SARS-CoV-2 and its rapid global spread // Med. Sci. Monit. 2023. V. 29. P. e939580. https://doi.org/10.12659/MSM.939580

  77. Passariello M., Vetrei C., Amato F., De Lorenzo C. Interactions of spike-RBD of SARS-CoV-2 and platelet factor 4: new insights in the etiopathogenesis of thrombosis // Int. J. Mol. Sci. 2021. V. 22 (16). P. 8562. https://doi.org/10.3390/ijms22168562

  78. Perico L., Morigi M., Galbusera M. et al. SARS-CoV-2 spike protein 1 activates microvascular endothelial cells and complement system leading to platelet aggregation // Front. Immunol. 2022. V. 13. P. 827146. https://doi.org/10.3389/fimmu.2022.827146

  79. Poor H.D. Pulmonary thrombosis and thromboembolism in COVID-19 // Chest. 2021. V. 160 (4). P. 1471–1480. https://doi.org/10.1016/j.chest.2021.06.016

  80. Qi F., Qian S., Zhang S., Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses // Biochem. Biophys. Res. Commun. 2020. V. 526 (1). P. 135–140. https://doi.org/10.1016/j.bbrc.2020.03.044

  81. Rohlfing A.K., Rath D., Geisler T., Gawaz M. Platelets and COVID-19 // Hamostaseologie. 2021. V. 41 (5). P. 379–385. https://doi.org/10.1055/a-1581-4355

  82. Santos A.P., Couto C.F., Pereira S.S., Monteiro M.P. Is serotonin the missing link between COVID-19 course of severity in patients with diabetes and obesity? // Neuroendocrinology. 2022. V. 112. P. 1039–1045. https://doi.org/10.1159/000522115

  83. Sastry S., Cuomo F., Muthusamy J. COVID-19 and thrombosis: the role of hemodynamics // Thromb. Res. 2022. V. 212. P. 51–57. https://doi.org/10.1016/j.thromres.2022.02.016

  84. Sheth A.R., Grewal U.S., Patel H.P. et al. Possible mechanisms responsible for acute coronary events in COVID-19 // Med. Hypotheses. 2020. V. 143. P. 110125. https://doi.org/10.1016/j.mehy.2020.110125

  85. Sonmez O., Sonmez M. Role of platelets in immune system and inflammation // Porto Biomed. J. 2017. V. 2 (6). P. 311–314. https://doi.org/10.1016/j.pbj.2017.05.005

  86. Stark K. Platelet-neutrophil crosstalk and netosis // HemaSphere. 2019. V. 3. P. 89–91. https://doi.org/10.1097/HS9.0000000000000231

  87. Suh Y.J., Hong H., Ohana M. et al. Pulmonary embolism and deep vein thrombosis in COVID-19: a systematic review and meta-analysis // Radiology. 2021. V. 298. P. E70–E80. https://doi.org/10.1148/radiol.2020203557

  88. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia // J. Thromb. Haemost. 2020. V. 18. P. 844–847. https://doi.org/10.1111/jth.14768

  89. Taus F., Salvagno G., Canè S. et al. Platelets promote thromboinflammation in SARS-CoV-2 pneumonia // Arterioscler. Thromb. Vasc. Biol. 2020. V. 40 (12). P. 2975–2989. https://doi.org/10.1161/ATVBAHA.120.315175

  90. Thachil J., Tang N., Gando S. et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19 // J. Thromb. Haemost. 2020. V. 18 (5). P. 1023–1026. https://doi.org/10.1111/JTH.14860

  91. Thillai M., Patvardhan C., Swietlik E.M. et al. Functional respiratory imaging identifies redistribution of pulmonary blood flow in patients with COVID-19 // Thorax. 2021. V. 76 (2). P. 182–184. https://doi.org/10.1136/thoraxjnl-2020-215395

  92. Thomas W., Varley J., Johnston A. et al. Thrombotic complications of patients admitted to intensive care with COVID-19 at a teaching hospital in the United Kingdom // Thromb. Res. 2020. V. 191. P. 76–77. https://doi.org/101016/j.thromres.2020.04.028

  93. Tiwari R., Mishra A.R., Mikaeloff F. et al. In silico and in vitro studies reveal complement system drives coagulation cascade in SARS-CoV-2 pathogenesis // Comput. Struct. Biotechnol. J. 2020. V. 18. P. 3734–3744. https://doi.org/10.1016/j.csbj.2020.11.005

  94. Ulanowska M., Olas B. Modulation of hemostasis in COVID-19; blood platelets may be important pieces in the COVID-19 puzzle // Pathogens. 2021. V. 10 (3). P. 370. https://doi.org/10.3390/pathogens10030370

  95. Vadasz Z., Brenner B., Toubi E. Immune-mediated coagulopathy in COVID-19 infection // Semin. Thromb. Hemost. 2020. V. 46 (7). P. 838–840. https://doi.org/10.1055/s-0040-1714272

  96. Varatharajah N., Rajah S. Microthrombotic complications of COVID-19 are likely due to embolism of circulating endothelial derived ultralarge von Willebrand factor (eULvWF) decorated-platelet strings // Fed. Pract. 2020. V. 37 (6). P. 258–259.

  97. Violi F., Pignatelli P., Cammisotto V. et al. COVID-19 and thrombosis: clinical features, mechanism of disease, and therapeutic implications // Kardiol. Pol. 2021. V. 79 (11). P. 1197–1205. https://doi.org/10.33963/KP.a2021.154

  98. Wang J., Doran J. The many faces of cytokine release syndrome-related coagulopathy // Clin. Hematol. Int. 2021. V. 3 (1). P. 3–12. https://doi.org/10.2991/chi.k.210117.001

  99. Wienkamp A.K., Erpenbeck L., Rossaint J. Platelets in the NETworks interweaving inflammation and thrombosis // Front. Immunol. 2022. V. 13. P. 953129. https://doi.org/10.3389/fimmu.2022.953129

  100. Wool G.D., Miller J.L. The impact of COVID-19 disease on platelets and coagulation // Pathobiology. 2021. V. 88 (1). P. 15–27. https://doi.org/10.1159/000512007

  101. Xiang M., Wu X., Jing H. et al. The impact of platelets on pulmonary microcirculation throughout COVID-19 and its persistent activating factors // Front. Immunol. 2022. V. 13. P. 955654. https://doi.org/10.3389/fimmu.2022.955654

  102. Xiao T., Lu J., Zhang J. et al. A trimeric human angiotensin-converting enzyme 2 as an anti-SARS-CoV-2 agent // Nat. Struct. Mol. Biol. 2021. V. 28. P. 202–209. https://doi.org/10.1038/s41594-020-00549-3

  103. Yang X., Yang Q., Wang Y. et al. Thrombocytopenia and its association with mortality in patients with COVID-19 // J. Thromb. Haemost. 2020. V. 18. P. 1469–1472. https://doi.org/10.1111/jth.14848

  104. Ye Q., Wang B., Mao J. The pathogenesis and treatment of the “cytokine storm” in COVID-19 // J. Infect. 2020. V. 80. P. 607–613. https://doi.org/10.1016/j.jinf.2020.03.037

  105. Yu J., Yuan X., Chen H. et al. Direct activation of the alternative complement pathway by SARS-CoV-2 spike proteins is blocked by factor D inhibition // Blood. 2020. V. 136 (18). P. 2080–2089. https://doi.org/10.1182/blood.2020008248

  106. Zhang S., Liu Y., Wang X. et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19 // J. Hematol. Oncol. 2020. V. 13 (1). P. 120. https://doi.org/10.1186/s13045-020-00954-7

  107. Zhang Y., Zeng X., Jiao Y. et al. Mechanisms involved in the development of thrombocytopenia in patients with COVID-19 // Thromb. Res. 2020. V. 193. P. 110–115.

  108. Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study // Lancet. 2020. V. 395. P. 1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3

  109. Zhu A., Real F., Capron C. et al. Infection of lung megakaryo-cytes and platelets by SARS-CoV-2 anticipate fatal COVID-19 // Cell. Mol. Life Sci. 2022. V. 79 (7). P. 365. https://doi.org/10.1007/s00018-022-04318-x

  110. Zuo Y., Yalavarthi S., Shi H. et al. Neutrophil extracellular traps in COVID-19 // JCI Insight. 2020. V. 5 (11). P. e138999. https://doi.org/10.1172/jci.insight.138999

Дополнительные материалы отсутствуют.