Успехи современной биологии, 2023, T. 143, № 6, стр. 553-564

Современная концепция гормезиса: обзор проблемы и значение для экологии

Е. А. Ерофеева 1*, Д. Б. Гелашвили 1, Г. С. Розенберг 2

1 Нижегородский государственный университет им. Н.И. Лобачевского
Нижний Новгород, Россия

2 Институт экологии Волжского бассейна РАН – филиал Самарского федерального исследовательского центра РАН
Тольятти, Россия

* E-mail: ele77785674@yandex.ru

Поступила в редакцию 25.06.2023
После доработки 01.08.2023
Принята к публикации 02.08.2023

Аннотация

В настоящее время установлено, что при воздействии на живые организмы различных экологических факторов (природных – абиотических и биотических, а также антропогенных) гормезис представляет собой достаточно распространенное явление. Гормезис обнаружен у разных групп организмов и практически на всех уровнях организации живых систем от клетки до экосистемы. В то же время всесторонний анализ значения гормезиса для экологии не проводился. В данном обзоре рассматривается современная концепция гормезиса, представленная в зарубежной литературе, а также ее значение для различных разделов экологии.

Ключевые слова: гормезис, стресс, адаптация, организм, популяция, сообщество

Список литературы

  1. Гелашвили Д.Б., Безель В.С., Романова Е.Б. и др. Принципы и методы экологической токсикологии. Н.Н.: ННГУ, 2016. 702 с.

  2. Шилов И.А. Экология. М.: Юрайт, 2019. 512 с.

  3. Agathokleous E. Environmental hormesis, a fundamental non-monotonic biological phenomenon with implications in ecotoxicology and environmental safety // Ecotoxicol. Environ. Saf. 2018. V. 148. P. 1042–1053. https://doi.org/10.1016/j.ecoenv.2017.12.003

  4. Agathokleous E., Calabrese E.J. A global environmental health perspective and optimisation of stress // Sci. Total Environ. 2020. V. 704 (135263). https://doi.org/10.1016/j.scitotenv.2019.135263

  5. Agathokleous E., Calabrese E.J. Fungicide-induced hormesis in phytopathogenic fungi: a critical determinant of successful agriculture and environmental sustainability // J. Agric. Food Chem. 2021. V. 69 (16). P. 4561–4563. https://doi.org/10.1021/acs.jafc.1c01824

  6. Agathokleous E., Kitao M., Calabrese E.J. Human and veterinary antibiotics induce hormesis in plants: scientific and regulatory issues and an environmental perspective // Environ. Int. 2018. V. 120. P. 489–495. https://doi.org/10.1016/j.envint.2018.08.035

  7. Agathokleous E., Belz R.G., Calatayud V. et al. Predicting the effect of ozone on vegetation via linear non-threshold (LNT), threshold and hormetic dose—response models // Sci. Total Environ. 2019a. V. 649. P. 61–74. https://doi.org/10.1016/j.scitotenv.2018.08.264

  8. Agathokleous E., Feng Z.Z., Iavicoli I., Calabrese E.J. The two faces of nanomaterials: a quantification of hormesis in algae and plants // Environ. Int. 2019b. V. 131. P. 105044. https://doi.org/10.1016/j.envint.2019.105044

  9. Agathokleous E., Kitao M., Harayama H., Calabrese E.J. Temperature-induced hormesis in plants // J. Forest. Res. 2019c. V. 30. P. 13–20. https://doi.org/10.1007/s11676-018-0790-7

  10. Agathokleous E., Kitao M., Calabrese E.J. Hormesis: a compelling platform for sophisticated plant science // Trends Plant Sci. 2019d. V. 24 (4). P. 318–327. https://doi.org/10.1016/j.tplants.2019.01.004

  11. Agathokleous E., Kitao M., Calabrese E.J. Hormesis: highly generalizable and beyond laboratory // Trends Plant Sci. 2020a. V. 25 (11). P. 1076–1086. https://doi.org/10.1016/j.tplants.2020.05.006

  12. Agathokleous E., Feng Z., Iavicoli I., Calabrese E.J. Nano-pesticides: a great challenge for biodiversity? The need for a broader perspective // Nano Today. 2020b. V. 30. P. 100808. https://doi.org/10.1016/j.nantod.2019.100808

  13. Agathokleous E., Iavicoli I., Barceló D., Calabrese E.J. Ecological risks in a ‘plastic’ world: a threat to biological diversity? // J. Hazard. Mater. 2021a. V. 417. P. 126035. https://doi.org/10.1016/j.jhazmat.2021.126035

  14. Agathokleous E., Iavicoli I., Barceló D., Calabrese E.J. Micro/nanoplastics effects on organisms: a review focusing on ‘dose’ // J. Hazard. Mater. 2021b. V. 417. P. 126084. https://doi.org/10.1016/j.jhazmat.2021.126084

  15. Agathokleous E., Barceló D., Calabrese E.J. US EPA: opening a new window for evaluating potential sub-threshold effects and ecological risks? // Environ. Pollut. 2021c. V. 284. P. 117372. https://doi.org/10.1016/j.envpol.2021.117372

  16. Belz R.G. Herbicide hormesis can act as a driver of resistance evolution in weeds – PSII-target site resistance in Chenopodium album L. as a case study // Pest. Manag. Sci. 2018. V. 74. P. 2874–2883. https://doi.org/10.1002/ps.5080

  17. Belz R.G., Piepho H.P. Predicting biphasic responses in binary mixtures: pelargonic acid versus glyphosate // Chemosphere. 2017. V. 178. P. 88–98. https://doi.org/10.1016/j.chemosphere.2017.03.047

  18. Belz R.G., Patama M., Sinkkonen A. Low doses of six toxicants change plant size distribution in dense populations of Lactuca sativa // Sci. Total Environ. 2018. V. 631–632. P. 510–523. https://doi.org/10.1016/j.scitotenv.2018.02.336

  19. Berry R., López-Martínez G. A dose of experimental hormesis: when mild stress protects and improves animal performance // Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2020. V. 242. P. 110658. https://doi.org/10.1016/j.cbpa.2020.110658

  20. Calabrese E.J. Hormesis: why it is important to toxicology and toxicologists // Environ. Toxicol. Chem. 2008. V. 27 (7). P. 1451–1474.

  21. Calabrese E.J. Hormetic mechanisms // Crit. Rev. Toxicol. 2013. V. 43 (7). P. 580–606. https://doi.org/10.3109/10408444.2013.808172

  22. Calabrese E.J. Preconditioning is hormesis part I: documentation, dose–response features and mechanistic foundations // Pharmacol. Res. 2016a. V. 110. P. 242–264. https://doi.org/10.1016/j.phrs.2015.12.021

  23. Calabrese E.J. Preconditioning is hormesis part II: how the conditioning dose mediates protection: dose optimization within temporal and mechanistic frameworks // Pharmacol. Res. 2016b. V. 110. P. 265–275. https://doi.org/10.1016/j.phrs.2015.12.020

  24. Calabrese E.J., Baldwin L.A. Chemical hormesis: its historical foundations as a biological hypothesis // Toxicol. Pathol. 1999. V. 27. P. 195–216.

  25. Calabrese E.J., Blain R. The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: an overview // Toxicol. Appl. Pharmacol. 2005. V. 202 (3). P. 289–301. https://doi.org/10.1016/j.taap.2004.06.023

  26. Calabrese E.J., Blain R.B. Hormesis and plant biology // Environ. Pollut. 2009. V. 157 (1). P. 42–48. https://doi.org/10.1016/j.envpol.2008.07.028

  27. Calabrese E.J., Blain R.B. The hormesis database: the occurrence of hormetic dose responses in the toxicological literature // Regul. Toxicol. Pharmacol. 2011. V. 61. P. 73–81. https://doi.org/10.1016/j.yrtph.2011.06.003

  28. Calabrese E.J., Agathokleous E. Accumulator plants and hormesis // Environ. Pollut. 2021. V. 274. P. 116526. https://doi.org/10.1016/j.envpol.2021.116526

  29. Cao Y., Yang H., Li J. et al. Sublethal effects of imidacloprid on the population development of western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae) // Insects. 2019. V. 10. P. 3. https://doi.org/10.3390/insects10010003

  30. Chen L., Wang C., Dell B. et al. Growth and nutrient dynamics of Betula alnoides seedlings under exponential fertilization // J. Forest. Res. 2018. V. 29. P. 111–119. https://doi.org/10.1007/s11676-017-0427-2

  31. Chouhan S., Yadav S.K., Prakash J. et al. Effect of bisphenol A on human health and its degradation by microorganisms: a review // Ann. Microbiol. 2014. V. 64. 13–21. https://doi.org/10.1007/s13213-013-0649-2

  32. Cong M., He S., Ma H. et al. Hormetic effects of carbendazim on the virulence of Botrytis cinerea // Plant Dis. 2018. V. 102. P. 886–891. https://doi.org/10.1016/j.phrs.2015.12.020

  33. Costa R.N., Bevilaqua N.C., Krenchinski F.H. et al. Hormetic effect of glyphosate on the morphology, physiology and metabolism of coffee plants // Plants. 2023. V. 12. P. 2249. https://doi.org/10.3390/plants12122249

  34. Costantini D., Metcalfe N.B., Monaghan P. Ecological processes in a hormetic framework // Ecol. Lett. 2010. V. 13 (11). P. 1435–1447. https://doi.org/10.1111/j.1461-0248.2010.01531.x

  35. Cui X., Huo M., Chen C. et al. Low concentrations of Al(III) accelerate the formation of biofilm: multiple effects of hormesis and flocculation // Sci. Total Environ. 2018. V. 634. P. 516–524. https://doi.org/10.1016/j.scitotenv.2018.03.376

  36. De Vries W., Du E., Butterbach-Bahl K. Short and long-term impacts of nitrogen deposition on carbon sequestration by forest ecosystems // Curr. Opin. Environ. Sustainab. 2014. V. 9–10. P. 90–104. https://doi.org/10.1016/j.cosust.2014.09.001

  37. Deng D., Duan W., Wang H. et al. Assessment of the effects of lethal and sublethal exposure to dinotefuran on the wheat aphid Rhopalosiphum padi (Linnaeus) // Ecotoxicology. 2019. V. 28. P. 825–833. https://doi.org/10.1007/s10646-019-02080-8

  38. Di Y.L., Cong M.L., Zhang R., Zhu F.-X. Hormetic effects of trifloxystrobin on aggressiveness of Sclerotinia sclerotiorum // Plant Dis. 2016. V. 100. P. 2113–2118. https://doi.org/10.1094/PDIS-03-16-0403-RE

  39. Diaz G.J., Calabrese E., Blain R. Aflatoxicosis in chickens (Gallus gallus): an example of hormesis? // Poult. Sci. 2008. V. 87. P. 727–732.https://doi.org/10.3382/ps.2007-00403

  40. Dormann C.F., Woodin S.J. Climate change in the arctic: using plant functional types in a meta-analysis of field experiments // Func. Ecol. 2002. V. 16. P. 4–17. https://doi.org/10.1046/j.0269-8463.2001.00596.x

  41. Drobne D., Jemec A., Tkalec Z.P. In vivo screening to determine hazards of nanoparticles: nanosized TiO2 // Environ. Pollut. 2009. V. 157. P. 1157–1164. https://doi.org/10.1016/j.envpol.2008.10.018

  42. Erofeeva E.A. Hormesis and paradoxical effects of wheat seedling (Triticum aestivum L.) parameters upon exposure to different pollutants in a wide range of doses // Dose—Response. 2013. V. 12 (1). P. 121–135.https://doi.org/10.2203/dose-response.13-017.Erofeeva

  43. Erofeeva E.A. Hormesis and paradoxical effects of pea (Pisum sativum L.) parameters upon exposure to formaldehyde in a wide range of doses // Ecotoxicology. 2018. V. 27 (5). P. 569–577. https://doi.org/10.1007/s10646-018-1928-2

  44. Erofeeva E.A. Plant hormesis and Shelford’s tolerance law curve // J. Forest. Res. 2021. V. 32. P. 1789–1802. https://doi.org/10.1007/s11676-021-01312-0

  45. Erofeeva E.A. Environmental hormesis of non-specific and specific adaptive mechanisms in plants // Sci. Total Environ. 2022. V. 804. P. 150059. https://doi.org/10.1016/j.scitotenv.2021.150059

  46. Erofeeva E.A. Hormetic effects of abiotic environmental stressors in woody plants in the context of climate change // J. Forest. Res. 2023. V. 34. P. 7–19. https://doi.org/10.1007/s11676-022-01591-1

  47. Fan D., Jing Y., Zhu Y. et al. Toluene induces hormetic response of soil alkaline phosphatase and the potential enzyme kinetic mechanism // Ecotoxicol. Environ. Saf. 2020. V. 206. P. 111123.

  48. Fan D., Sun J., Liu C. et al. Measurement and modeling of hormesis in soil bacteria and fungi under single and combined treatments of Cd and Pb // Sci. Total Environ. 2021. V. 783. P. 147494. https://doi.org/10.1016/j.scitotenv.2021.147494

  49. Foyer C.H., Rasool B., Davey J.W., Hancock R.D. Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation // J. Exp. Bot. 2016. V. 67 (7). P. 2025–2037. https://doi.org/10.1093/jxb/erw079

  50. Gopi I.K., Rattan S.I.S. Biphasic dose–response and hormetic effects of stress hormone hydrocortisone on telomerase-immortalized human bone marrow stem cells in vitro // Dose—Response. 2019. V. 17 (4). P. 1559325819889819. https://doi.org/10.1177/1559325819889819

  51. Gu W., Liu S., Chen L. et al. Single-cell RNA sequencing reveals size-dependent effects of polystyrene microplastics on immune and secretory cell populations from zebrafish intestines // Environ. Sci. Technol. 2020. V. 54. P. 3417–3427. https://doi.org/10.1021/acs.est.9b06386

  52. Guedes N.M.P., Tolledo J., Corrêa A.S., Guedes R.N.C. Insecticide induced hormesis in an insecticide resistant strain of the maize weevil, Sitophilus zeamais // J. Appl. Entomol. 2010. V. 134 (2). P. 142–148. https://doi.org/10.1111/j.1439-0418.2009.01462.x

  53. Guo X., Liu M., Zhong H. et al. Responses of the growth and physiological characteristics of Myriophyllum aquaticum to coexisting tetracyclines and copper in constructed wetland microcosms // Environ. Pollut. 2020. V. 261. P. 114204. https://doi.org/10.1016/j.envpol.2020.114204

  54. Han J., Wang S., Fan D. et al. Time-dependent hormetic response of soil alkaline phosphatase induced by Cd and the association with bacterial community composition // Microb. Ecol. 2019. V. 78. P. 961–973.

  55. Harmsen K. A modified mitscherlich equation for rainfed crop production in semi-arid areas. 1. Theory // Wageningen J. Life Sci. 2000. V. 48 (3). P. 237–250. https://doi.org/10.1016/S1573-5214(00)80016-0

  56. Hashmi M.Z., Naveedullah, Shen C., Yu C. Hormetic responses of food-supplied Pcb 31 to zebrafish (Danio Rerio) growth // Dose—Response. 2015. V. 13. P. 14–013. https://doi.org/10.2203/dose-response.14-013.Chaofeng

  57. Hatfield J.L., Prueger J.H. Temperature extremes: effect on plant growth and development // Weath. Clim. Extr. 2015. V. 10. P. 4–10. https://doi.org/10.1016/j.wace.2015.08.001

  58. Helaouët P., Beaugrand G. Physiology, ecological niches and species distribution // Ecosystems. 2009. V. 12. P. 1235–1245. https://doi.org/10.1007/s10021-009-9261-5

  59. Jalal A., De Oliveira J.C.Jr., Ribeiro J.S. et al. Hormesis in plants: physiological and biochemical responses // Ecotoxicol. Environ. Saf. 2021. V. 207. P. 111225. https://doi.org/10.1016/j.ecoenv.2020.111225

  60. Jia L., He X., Chen W. et al. Hormesis phenomena under Cd stress in a hyperaccumulator – Lonicera japonica Thunb // Ecotoxicology. 2013. V. 22. P. 476–485. https://doi.org/10.1007/s10646-013-1041-5

  61. Kacienė G., Juknys R., Januškaitienė I. The role of oxidative stress in spring barley cross-adaptation to different heavy metals // Arch. Agron. Soil Sci. 2017. V. 63 (8). P. 1037–1048. https://doi.org/10.1080/03650340.2016.1256474

  62. Kudryasheva N.S., Rozhko T.V. Effect of low-dose ionizing radiation on luminous marine bacteria: radiation hormesis and toxicity // J. Environ. Radioact. 2015. V. 142. P. 68–77. https://doi.org/10.1016/j.jenvrad.2015.01.012

  63. Li B., Ding Y., Cheng X. et al. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice // Chemosphere. 2020. V. 244. P. 125492. https://doi.org/10.1016/j.chemosphere.2019.125492

  64. Lo H.S., Po B.H.K., Li L. et al. Bisphenol A and its analogues in sedimentary microplastics of Hong Kong // Mar. Pollut. Bull. 2021. V. 164. P. 112090. https://doi.org/10.1016/j.marpolbul.2021.112090

  65. Martínez J.L. Effect of antibiotics on bacterial populations: a multi-hierachical selection process // F1000Res. 2017. V. 6. P. 51. https://doi.org/10.12688/f1000research.9685.1

  66. Martinez-Medina A., Flors V., Heil M. et al. Recognizing plant defense priming // Trends Plant Sci. 2016. V. 21 (10). P. 818–822. https://doi.org/10.1016/j.tplants.2016.07.009

  67. McClure C.D., Zhong W., Hunt V.L. et al. Hormesis results in trade-offs with immunity // Evolution. 2014. V. 68. P. 2225–2233. https://doi.org/10.1111/evo.12453

  68. Mitton F.M., Miglioranza K., Gonzalez M. et al. Assessment of tolerance and efficiency of crop species in the phytoremediation of DDT polluted soils // Ecol. Eng. 2014. V. 71. P. 501–508. https://doi.org/10.1016/j.ecoleng.2014.07.069

  69. Moore M.N., Shaw J.P., Adams D.R.F., Viarengo A. Anti-oxidative cellular protection effect of fasting-induced autophagy as a mechanism of hormesis // Mar. Environ. Res. 2015. V. 107. P. 35–44. https://doi.org/10.1016/j.marenvres.2015.04.001

  70. Morkunas I., Woźniak A., Mai V.C. et al. The role of heavy metals in plant response to biotic stress // Molecules. 2018. V. 23 (9). P. 2320. https://doi.org/10.3390/molecules23092320

  71. Morse J.G. Agricultural implications of pesticide-induced hormesis of insects and mites // Hum. Exp. Toxicol. 1998. V. 17 (5). P. 266–269. https://doi.org/10.1177/096032719801700510

  72. Mortimer M., Kasemets K., Kahru A. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila // Toxicology. 2010. V. 269. P. 182–189. https://doi.org/10.1016/j.tox.2009.07.007

  73. Motai A., Terada Y., Kobayashi A. et al. Combined effects of irrigation amount and nitrogen load on growth and needle biochemical traits of Cryptomeria japonica seedlings // Trees. 2017. V. 31. P. 1317–1333. https://doi.org/10.1007/s00468-017-1551-5

  74. Nielsen M.E., Roslev P. Behavioral responses and starvation survival of Daphnia magna exposed to fluoxetine and propranolol // Chemosphere. 2018. V. 211. P. 978–985. https://doi.org/10.1016/j.chemosphere.2018.08.027

  75. Obodovskiy I. Radiation: fundamentals, applications, risks, and safety. Amsterdam: Elsevier, 2019. 720 p.

  76. Pincelli-Souza R.P., Bortolheiro F.P., Carbonari C.A. et al. Hormetic effect of glyphosate persists during the entire growth period and increases sugarcane yield // Pest Manag. Sci. 2020. V. 76. P. 2388–2394. https://doi.org/10.1002/ps.5775

  77. Rahavi M.R., Migicovsky Z., Titov V., Kovalchuk I. Transgenerational adaptation to heavy metal salts in Arabidopsis // Front. Plant Sci. 2011. V. 2. P. 91. https://doi.org/10.3389/fpls.2011.00091

  78. Rustad L.E., Campbell J.L., Marion G.M. et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming // Oecologia. 2001. V. 126. P. 543–562. https://doi.org/10.1007/s004420000544

  79. Roberts A.P., Mount A.S., Seda B. et al. In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna // Environ. Sci. Technol. 2007. V. 41. P. 3025–3029. https://doi.org/10.1021/es062572a

  80. Schirrmacher V. Less can be more: the hormesis theory of stress adaptation in the global biosphere and its implications // Biomedicines. 2021. V. 9 (3). P. 293. https://doi.org/10.3390/biomedicines9030293

  81. Schreck C.B. Stress and fish reproduction: the roles of allostasis and hormesis // Gen. Comp. Endocrinol. 2010. V. 165. P. 549–556. https://doi.org/10.1016/j.ygcen.2009.07.004

  82. Selye H. Stress without distress. N.Y.: Harper, Row, 1974. 171 p.

  83. Shahid M., Niazi N.K., Rinklebe J. et al. Trace elements-induced phytohormesis: a critical review and mechanistic interpretation // Crit. Rev. Environ. Sci. Technol. 2020. V. 50 (19). P. 1984–2015. https://doi.org/10.1080/10643389.2019.1689061

  84. Shelford V.E. Animal communities in a temperate America. Chicago: Univ. Chicago Press, 1913. 386 p.

  85. Sial M.U., Zhao Z., Zhang L. et al. Evaluation of insecticides induced hormesis on the demographic parameters of Myzus persicae and expression changes of metabolic resistance detoxification genes // Sci. Rep. 2018. V. 8 (1). P. 16601.

  86. Simkin S.M., Allen E.B., Bowman W.D. et al. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States // PNAS USA. 2016. V. 113. P. 4086–4091. https://doi.org/10.1073/pnas.1515241113

  87. Smith S.D., Huxman T.E., Zitzer S.F. et al. Elevated CO2 increases productivity and invasive species success in an arid ecosystem // Nature. 2000. V. 408. P. 79–82. https://doi.org/10.1038/35040544

  88. Tang S., Liang J., Xiang C. et al. A general model of hormesis in biological systems and its application to pest management // J. R. Soc. Interface. 2019. V. 16. P. 20190468.

  89. Vaiserman A., Cuttler J.M., Socol Y. Low-dose ionizing radiation as a hormetin: experimental observations and therapeutic perspective for age-related disorders // Biogerontology. 2021. V. 22. P. 145–164. https://doi.org/10.1007/s10522-020-09908-5

  90. Walter J., Jentsch A., Beierkuhnlein C., Kreyling J. Ecological stress memory and cross stress tolerance in plants in the face of climate extremes // Environ. Exp. Bot. 2013. V. 94. P. 3–8. https://doi.org/10.1016/j.envexpbot.2012.02.009

  91. Wang S., Huang B., Fan D. et al. Hormetic responses of soil microbiota to exogenous Cd: a step toward linking community-level hormesis to ecological risk assessment // J. Hazard. Mater. 2021. V. 416. P. 125760. https://doi.org/10.1016/j.jhazmat.2021.125760

  92. Wiegant F.A., Prins H.A., van Wijk R. Postconditioning hormesis put in perspective: an overview of experimental and clinical studies // Dose—Response. 2011. V. 9 (2). P. 209–224.

  93. Wu Z., Dijkstra P., Koch G.W. et al. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation // Glob. Biol. 2011. V. 17. P. 927–942. https://doi.org/10.1111/j.1365-2486.2010.02302.x

  94. Xu Y., Liu S., Chen F., Wang Z. pH affects the hormesis profiles of personal care product components on luminescence of the bacteria Vibrio qinghaiensis sp.-Q67 // Sci. Total Environ. 2020. V. 713. P. 136656.

  95. Xu Z., Hu T., Zhang Y. Effects of experimental warming on phenology, growth and gas exchange of treeline birch (Betula utilis) saplings, Eastern Tibetan Plateau, China // Eur. J. Forest Res. 2012. V. 131. P. 811–819. https://doi.org/10.1007/s10342-011-0554-9

  96. Yi M., Zhou S., Zhang L., Ding S. The effects of three different microplastics on enzyme activities and microbial communities in soil // Water Environ. Res. 2021. V. 93. P. 24–32. https://doi.org/10.1002/wer.1327

  97. Zhang C., Li C., Chen S. et al. Hormetic effect of panaxatriol saponins confers neuroprotection in PC12 cells and zebrafish through PI3K/AKT/mTOR and AMPK/SIRT1/FOXO3 pathways // Sci. Rep. 2017. V. 7. P. 41082. https://doi.org/10.1038/srep41082

  98. Zhang R., Zhang Y., Xu Q. et al. Hormetic effects of mixtures of dimethachlone and prochloraz on Sclerotinia sclerotiorum // Plant Dis. 2019. V. 103 (3). P. 546–554. https://doi.org/10.1094/PDIS-06-18-1071-RE

  99. Zied D.C., Dourado F.A., Dias E.S., Pardo-Giménez A. First study of hormesis effect on mushroom cultivation // World J. Microbiol. Biotechnol. 2017. V. 33 (11). P. 195. https://doi.org/10.1007/s11274-017-2342-2

Дополнительные материалы отсутствуют.