Агрохимия, 2023, № 9, стр. 65-80

Регуляторы роста и развития растений: классификация, природа и механизм действия

С. С. Тарасов 1*, Е. В. Михалёв 1, А. И. Речкин 1, Е. К. Крутова 1

1 Нижегородская государственная сельскохозяйственная академия
603022 Нижний Новгород, просп. Гагарина, 97, Россия

* E-mail: tarasov_ss@mail.ru

Поступила в редакцию 06.03.2023
После доработки 12.04.2023
Принята к публикации 14.06.2023

Аннотация

Рассмотрены вопросы природы и механизма действия регуляторов роста и развития растений. Предложено использовать классификацию регуляторов в зависимости от их природы. Выделены 4 группы регуляторов: чистые химические вещества, физические, биологические и комплексные регуляторы. Уделено внимание механизмам взаимосвязи искусственных регуляторов с естественной системой регуляции и интеграции растений.

Ключевые слова: регуляторы роста и развития растений, биорегуляторы, биоудобрения, органические удобрения, система регуляции и интеграции растений, фитогормоны, сигнальные системы клетки

Список литературы

  1. Leivar P., Monte E. PIFs: systems integrators in plant development // Plant Cell. 2014. V. 26. № 1. P. 56–78. https://doi.org/10.1105/tpc.113.120857

  2. Plant hormones: biosynthesis, signal transduction, action / Ed. Davies P.J. Springer Science & Business Media, 2004. 750 p.

  3. Sparks E., Wachsman G., Benfey P.N. Spatiotemporal signalling in plant development // Nat. Rev. Genet. 2013. V.14. № 9. P. 631–644. https://doi.org/10.1038/nrg3541

  4. Went F.W. Phytohormones: structure and physiological activity // Arch. Biochem. 1949. № 20 (1). P. 131–136.

  5. Яхин О.И., Лубянов А.А., Яхин И.А. Современные представления о биостимуляторах // Агрохимия. 2014. № 7. С. 85–90.

  6. Яхин О.И., Лубянов А.А., Яхин И.А. Классификация биостимуляторов // Агрохимия. 2018. № 3. С. 90–95. https://doi.org/10.7868/S0002188118030122

  7. Chambolle C. Biostimulants: humus substances // PHM Rev. Hortic. 2005. V. 468. P. 21–23.

  8. Vespermann A., Kai M., Piechulla B. Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana // Appl. Environ. Microbiol. 2007 V. 73. № 17. P. 5639–5641. https://doi.org/10.1128/AEM.01078-07

  9. Dunkel M., Schmidt U., Struck S., Berger L., Grue-ning B., Hossbach J., Jaeger I.S., Effmert U., Pie-chulla B., Eriksson R., Knudsen J., Preissner R. SuperScent – a database of flavors and scents // Nucleic Acids Res. 2009 V. 37. (Database issue): D291-4. https://doi.org/10.1093/nar/gkn695

  10. Billard V., Etienne P., Jannin L., Garnica M., Cruz F., Garcia-Mina J.-M., Yvin J.-C., Ourry A. Two biostimulants derived from algae or humic acid induce similar responses in the mineral content and gene expression of winter oilseed rape (Brassica napus L.) // J. Plant Growth Regul. 2014. V. 33. № 2. P. 305–316.

  11. Chen C., Twito S., Miller G. New cross talk between ROS, ABA and auxin controlling seed maturation and germination unraveled in APX6 deficient Arabidopsis seeds // Plant Signal Behav. 2014. V. 9. № 12: e976489. https://doi.org/10.4161/15592324.2014.976489

  12. Lou Z., Sun Y., Bian S., Ali Baig S., Hu B., Xu X. Nutrient conservation during spent mushroom compost application using spent mushroom substrate derived biochar // Chemosphere. 2017. № 169. P. 23–31. https://doi.org/10.1016/j.chemosphere.2016.11.044

  13. Bilbao-Sainz C., Chiou B.S., Williams T., Wood D., Du W.X., Sedej I., Ban Z., Rodov V., Poverenov E., Vinokur Y., McHugh T. Vitamin D-fortified chitosan films from mushroom waste // Carbohydr. Polym. 2017. № 1 (167). P. 97–104. https://doi.org/10.1016/j.carbpol.2017.03.010

  14. Mhamdi A., Van Breusegem F. Reactive oxygen species in plant development // Development. 2018. V. 9. № 145 (15): dev164376. DOI: PMID: 30093413https://doi.org/10.1242/dev.164376

  15. Ortíz-Castro R., Contreras-Cornejo H.A., Macías-Rodríguez L., López-Bucio J. The role of microbial signals in plant growth and development // Plant Signal Behav. 2009 V. 4. № 8. P. 701–712. https://doi.org/10.4161/psb.4.8.9047

  16. Glick B.R. Plant growth-promoting bacteria: mechanisms and applications // Scientifica (Cairo). 2012:963401. https://doi.org/10.6064/2012/963401

  17. Vejan P., Abdullah R., Khadiran T., Ismail S., Nasrulhaq Boyce A. Role of plant growth promoting Rhizobacteria in agricultural sustainability–A Review // Molecules. 2016. V. 21. № 5. P. 573. https://doi.org/10.3390/molecules21050573

  18. Yakhin O.I., Lubyanov A.A., Yakhin I.A., Brown P.H. Biostimulants in plant science: A Global perspective // Front Plant Sci. 2017. № 7. P. 2049. https://doi.org/10.3389/fpls.2016.02049

  19. Jalal B., McNally R.J., Elias J.A., Potluri S., Ramachandran V.S. Fake it till you make it! Contaminating Rubber Hands (“Multisensory Stimulation TherapyЭ) to treat obsessive–compulsive disorder // Front Hum. Neurosci. 2020. № 13. P. 414. https://doi.org/10.3389/fnhum.2019.00414

  20. Jacome Burbano M.S., Gilson E. The Power of stress: The Telo-hormesis hypothesis // Cells. 2021. V. 10. № 5. P. 1156. https://doi.org/10.3390/cells10051156

  21. Brown P., Saa S. Biostimulants in agriculture // Front Plant Sci. 2015. № 6. P. 671. https://doi.org/10.3389/fpls.2015.00671

  22. Rouphael Y., Colla G. Editorial: biostimulants in agriculture // Front Plant Sci. 2020 № 11. P. 40. https://doi.org/10.3389/fpls.2020.00040

  23. Nephali L., Piater L.A., Dubery I.A., Patterson V., Huyser J., Burgess K., Tugizimana F. Biostimulants for plant growth and mitigation of abiotic stresses: A Metabolomics perspective // Metabolites. 2020. V. 10. № 12. P. 505. https://doi.org/10.3390/metabo10120505

  24. Hasanuzzaman M., Parvin K., Bardhan K., Nahar K., Anee T.I., Masud A.A.C., Fotopoulos V. Biostimulants for the regulation of reactive oxygen species metabolism in plants under abiotic stress // Cells. 2021. V. 10. № 10. P. 2537. https://doi.org/10.3390/cells10102537

  25. Sun T., Zhang Y. MAP-kinase cascades in plant development and immune signaling // EMBO Rep. 2022. V. 23. № 2. e53817. https://doi.org/10.15252/embr.202153817

  26. Reinert J. Phytohormones // Dtsch. Med. Wochenschr. 1960. № 5 (85). P. 234–236. https://doi.org/10.1055/s-0029-1209728

  27. Zhao Y. Auxin biosynthesis and its role in plant development // Annu. Rev. Plant Biol. 2010. № 61. P. 49–64. https://doi.org/10.1146/annurev-arplant-042809-112308

  28. Korasick D.A., Enders T.A., Strader L.C. Auxin biosynthesis and storage forms // J. Exp. Bot. 2013. V. 64. № 9. P. 2541–2555. https://doi.org/10.1093/jxb/ert080

  29. Zi J., Mafu S., Peters R.J. To gibberellins and beyond! Surveying the evolution of (di)terpenoid metabolism // Annu. Rev. Plant Biol. 2014. V. 65. P. 259–286. https://doi.org/10.1146/annurev-arplant-050213-035705

  30. Dubois M., Van den Broeck L., Inzé D. The Pivotal role of ethylene in plant growth // Trends Plant Sci. 2018. V. 23. № 4. P. 311–323. https://doi.org/10.1016/j.tplants.2018.01.003

  31. Hönig M., Plíhalová L., Husičková A., Nisler J., Doležal K. Role of cytokinins in senescence, antioxidant defence and photosynthesis // Inter. J. Mol. Sci. 2018. V. 19. № 12. P. 4045. https://doi.org/10.3390/ijms19124045

  32. Qin H., Huang R. Auxin controlled by ethylene steers root development // Inter. J. Mol. Sci. 2018. V. 19. № 11. P. 3656. https://doi.org/10.3390/ijms19113656

  33. Skalický V., Kubeš M., Napier R., Novák O. Auxins and cytokinins–the role of subcellular organization on homeostasis // Inter. J. Mol. Sci. 2018. V. 19. № 10. P. 3115. https://doi.org/10.3390/ijms19103115

  34. Sharma A., Zheng B. Molecular responses during plant grafting and its regulation by auxins, cytokinins, and gibberellins // Biomolecules. 2019. V. 9. № 9. P. 397. https://doi.org/10.3390/biom9090397

  35. Bidon B., Kabbara S., Courdavault V., Glévarec G., Oudin A., Héricourt F., Carpin S., Spíchal L., Binder B.M., Cock J.M., Papon N. Cytokinin and ethylene cell signaling pathways from prokaryotes to eukaryotes // Cells. 2020. V. 9. № 11. P. 2526. https://doi.org/10.3390/cells9112526

  36. Emenecker R.J., Strader L.C. Auxin-abscisic acid interactions in plant growth and development // Biomolecules. 2020. V. 10. № 2. P. 281. https://doi.org/10.3390/biom10020281

  37. Martignago D., Siemiatkowska B., Lombardi A., Conti L. Abscisic acid and flowering regulation: Many targets, different places // Inter. J. Mol. Sci. 2020. V. 21. № 24. P. 9700. https://doi.org/10.3390/ijms21249700

  38. Terceros G.C., Resentini F., Cucinotta M., Manrique S., Colombo L., Mendes M.A. The Importance of cytokinins during reproductive development in Arabidopsis and Beyond // Inter. J. Mol. Sci. 2020. V. 21. № 21. P. 8161. https://doi.org/10.3390/ijms21218161

  39. Ludwig-Müller J. Auxins in the right space and time regulate pea fruit development // J. Exp. Bot. 2022. V. 73. № 12. P. 3831–3835. https://doi.org/10.1093/jxb/erac237

  40. Betsuyaku S., Sawa S., Yamada M. The Function of the CLE peptides in plant development and plant–microbe interactions // Arabidopsis Book. 2011. № 9. e0149. https://doi.org/10.1199/tab.0149

  41. Штарк O.Ю., Шишова М.Ф., Повыдыш М.Н., Авдеева Г.С., Жуков В.А., Тихонович И.А. Стриголактоны – регуляторы симбиотрофии растений и микроорганизмов // Физиология растений. 2018. Т. 65. № 2. С. 83–100. https://doi.org/10.7868/S001533031802001X

  42. Aliche E.B., Screpanti C., De Mesmaeker A., Munnik T., Bouwmeester H.J. Science and application of strigolactones // New Phytol. 2020. V. 227. № 4. P. 1001–1011. https://doi.org/10.1111/nph.16489

  43. Janda T., Szalai G., Pál M. Salicylic acid signalling in plants // Inter. J. Mol. Sci. 2020. V. 21. № 7. P. 2655. https://doi.org/10.3390/ijms21072655

  44. Nolan T.M., Vukašinović N., Liu D., Russinova E., Yin Y. Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses // Plant Cell. 2020. V. 32. № 2. P. 295–318. https://doi.org/10.1105/tpc.19.00335

  45. Li M., Yu G., Cao C., Liu P. Metabolism, signaling, and transport of jasmonates // Plant Commun. 2021. V. 2. № 5. P. 100231. https://doi.org/10.1016/j.xplc.2021.100231

  46. Yu X.J., Sun J., Zheng J.Y., Sun Y.Q., Wang Z. Metabolomics analysis reveals 6–benzylaminopurine as a stimulator for improving lipid and DHA accumulation of Aurantiochytriumsp // J. Chem. Technol. Biotechnol. 2016. V. 91. № 4. P. 1199–1207. https://doi.org/10.1002/jctb.4869

  47. Xu F., Fan Y., Miao F., Hu G.R., Sun J., Yang G., Li F.L. Naphthylacetic acid and tea polyphenol application promote biomass and lipid production of nervonic acid–producing microalgae // Front Plant Sci. 2018. № 9. P. 506. https://doi.org/10.3389/fpls.2018.00506

  48. Hu C., Zhao H., Shi J., Li J., Nie X., Yang G. Effects of 2,4-dichlorophenoxyacetic acid on cucumber fruit development and metabolism // Inter. J. Mol. Sci. 2019. V. 20. № 5. P. 1126. https://doi.org/10.3390/ijms20051126

  49. Kaźmierczak A., Kunikowska A., Doniak M., Kornaś A. Mechanism of kinetin-induced death of Vicia faba ssp. minor root cortex cells // Sci. Rep. 2021. V. 11. № 1. P. 23746. https://doi.org/10.1038/s41598-021-03103-3

  50. Liu Z., Wang Y., Pu W., Zhu H., Liang J., Wu J., Hong L., Guan P., Hu J. 4-CPA (4-chlorophenoxyacetic acid) induces the formation and development of defective “Fenghou” (Vitis vinifera × V. labrusca) grape seeds // Biomolecules. 2021. V. 11. № 4. P. 515. https://doi.org/10.3390/biom11040515

  51. Шерстнева О.Н., Сурова Л.М., Синицына Ю.В., Агеева М.Н., Середнева Я.В., Воденеев В.А., Сухов В.С. Влияние фитогормонов и их аналогов на прорастание семян и морфометрические показатели проростков // Совр. пробл. науки и образ. 2015. № 6. С. 604.

  52. Kuznetsova O., Vlasenko E. Effect of natural and synthetic phytohormones on growth and development of higher basidiomycetes // Biotechnol. Acta. 2020. T. 13. № 5. C. 19–31.

  53. Erb M., Kliebenstein D.J. Plant secondary metabolites as defenses, regulators, and primary metabolites: The Blurred functional trichotomy // Plant Physiol. 2020. V. 184. № 1. P. 39–52. https://doi.org/10.1104/pp.20.00433

  54. Hoang B.X., Shaw D.G., Levine S., Hoang C., Pham P. New approach in asthma treatment using excitatory modulator // Phytother Res. 2007. V. 21. № 6. P. 554–557. https://doi.org/10.1002/ptr.2107

  55. Lee J., Jung J., Son S.H., Kim H.B., Noh Y.H., Min S.R., Park K.H., Kim D.S., Park S.U., Lee H.S., Kim C.Y., Kim H.S., Lee H.K., Kim H. Profiling of the major phenolic compounds and their biosynthesis genes in Sophora flavescens Aiton // Sci. World J. 2018. № 1. P. 6218430. https://doi.org/10.1155/2018/6218430

  56. Brown D.E., Rashotte A.M., Murphy A.S., Normanly J., Tague B.W., Peer W.A., Taiz L., Muday G.K. Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis // Plant Physiol. 2001. V. 126. № 2. P. 524–535. https://doi.org/10.1104/pp.126.2.524

  57. Rasouli H., Farzaei M.H., Mansouri K., Mohammadzadeh S., Khodarahmi R. Plant cell cancer: May natural phenolic compounds prevent onset and development of plant cell malignancy? A Literature review // Molecules. 2016. V. 21. № 9. P. 1104. https://doi.org/10.3390/molecules21091104

  58. Malinovsky F.G., Thomsen M.F., Nintemann S.J., Jagd L.M., Bourgine B., Burow M., Kliebenstein D.J. An evolutionarily young defense metabolite influences the root growth of plants via the ancient TOR signaling pathway // Elife. 2017. № 6. e29353. https://doi.org/10.7554/eLife.29353

  59. Salehin M., Li B., Tang M., Katz E., Song L., Ecker J.R., Kliebenstein D.J., Estelle M. Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels // Nat. Commun. 2019. V. 10. № 1. P. 4021. https://doi.org/10.1038/s41467-019-12002-1

  60. Kliebenstein D.J., Lambrix V.M., Reichelt M., Gershenzon J., Mitchell-Olds T. Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis // Plant Cell. 2001. V. 13. № 3. P. 681–693. https://doi.org/10.1105/tpc.13.3.681

  61. Atwell S., Huang Y.S., Vilhjálmsson B.J., Willems G., Horton M., Li Y., Meng D., Platt A., Tarone A.M., Hu T.T., Jiang R., Muliyati N.W., Zhang X., Amer M.A., Baxter I., Brachi B., Chory J., Dean C., Debieu M., de Meaux J., Ecker J.R., Faure N., Kniskern J.M., Jones J.D., Michael T., Nemri A., Roux F., Salt D.E., Tang C., Todesco M., Traw M.B., Weigel D., Marjoram P., Borevitz J.O., Bergelson J., Nordborg M. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines // Nature. 2010. V. 465 (7298). P. 627–631. https://doi.org/10.1038/nature08800

  62. Kemen A.C., Honkanen S., Melton R.E., Findlay K.C., Mugford S.T., Hayashi K., Haralampidis K., Rosser S.J., Osbourn A. Investigation of triterpene synthesis and regulation in oats reveals a role for β-amyrin in determining root epidermal cell patterning // Proc. Nat. Acad. Sci. USA. 2014. V. 111. № 23. P. 8679–8684. https://doi.org/10.1073/pnas.1401553111

  63. Verma V., Ravindran P., Kumar P.P. Plant hormone-mediated regulation of stress responses // BMC Plant Biol. 2016. № 14. P. 86. https://doi.org/10.1186/s12870-016-0771-y

  64. Ullah A., Manghwar H., Shaban M., Khan A.H., Akbar A., Ali U., Ali E., Fahad S. Phytohormones enhanced drought tolerance in plants: a coping strategy // Environ. Sci. Pollut. Res. Int. 2018. V. 25. № 33. P. 33103–33118. https://doi.org/10.1007/s11356-018-3364

  65. Ciura J., Kruk J. Phytohormones as targets for improving plant productivity and stress tolerance // J. Plant Physiol. 2018. № 229. P. 32–40. https://doi.org/10.1016/j.jplph.2018.06.013

  66. Kopittke P.M. Role of phytohormones in aluminium rhizotoxicity // Plant Cell Environ. 2016. V. 39. № 10. P. 2319–2328. https://doi.org/10.1111/pce.12786

  67. Collum T.D., Culver J.N. The impact of phytohormones on virus infection and disease // Curr. Opin. Virol. 2016. № 17. P. 25–31. https://doi.org/10.1016/j.coviro.2015.11.003

  68. Ling T.F., Xuan W., Fan Y.R., Sun Y.G., Xu S., Huang B.K., Huang S.R., Shen W.B. The effect of exogenous glucose, fructose and NO donor sodium nitroprusside (SNP) on rice seed germination under salt stress // Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao. 2005. V. 31. № 2. P. 205–212.

  69. Yuan K., Wysocka-Diller J. Phytohormone signalling pathways interact with sugars during seed germination and seedling development // J. Exp. Bot. 2006. V. 57. № 12. P. 3359–3367. https://doi.org/10.1093/jxb/erl096

  70. Zhu G., Ye N., Zhang J. Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis // Plant Cell Physiol. 2009. V. 50. № 3. P. 644–651. https://doi.org/10.1093/pcp/pcp022

  71. Zhao Y., Yang K.J., Li Z.T., Zhao C.J., Xu J.Y., Hu X., Shi X.X., Ma L.F. Alleviation of salt stress during maize seed germination by presoaking with exogenous sugar // Ying Yong Sheng Tai Xue Bao. 2015. V. 26. № 9. P. 2735–2742.

  72. Sami F., Yusuf M., Faizan M., Faraz A., Hayat S. Role of sugars under abiotic stress // Plant Physiol. Biochem. 2016. V. 109. P. 54–61. https://doi.org/10.1016/j.plaphy.2016.09.005

  73. To J.P., Reiter W.D., Gibson S.I. Mobilization of seed storage lipid by Arabidopsis seedlings is retarded in the presence of exogenous sugars // BMC Plant Biol. 2002. V. 2. P. 4. https://doi.org/10.1186/1471-2229-2-4

  74. Li R., He J., Xie H., Wang W., Bose S.K., Sun Y., Hu J., Yin H. Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.) // Inter. J. Biol. Macromol. 2019. V. 126. P. 91–100. https://doi.org/10.1016/j.ijbiomac.2018.12.118

  75. Lopez-Moya F., Escudero N., Zavala-Gonzalez E.A., Esteve-Bruna D., Blázquez M.A., Alabadí D., Lopez-Llorca L.V. Induction of auxin biosynthesis and WOX5 repression mediate changes in root development in Arabidopsis exposed to chitosan // Sci. Rep. 2017. V. 7. № 1. P. 16813. https://doi.org/10.1038/s41598-017-16874-5

  76. Sanchez S.E., Cagnola J.I., Crepy M., Yanovsky M.J., Casal J.J. Balancing forces in the photoperiodic control of flowering // Photochem. Photobiol. Sci. 2011. V. 10. № 4. P. 451–460. https://doi.org/10.1039/c0pp00252f

  77. Орлов Б.Н., Авзалов Р.Х., Гущин П.Я., Чурмасов А.В., Казаков А.В. Биоритмы и электромагнитные колебания. М.: Капитал Принт, 2011. 320 с.

  78. Chew Y.H., Wilczek A.M., Williams M., Welch S.M., Schmitt J., Halliday K.J. An augmented Arabidopsis phenology model reveals seasonal temperature control of flowering time // New Phytol. 2012. V. 194. № 3. P. 654–665. https://doi.org/10.1111/j.1469-8137.2012.04069.x

  79. Maffei M.E. Magnetic field effects on plant growth, development, and evolution // Front Plant Sci. 2014. V. 5. P. 445. https://doi.org/10.3389/fpls.2014.00445

  80. Kong S.G., Okajima K. Diverse photoreceptors and light responses in plants // J. Plant Res. 2016. V. 129. № 2. P. 111–114. https://doi.org/10.1007/s10265-016-0792-5

  81. Carvalho R.F., Campos M.L., Azevedo R.A. The role of phytochrome in stress tolerance // J. Integr. Plant Biol. 2011. V. 53. № 12. P. 920–929. https://doi.org/10.1111/j.1744-7909.2011.01081.x

  82. Kreslavski V.D., Kosobryukhov A.A., Schmitt F.J., Semenova G.A., Shirshikova G.N., Khudyakova A.Y., Allakhverdiev S.I. Photochemical activity and the structure of chloroplasts in Arabidopsis thaliana L. mutants deficient in phytochrome A and B // Protoplasma. 2017. V. 254. № 3. P. 1283–1293. https://doi.org/10.1007/s00709-016-1020-9

  83. Inagaki N., Kinoshita K., Kagawa T., Tanaka A., Ueno O., Shimada H., Takano M. Phytochrome B mediates the regulation of chlorophyll biosynthesis through transcriptional regulation of ChlH and GUN4 in rice seedlings // PLoS One. 2015.V. 10. № 8. e0135408. https://doi.org/10.1371/journal.pone.0135408

  84. Kami C., Lorrain S., Hornitschek P., Fankhauser C. Light-regulated plant growth and development // Curr. Top. Dev. Biol. 2010. № 91. P. 29–66. https://doi.org/10.1016/S0070-2153(10)91002-8

  85. Zhang H., Lin C., Gu L. Light regulation of alternative pre–mRNA splicing in plants // Photochem. Photobiol. 2017. V. 93. № 1. P. 159–165. https://doi.org/10.1111/php.12680

  86. Xu C., Zhang Y., Yu Y., Li Y., Wei S. Suppression of Arabidopsis flowering by near-null magnetic field is mediated by auxin // Bioelectromagnetics. 2018.V. 39. № 1. P. 15–24. https://doi.org/10.1002/bem.22086

  87. Morales A., Yin X., Harbinson J., Driever S.M., Molenaar J., Kramer D.M., Struik P.C. In Silico analysis of the regulation of the photosynthetic electron transport chain in C-3 plants // Plant Physiol. 2018. V. 176. № 2. P. 1247–1261. https://doi.org/10.1104/pp.17.00779

  88. Wei H., Kong D., Yang J., Wang H. Light regulation of stomatal development and patterning: shifting the paradigm from Arabidopsis to grasses // Plant Commun. 2020. V. 1(2). P. 100030. https://doi.org/10.1016/j.xplc.2020.100030

  89. Xiang S., Wu S., Jing Y., Chen L., Yu D. Phytochrome B regulates jasmonic acid-mediated defense response against Botrytis cinerea in Arabidopsis // Plant Divers. 2021. V. 44. № 1. P. 109–115. https://doi.org/10.1016/j.pld.2021.01.007

  90. Ковальова О.В. Вплив електромагнітних полів і випромінювань на біооб'єкти (літературний огляд) // Актуальні питання біології, екології та хімії. 2020. Т. 1. № 1. С. 64–85.

  91. Ikeda S., Ukai K., Murase H., Fukuda H. Effect of magnetic field for the circadian oscillation in plant root // IFAC Proceed. V. 2013. V. 46. № 4. P. 209–210.

  92. Pazur A., Rassadina V. Transient effect of weak electromagnetic fields on calcium ion concentration in Arabidopsis thaliana // BMC Plant Biol. 2009. № 9 P. 47. https://doi.org/10.1186/1471-2229-9-47

  93. Tafforeau M., Verdus M.C., Norris V., White G.J., Cole M., Demarty M., Thellier M., Ripoll C. Plant sensitivity to low intensity 105 GHz electromagnetic radiation // Bioelectromagnetics. 2004. V. 25. № 6. P. 403–407. https://doi.org/10.1002/bem.10205

  94. Agliassa C., Narayana R., Bertea C.M., Rodgers C.T., Maffei M.E. Reduction of the geomagnetic field delays Arabidopsis thaliana flowering time through downregulation of flowering-related genes // Bioelectromagnetics. 2018. V. 39. № 5. P. 361–374. https://doi.org/10.1002/bem.22123

  95. Синицына Ю.В., Середнева Я.В., Кальясова Е.А., Веселов А.П. Влияние комбинированного действия низкочастотного переменного магнитного поля и гипертермии на уровень гидропероксидов и ростовые реакции растений гороха // Изв. Уфим. НЦ РАН. 2018. № 3–5. С. 30–35.

  96. Половинкина Е.О., Кальясова Е.А., Синицына Ю.В., Веселов А.П. Изменение уровня перекисного окисления липидов и активности компонентов антиоксидантного комплекса в хлоропластах гороха при воздействии слабых импульсных магнитных полей // Физиология растений. 2011. Т. 58. № 6. С. 930–934.

  97. Galindo F.G., Vernier P.T., Dejmek P., Vicente A., Gundersen M.A. Pulsed electric field reduces the permeability of potato cell wall // Bioelectromagnetics. 2008. V. 29. № 4. P. 296–301. https://doi.org/10.1002/bem.20394

  98. Ding J., Johnson J., Chu Y. F., Feng H. Enhancement of γ-aminobutyric acid, avenanthramides, and other health-promoting metabolites in germinating oats (Avena sativa L.) treated with and without power ultrasound // Food Chem. 2019. V. 283. P. 239–247. https://doi.org/10.1016/j.foodchem.2018.12.136

  99. Miano A.C., Sabadoti V.D., Augusto P.E.D. combining ionizing irradiation and ultrasound technologies: effect on beans hydration and germination // J. Food Sci. 2019. V. 84. № 11. P. 3179–3185.

  100. Bao G., Zhou Q., Li S, Ashraf U., Huang S., Miao A., Cheng Z., Wan X., Zheng Y. Transcriptome Analysis revealed the mechanisms involved in ultrasonic seed treatment–induced aluminum tolerance in peanut // Front Plant Sci. 2022. № 12. P. 807021. https://doi.org/10.3389/fpls.2021.807021

  101. Okada K., Kudo N., Hassan M.A., Kondo T., Yamamoto K. Threshold curves obtained under various gaseous conditions for free radical generation by burst ultrasound – Effects of dissolved gas, microbubbles and gas transport from the air // Ultras. Sonochem. 2009. V. 16. № 4. P. 512–518. https://doi.org/10.1016/j.ultsonch.2008.11.010

  102. Gebicka L., Gebicki J.L. The effect of ultrasound on heme enzymes in aqueous solution // J. Enzyme Inhib. 1997. V. 12. № 2. P. 133–141. https://doi.org/10.3109/14756369709035814

  103. Maresca D., Lakshmanan A., Abedi M., Bar-Zion A., Farhadi A., Lu G.J., Szablowski J.O., Wu D., Yoo S., Shapiro M.G. Biomolecular ultrasound and sonogenetics // Annu. Rev. Chem. Biomol. Eng. 2018. V. 9. P. 229–252.

  104. Ogawa R., Watanabe A., Morii A. Ultrasound up-regulates expression of heme oxygenase-1 gene in endothelial cells // J. Med. Ultrason. 2015. V. 42. № 4. P.467–475. https://doi.org/10.1007/s10396-015-0635-3

  105. Hidvégi N., Gulyás A., Dobránszki J. Ultrasound, as a hypomethylating agent, remodels DNA methylation and alters mRNA transcription in winter wheat (Triticum aestivum L.) seedlings // Physiol. Plant. 2022. V. 174. № 5. e13777.

  106. Jiang Z., Yao K., Yuan X., Mu Z., Gao Z., Hou J., Jiang L. Effects of ultrasound treatment on physico-chemical, functional properties and antioxidant activity of whey protein isolate in the presence of calcium lactate // J. Sci. Food Agric. 2018. V. 98. № 4. P. 1522–1529. https://doi.org/10.1002/jsfa.8623

  107. Trakselyte-Rupsiene K., Juodeikiene G., Cernauskas D., Bartkiene E., Klupsaite D., Zadeike D., Bendoraitiene J., Damasius J., Ignatavicius J., Sikorskaite-Gudziuniene S. Integration of ultrasound into the development of plant-based protein hydrolysate and its bio-stimulatory effect for growth of wheat grain seedlings in vivo // Plants (Basel). 2021. V. 10. № 7. P. 1319. https://doi.org/10.3390/plants10071319

  108. Armada E., Portela G., Roldan A., Azcon R. Combined use of beneficial soil microorganism and agrowaste residue to cope with plant water limitation under semiarid conditions // Geoderma. 2014. № 232. P. 640–648. https://doi.org/10.1016/j.geoderma.2014.06.025

  109. Cantabella D., Dolcet-Sanjuan R., Teixidó N. Using plant growth-promoting microorganisms (PGPMs) to improve plant development under in vitro culture conditions // Planta. 2022. V. 255. № 6. P. 117. https://doi.org/10.1007/s00425-022-03897-0

  110. Nakkeeran S., Fernando W.G.D., Siddiqui Z.A. Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and dideases // PGPR: Biocontrol and Biofertilization / Ed. Siddiqui Z.A. The Netherlands, Dordrecht: Springer, 2005. P. 257–296.

  111. Porcel R., Zamarreño Á.M., García-Mina J.M., Aroca R. Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants // BMC Plant Biol. 2014. № 14. P. 36. https://doi.org/10.1186/1471-2229-14-36

  112. Flores-Félix J.D., Silva L.R., Rivera L.P., Marcos-García M., García-Fraile P., Martínez-Molina E., Mateos P.F., Velázquez E., Andrade P., Rivas R. Plants probiotics as a tool to produce highly functional fruits: the case of phyllobacterium and vitamin C in strawberries // PLoS One. 2015. V. 10. № 4. e0122281. https://doi.org/10.1371/journal.pone.0122281

  113. Ryu C.M., Farag M.A., Hu C.H., Reddy M.S., Wei H.X., Paré P.W., Kloepper J.W. Bacterial volatiles promote growth in Arabidopsis // Proc. Nat. Acad. Sci. USA. 2003. V. 100. № 8. P. 4927–4932. https://doi.org/10.1073/pnas.0730845100

  114. Kanchiswamy C.N., Malnoy M., Maffei M.E. Chemical diversity of microbial volatiles and their potential for plant growth and productivity // Front Plant Sci. 2015. № 6. P. 151. https://doi.org/10.3389/fpls.2015.00151

  115. Kumar H., Bajpai V.K., Dubey R.C. Wilt disease management and enhancement of growth and yield of Cajanus cajan (L.) var. Manak by bacterial combinations amended with chemical fertilizer // Crop Protect. 2010. № 29. P. 591–598. https://doi.org/10.1016/j.cropro.2010.01.002

  116. Choudhary D.K., Sharma K.P., Gaur R.K. Biotechnological perspectives of microbes in agro-ecosystems // Biotechnol. Lett. 2011. V. 33. № 10. P. 1905–1910. https://doi.org/10.1007/s10529-011-0662-0

  117. Ahmad M., Zahir Z.A., Khalid M. Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields // Plant Physiol. Biochem. 2013. № 63. P. 170–176. https://doi.org/10.1016/j.plaphy.2012.11.024

  118. Brown P., Saa S. Biostimulants in agriculture // Front Plant Sci. 2015. № 6. P. 671. https://doi.org/10.3389/fpls.2015.00671

  119. Яхин О.И., Лубянов А.А., Яхин И.Ф. Физиологическая активность биостимуляторов и эффективность их применения // Агрохимия. 2016. № 6. С. 72–94.

  120. Basak A. Biostimulators-definitions, classification and legislation // Monographs Series: Biostimulators in Modern Agriculture. General Aspects. Warsaw: Wieś Jutra, 2008. C. 7–17.

  121. Bulgari R., Cocetta G., Trivellini A., Vernieri P., Ferrante A. Biostimulants and crop responses: a review // Biol. Agric. Hortic. 2015. № 31. P. 1–17. https://doi.org/10.1080/01448765.2014.964649

  122. Белопухов С.Л., Дмитревская И.И., Гришина Е.А. Физико-химические свойства органо-минерального комплекса из растительных остатков льняной костры // Агрохимия. 2016. № 6. С. 20–28.

  123. Титова В.И., Варламова Л.Д., Гейгер Е.Ю., Короленко И.Д. Оценка фитотоксичности порошка яичной скорлупы по ее влиянию на посевные качества семян различных сельскохозяйственных культур / Вестн. Рязан. ГАТУ им. П.А. Костычева. 2017. № 1. С. 47–53.

  124. González-González M.F., Ocampo-Alvarez H., Santacruz-Ruvalcaba F., Sánchez-Hernández C.V., Casarrubias-Castillo K., Becerril-Espinosa A., Castañeda-Nava J.J., Hernández-Herrera R.M. Physiological, ecological, and biochemical implications in tomato plants of two plant biostimulants: Arbuscular mycorrhizal fungi and seaweed extract // Front Plant Sci. 2020. № 11. P. 999. https://doi.org/10.3389/fpls.2020.00999

  125. Torres N., Yu R., Kurtural S.K. Inoculation with mycorrhizal fungi and irrigation management shape the bacterial and fungal communities and networks in vineyard soils // Microorganisms. 2021. V. 9. № 6. P. 1273. https://doi.org/10.3390/microorganisms9061273

  126. Saia S., Corrado G., Vitaglione P., Colla G., Bonini P., Giordano M., Stasio E.D., Raimondi G., Sacchi R., Rouphael Y. An Endophytic fungi-based biostimulant modulates volatile and non-volatile secondary metabolites and yield of greenhouse Basil (Ocimum basilicum L.) through variable mechanisms dependent on salinity stress level // Pathogens. 2021. V. 10. № 7. P. 797. https://doi.org/10.3390/pathogens10070797

  127. Chen H., Mao L., Zhao N., Xia C., Liu J., Kubicek C.P., Wu W., Xu S., Zhang C. Verification of TRI3 acetylation of trichodermol to trichodermin in the plant endophyte Trichoderma taxi // Front Microbiol. 2021. № 12. P. 731425. https://doi.org/10.3389/fmicb.2021.731425

  128. Тарчевский И.А. Сигнальные системы клеток растений. М.: Наука, 2002. 294 с.

  129. Namdeo A.G. Plant cell elicitation for production of secondary metabolites: a review // Pharmacogn. Rev. 2007. V. 1. № 1. P. 69–79.

  130. Лукаткин А.С., Семенова А.С., Лукаткин А.А. Влияние регуляторов роста на проявление токсического действия гербицидов на растения // Агрохимия. 2016. № 1. С. 73–95.

  131. Dias M.I., Sousa M.J., Alves R.C., Ferreira I.C.F.R. Exploring plant tissue culture to improve the production of phenolic compounds: a review // Ind. Crop. Prod. 2016. V. 82. P. 9–22.

  132. Luziatelli F., Ficca A.G., Colla G., Baldassarre Švecová E., Ruzzi M. Foliar application of vegetal-derived bioactive compounds stimulates the growth of beneficial bacteria and enhances microbiome biodiversity in lettuce // Front Plant Sci. 2019. № 10. P. 60. https://doi.org/10.3389/fpls.2019.00060

  133. Moretti B., Bertora C., Grignani C., Lerda C., Celi L., Sacco D. Conversion from mineral fertilisation to MSW compost use: Nitrogen fertiliser value in continuous maize and test on crop rotation // Sci. Total. Environ. 2020. V. 705. P. 135308. https://doi.org/10.1016/j.scitotenv.2019.135308

  134. Lim S.L., Wu T.Y., Lim P.N., Shak K.P. The use of vermicompost in organic farming: overview, effects on soil and economics // J. Sci. Food Agric. 2015. V. 95. № 6. P. 1143–1156. https://doi.org/10.1002/jsfa.6849

  135. Liu Z., Rong Q., Zhou W., Liang G. Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil // PLoS One. 2017. V. 12. № 3. e0172767. https://doi.org/10.1371/journal.pone.0172767

  136. Hou M.M., Lü F.L., Zhang H.T., Zhou Y.T., Lu G.Y., Ayaz M., Li Q.H., Yang X.Y., Zhang S.L. Effect of organic manure substitution of synthetic nitrogen on crop yield and N2O emission in the winter wheat-summer maize rotation system // Huan Jing Ke Xue. 2018. V. 39. № 1. P. 321–330. https://doi.org/10.13227/j.hjkx.201707010

  137. Murrell E.G., Cullen E.M. Conventional and organic soil fertility management practices affect corn plant nutrition and Ostrinia nubilalis (Lepidoptera: Crambidae) larval performance // Environ. Entomol. 2014. Oct. 43 (5). P. 1264–1274. https://doi.org/10.1603/EN14008

  138. Yang S., Xiao Y.N., Xu J. Organic fertilizer application increases the soil respiration and net ecosystem carbon dioxide absorption of paddy fields under water-saving irrigation // Environ. Sci. Pollut. Res. Int. 2018. V. 25. № 10. P. 9958–9968. https://doi.org/10.1007/s11356-018-1285-y

  139. Ugena L., Hýlová A., Podlešáková K., Humplík J.F., Doležal K., Diego N., Spíchal L. Characterization of biostimulant mode of action using novel multi-trait high-throughput screening of Arabidopsis germination and rosette growth // Front Plant Sci. 2018. № 9. P. 1327. https://doi.org/10.3389/fpls.2018.01327

  140. Masondo N.A., Kulkarni M.G., Finnie J.F., Van Staden J. Influence of biostimulants-seed-priming on Ceratotheca triloba germination and seedling growth under low temperatures, low osmotic potential and salinity stress // Ecotoxicol. Environ. Saf. 2018. № 147. P. 43–48. https://doi.org/10.1016/j.ecoenv.2017.08.017

  141. Campobenedetto C., Grange E., Mannino G., van Arkel J., Beekwilder J., Karlova R., Garabello C., Contartese V., Bertea C.M. A Biostimulant seed treatment improved heat stress tolerance during cucumber seed germination by acting on the antioxidant system and glyoxylate cycle // Front Plant Sci. 2020. № 11. P. 836. https://doi.org/10.3389/fpls.2020.00836

  142. Yook J.S., Kim M., Pichiah P.B., Jung S.J., Chae S.W., Cha Y.S. The Antioxidant properties and inhibitory effects on HepG2 cells of chicory cultivated using three different kinds of fertilizers in the absence and presence of pesticides // Molecules. 2015. V. 20. № 7. P. 12061–12075. https://doi.org/10.3390/molecules200712061

  143. Pereira C., Dias M.I., Petropoulos S.A., Plexida S., Chrysargyris A., Tzortzakis N., Calhelha R.C., Ivanov M., Stojković D., Soković M., Barros L., Ferreira I. The Effects of biostimulants, biofertilizers and water-stress on nutritional value and chemical composition of two spinach genotypes (Spinacia oleracea L.) // Molecules. 2019. V. 24. № 24. P. 4494. https://doi.org/10.3390/molecules24244494

  144. Monda H., Cozzolino V., Vinci G., Spaccini R., Piccolo A. Molecular characteristics of water-extractable organic matter from different composted biomasses and their effects on seed germination and early growth of maize // Sci. Total Environ. 2017. V. 590–591. P. 40–49. https://doi.org/10.1016/j.scitotenv.2017.03.026

  145. Iwamura H., Nishimura K., Fujita T. Quantitative structure-activity relationships of insecticides and plant growth regulators: comparative studies toward understanding the molecular mechanism of action // Environ. Health Perspect. 1985. № 61. P. 307–320. https://doi.org/10.1289/ehp.8561307

  146. Moffett A.S., Bender K.W., Huber S.C., Shukla D. Allosteric control of a plant receptor kinase through S-glutathionylation // Biophys. J. 2017. V. 113. № 11. P. 2354–2363. https://doi.org/10.1016/j.bpj.2017.08.059

  147. Shumilina J., Kusnetsova A., Tsarev A., Janse van Rensburg H.C., Medvedev S., Demidchik V., Van den Ende W., Frolov A. Glycation of plant proteins: Regulatory roles and interplay with sugar signalling? // Inter. J. Mol. Sci. 2019. V. 20. № 9. P. 2366. https://doi.org/10.3390/ijms20092366

  148. Zhang H., Liu Y., Wen F., Yao D., Wang L., Guo J., Ni L., Zhang A., Tan M., Jiang M. A Novel rice C2H2-type zinc finger protein, ZFP36, is a key player involved in abscisic acid-induced antioxidant defence and oxidative stress tolerance in rice // J. Exp. Bot. 2014. V. 65. № 20. P. 5795–5809. https://doi.org/10.1093/jxb/eru313

  149. Baldoni E., Genga A., Cominelli E. Plant MYB transcription factors: Their role in drought response mechanisms // Inter. J. Mol. Sci. 2015. V. 6. № 7. P. 15811–15851. https://doi.org/10.3390/ijms160715811

  150. Vodeneev V., Akinchits E., Sukhov V. Variation potential in higher plants: Mechanisms of generation and propagation // Plant Signal Behav. 2015. V. 10. № 9. e1057365.

  151. Sarwar R., Li L., Yu J., Zhang Y., Geng R., Meng Q., Zhu K., Tan X.L. Functional characterization of the cystine-rich-receptor-like kinases (CRKs) and their expression response to Sclerotinia sclerotiorum and abiotic stresses in Brassica napus // Inter. J. Mol. Sci. 2022. V. 24. № 1. P. 511. https://doi.org/10.3390/ijms24010511

  152. Hasanuzzaman M., Alhaithloul H.A.S., Parvin K., Bhuyan M.H.M.B., Tanveer M., Mohsin S.M., Nahar K., Soliman M.H., Mahmud J.A., Fujita M. Polyamine action under metal/metalloid stress: Regulation of biosynthesis, metabolism, and molecular interactions // Inter. J. Mol. Sci. 2019. V. 20. № 13. P. 3215. https://doi.org/10.3390/ijms20133215

  153. Zhang X., Ervin E.H. Cytokinin-containing seaweed and humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance // Crop Sci. 2004. V. 44. № 5. P. 1737–1745.

  154. Kiyosaki T., Matsumoto I., Asakura T., Funaki J., Kuroda M., Misaka T., Arai S., Abe K. Gliadain, a gibberellin-inducible cysteine proteinase occurring in germinating seeds of wheat, Triticum aestivum L., specifically digests gliadin and is regulated by intrinsic cystatins // FEBS J. 2007. V. 274. № 8. P. 1908–1917. https://doi.org/10.1111/j.1742-4658.2007.05749.x

  155. Wang L., Ruan Y.L. Regulation of cell division and expansion by sugar and auxin signaling // Front Plant Sci. 2013. № 4. P. 163. https://doi.org/10.3389/fpls.2013.00163

  156. Vieira B.C., Bicalho E.M., Munné-Bosch S., Garcia Q.S. Abscisic acid regulates seed germination of Vellozia species in response to temperature // Plant Biol (Stuttg). 2017. V. 19. № 2. P. 211–216. https://doi.org/10.1111/plb.12515

  157. Shuai H., Meng Y., Luo X., Chen F., Zhou W., Dai Y., Qi Y., Du J., Yang F., Liu J., Yang W., Shu K. Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio // Sci. Rep. 2017. V. 7. № 1. P. 12620. https://doi.org/10.1038/s41598-017-13093-w

  158. Erbs G., Newman M.A. The role of lipopolysaccharide and peptidoglycan, two glycosylated bacterial microbe–associated molecular patterns (MAMPs), in plant innate immunity // Mol. Plant Pathol. 2012. V. 13. № 1. P. 95–104. https://doi.org/10.1111/j.1364-3703.2011.00730.x

  159. Tanaka K., Nguyen C.T., Liang Y., Cao Y., Stacey G. Role of  LysM receptors in chitin-triggered plant innate immunity // Plant Signal Behav. 2013. V. 8. № 1. e22598. https://doi.org/10.4161/psb.22598

  160. Trdá L., Boutrot F., Claverie J., Brulé D., Dorey S., Poinssot B. Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline // Front Plant Sci. 2015. № 6. P. 219. https://doi.org/10.3389/fpls.2015.00219

  161. Martinez-Corral R., Liu J., Prindle A., Süel G.M., Garcia-Ojalvo J. Metabolic basis of brain-like electrical signalling in bacterial communities // Philos. Trans R. Soc. Lond. B. Biol. Sci. 2019. V. 374. № 1774. P. 20180382. https://doi.org/10.1098/rstb.2018.0382

  162. Nohales M.A., Kay S.A. Molecular mechanisms at the core of the plant circadian oscillator // Nat. Struct. Mol. Biol. 2016. V. 23. № 12. P. 1061–1069. https://doi.org/10.1038/nsmb.3327

  163. Andres J., Blomeier T., Zurbriggen M.D. Synthetic switches and regulatory circuits in plants // Plant Physiol. 2019. V. 179. № 3. P. 862–884. https://doi.org/10.1104/pp.18.01362

  164. Du S., Chen L., Ge L., Huang W. A Novel loop: Mutual regulation between epigenetic modification and the circadian clock // Front Plant Sci. 2019. № 10. P. 22. https://doi.org/10.3389/fpls.2019.00022

  165. McClung C.R. The Plant circadian oscillator // Biology (Basel). 2019. V. 8. № 1. P. 14. https://doi.org/10.3390/biology8010014

  166. Webb A.A.R., Seki M., Satake A., Caldana C. Continuous dynamic adjustment of the plant circadian oscillator // Nat. Commun. 2019. V. 10. № 1. P. 550. https://doi.org/10.1038/s41467-019-08398-5

  167. Perianez-Rodriguez J., Rodriguez M., Marconi M., Bustillo-Avendaño E., Wachsman G., Sanchez-Corrionero A., De Gernier H., Cabrera J., Perez-Garcia P., Gude I., Saez A., Serrano-Ron L., Beeckman T., Benfey P.N., Rodríguez-Patón A., Del Pozo J.C., Wabnik K., Moreno-Risueno M.A. An auxin-regulable oscillatory circuit drives the root clock in Arabidopsis // Sci. Adv. 2021. V. 7. № 1. eabd4722. https://doi.org/10.1126/sciadv.abd4722

  168. Stephani M., Picchianti L., Gajic A., Beveridge R., Skarwan E., Sanchez de Medina Hernandez V., Mohseni A., Clavel M., Zeng Y., Naumann C., Matuszkiewicz M., Turco E., Loefke C., Li B., Dürnberger G., Schutzbier M., Chen H.T., Abdrakhmanov A., Savova A., Chia K.S., Djamei A., Schaffner I., Abel S., Jiang L., Mechtler K., Ikeda F., Martens S., Clausen T., Dagdas Y. A cross-kingdom conserved ER-phagy receptor maintains endoplasmic reticulum homeostasis during stress // Elife. 2020. № 9. e58396. https://doi.org/10.7554/eLife.58396

Дополнительные материалы отсутствуют.