Биология моря, 2023, T. 49, № 3, стр. 166-174

Биохимические и ультраструктурные изменения микроводоросли Tisochrysis lutea El M. Bendif & I. Probert, 2013 (Haptophyta) на разных стадиях роста в накопительной культуре

Т. Ю. Орлова 1*, Ж. В. Маркина 1, А. А. Карпенко 1, В. И. Харламенко 1, А. А. Зинов 1

1 Национальный научный центр морской биологии им. А.В. Жирмунского (ННЦМБ) ДВО РАН
690041 Владивосток, Россия

* E-mail: torlova06@mail.ru

Поступила в редакцию 28.06.2022
После доработки 12.12.2022
Принята к публикации 26.01.2023

Аннотация

Исследованы рост, биохимический состав и ультраструктура микроводоросли Tisochrysis lutea в накопительной культуре в течение 30-суточного эксперимента. Численность клеток T. lutea возрастала на протяжении всего опыта. В экспоненциальной и стационарной фазах роста отмечено увеличение размеров и количества липидных капель, содержащих жирные кислоты и каротиноиды, в том числе фукоксантин. Установлено, что суммарное содержание каротиноидов достигает максимума на стационарной фазе и снижается на фазе отмирания. В период стационарной фазы в клетках наблюдается экзоцитоз с выделением липидных капель. Настоящее исследование демонстрирует потенциал клона T. lutea MBRU_Tiso-08 из Биоресурсной коллекции “Морской биобанк” ННЦМБ ДВО РАН в качестве сырья для отечественной биотехнологии, направленной на совместное извлечение каротиноидов (включая фукоксантин) и липидов (включая докозагексаеновую и эйкозапентаеновую жирные кислоты).

Ключевые слова: Tisochrysis lutea, микроводоросли, экзоцитоз, биотехнология, каротиноиды, фукоксантин, жирные кислоты, докозагексаеновая кислота, эйкозапентаеновая кислота

Список литературы

  1. Ефимова К.В., Орлова Т.Ю., Брыков Вл.А. Молекулярно-генетическая идентификация нового штамма Tisochrysis lutea (Bendif et Probert, 2013) из акватории российских прибрежных вод Японского моря // Микробиология. 2016. Т. 85. № 3. С. 309–316.

  2. Маркина Ж.В. Проточная цитометрия как метод исследования морских одноклеточных водорослей: развитие, проблемы, перспективы // Биол. моря. 2019. Т. 45. № 5. С. 291–298.

  3. Орлова Т.Ю., Сабуцкая М.А., Маркина Ж.В. Изменение ультраструктуры морских микроводорослей из разных отделов в накопительной культуре // Биол. моря. 2019. Т. 45. № 3. С. 188–196.

  4. Соловченко А.Е. Физиологическая роль накопления нейтральных липидов эукариотическими микроводорослями при стрессах // Физиология растений. 2012. Т. 59. № 2. С. 192–192.

  5. Alkhamis Y., Qin J.G. Comparison of pigment and proximate compositions of Tisochrysis lutea in phototrophic and mixotrophic cultures // J. Appl. Phycol. 2016. V. 28. P. 35–42.

  6. Araújo R., Vázquez Calderón F., Sánchez López J. et al. Current status of the algae production industry in Europe: an emerging sector of the blue bioeconomy // Frontiers Mar. Sci. 2021. V. 7. № 626389.

  7. Bendif E.M., Probert I., Schroeder D.C., Vargas C. On the description of Tisochrysis lutea gen. nov. sp. nov. and Isochrysis nuda sp. nov. in the Isochrysidales, and the transfer of Dicrateria to the Prymnesiales (Haptophyta) // J. Appl. Phycol. 2013. V. 25. P. 1763–1776.

  8. Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification // Can. J. Biochem. Physiol. 1959. V. 37. P. 911–917.

  9. Carreau J.P., Dubacq J.P. Adaptation of macro-scale me-thod to the micro-scale for fatty acid methyl transesterification of biological lipid extracts // J. Chromatogr. 1978. V. 151. P. 384–390.

  10. Custodio L., Soares F., Pereira H. et al. Fatty acid composition and biological activities of Isochrysis galbana T-ISO, Tetraselmis sp. and Scenedesmus sp.: possible application in the pharmaceutical and functional food industries // J. Appl. Phycol. 2014. V. 26 P. 151–161.

  11. Da Costa F., Le G.F., Quéré C. Effects of growth phase and nitrogen limitation on biochemical composition of two strains of Tisochrysis lutea // Algal Res. 2017. V. 27. P. 177–189.

  12. Del Pilar Sánchez-Saavedra M., Maeda-Martínez A.N., Acosta-Galindo S. Effect of different light spectra on the growth and biochemical composition of Tisochrysis lutea // J. Appl. Phycol. 2016. V. 28. P. 839–847.

  13. De Vera C.R., Díaz Crespín G., Hernández Daranas A. et al. Marine microalgae: promising source for new bioactive compounds // Mar. Drugs. 2018. V. 16. № 9.

  14. Gnouma A., Sadovskaya I., Souissi A. et al. Changes in fatty acids profile, monosaccharide profile and protein content during batch growth of Isochrysis galbana (T. iso) // Aquacult. Res. 2017. V. 48. P. 4982–4990.

  15. Guillard R.R.L., Ryther J.H. Studies of marine planktonic diatoms. 1. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. // Can. J. Microbiol. 1962. V. 8. P. 229–239.

  16. Hu H., Ma L.L., Shen X.F. et al. Effect of cultivation mode on the production of docosahexaenoic acid by Tisochrysis lutea // AMB Expr. 2018. V. 8. P. 1–12.

  17. Jeffrey S.W., Humphrey G.F. New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton // Biochem. Physiol. Planz. 1975. V. 167. P. 191–194.

  18. Koller M., Muhr A., Braunegg G. Microalgae as versatile cellular factories for valued products // Algal Res. 2014. V. 6. P. 52–63.

  19. Lin Y.-H., Chang F.-L., Tsao C.-Y., Leu J.-Y. Influence of growth phase and nutrient source on fatty acid composition of Isochrysis galbana CCMP 1324 in a batch photoreactor // Biochem. Engineer. 2007. V. 37 P. 166–176.

  20. Liu J., Sommerfeld M., Hu Q. Screening and characterization of Isochrysis strains and optimization of culture conditions for docosahexaenoic acid production // Appl. Microbiol. Biotechnol. 2013. V. 97. P. 4785–4798.

  21. Luft J.H.J. Improvements in epoxy resin embedding methods // Biophys. Biochem. Cytol. 1961. V. 9. P. 409–414.

  22. Mai T.D., Lee-Chang K.J., Jameson I.D. et al. Fatty Acid Profiles of Selected Microalgae Used as Live Feeds for Shrimp Postlarvae in Vietnam // Aquac. J. 2021. № 1. P. 26–38. https://doi.org/10.3390/aquacj1010004

  23. Mohibbullah M., Haque M.N., Sohag et al. A systematic review on marine algae-derived fucoxanthin: an update of pharmacological insights // Mar. Drugs. 2022. V. 20. № 5.

  24. Pajot A., Hao Huynh G., Picot L. et al. Fucoxanthin from algae to human, an extraordinary bioresource: insights and advances in up and downstream processes // Mar. Drugs. 2022. V. 20. P. 222.

  25. Perez-Garcia O., Escalante F.M.E., de-Bashan L.E., Bashan Y. Heterotrophic cultures of microalgae: metabolism and potential products // Water Res. 2011. V. 45. P. 11–36.

  26. Pilát Z., Bernatová S., Ježek J. et al. Raman microspectroscopy of algal lipid bodies: β-carotene quantification // J. Appl. Phycol. 2012. V. 24 P. 541–546.

  27. Premaratne M., Liyanaarachchi V.C., Nimarshana P.H.V. et al. Co-production of fucoxanthin, docosahexaenoic acid (DHA) and bioethanol from the marine microalga Tisochrysis lutea // Biochem. Engineer. J. 2021. V. 176. № 108160.

  28. Rasdi N.W., Qin J.G. Effect of N:P ratio on growth and chemical composition of Nannochloropsis oculata and Tisochrysis lutea // J. Appl. Phycol. 2015. V. 27. P. 2221–2230.

  29. Reynolds E. The use of lead citrate at high pH as an electron opaquestain in electron microscopy // J. Cell Biol. 1963. V. 17. P. 208–212.

  30. Tschirner N., Schenderlein M., Brose K. et al. Raman excitation profiles of β-carotene—novel insights into the nature of the ν1-band // Phys. Stat. Sol. (B). 2008. V. 245. P. 2225–2228.

  31. Vignesh G., Barik D. Energy From toxic organic waste for heat and power generation, chapter 6: Toxic waste from biodiesel production industries and its utilization. Sawston: Woodhead Publishing. 2019. P. 69–82.

  32. Zarekarizi A., Hoffmann L., Burritt D. Approaches for the sustainable production of fucoxanthin, a xanthophyll with potential health benefits // J. Appl. Phycol. 2019. V. 31. P. 281–299.

  33. Zullaikah S., Utomo A.T., Yasmin M. et al. Ecofuel conversion technology of inedible lipid feedstocks to renewable fuel // Advances in eco-fuels for a sustainable environment woodhead publishing series in energy. Amsterdam: Elsevier Ltd. 2019. P. 237–276.

Дополнительные материалы отсутствуют.