Цитология, 2023, T. 65, № 3, стр. 217-231

Новое в геномике центромер: уроки первой Т2Т-сборки хромосом человека

Л. И. Уральский 12*, И. А. Александров 234, Ф. Д. Рябов 5, А. Л. Лапидус 3, Е. И. Рогаев 26

1 Научно-технологический университет “Сириус”, Научный центр генетики и наук о жизни
354340 пос. гор. типа Сириус, Россия

2 Институт общей генетики им. Н.И. Вавилова Российской академии наук
119991 Москва, Россия

3 Центр биоинформатики и алгоритмической биотехнологии СПбГУ, Санкт-Петербургский государственный университет
199034 Санкт-Петербург, Россия

4 Федеральный исследовательский центр “Фундаментальные основы биотехнологии” Российской академии наук
119071 Москва, Россия

5 Национальный исследовательский университет “Высшая школа экономики”
109028 Москва, Россия

6 Медицинская школа Чан Массачусетского университета, Департамент психиатрии
01655 Шрусбери, США

* E-mail: uralskiy.li@talantiuspeh.ru

Поступила в редакцию 01.12.2022
После доработки 07.12.2022
Принята к публикации 08.12.2022

Аннотация

Технологии секвенирования с длинными прочтениями, появившиеся недавно, позволили впервые прочесть полную, без пробелов, последовательность генома человека. Результатом явилась первая Т2Т (от теломеры до теломеры) геномная сборка, опубликованная одноименным международным консорциумом ученых в 2022 г. Наиболее значительным вкладом новой сборки явились центромерные области, состоящие из высокоповторяющейся сателлитной ДНК. В этом обзоре мы кратко перечислим основные достижения Т2Т-консорциума, связанные с центромерами, и более подробно рассмотрим неожиданные находки цитогенетического масштаба, которые принес анализ впервые собранных центромер человека, такие как “расщепленные” центромеры хромосом 3 и 4, мега-инверсия в активном массиве центромеры 1-ой хромосомы, гаплотипические эпиаллели в центромере Х-хромосомы и макроповторы, найденные в нескольких центромерах.

Ключевые слова: альфа-сателлит, центромера, ПВП-гаплотипы, инверсии, макроповторы, центромерные эпиаллели, Т2Т-консорциум

Список литературы

  1. Alexandrov I., Kazakov A., Tumeneva I., Shepelev V., Yurov Y. 2001. Alpha-satellite DNA of primates: old and new families. Chromosoma. V. 110. P. 253. https://doi.org/10.1007/s004120100146

  2. Altemose N., Logsdon G.A., Bzikadze A.V., Sidhwani P., Langley S.A., Caldas G.V., Hoyt S.J., Uralsky L., Ryabov F.D., Shew C.J., Sauria M.E.G., Borchers M., Gershman A., Mikheenko A., Shepelev V.A. et al. 2022a. Complete genomic and epigenetic maps of human centromeres. Science. V. 376. NO. 6588. https://doi.org/10.1126/science.abl4178

  3. Altemose N., Maslan A., Smith O.K., Sundararajan K., Brown R.R., Mishra R., Detweiler A.M., Neff N., Miga K.H., Straight A.F., Streets A. 2022b. DiMeLo-seq: a long-read, single-molecule method for mapping protein–DNA interactions genome wide. Nat Methods. V. 19. P. 711. https://doi.org/10.1038/s41592-022-01475-6

  4. Beecham G.W., Hamilton K., Naj A.C., Martin E.R., Huentelman M., Myers A.J., Corneveaux J.J., Hardy J., Vonsattel J.-P., Younkin S.G., Bennett D.A., De Jager P.L., Larson E.B., Crane P.K., Kamboh M.I. et al. 2014. Genome-wide association Meta-analysis of neuropathologic features of Alzheimer’s disease and related dementias. PLoS Genet. V. 10, e1004606. https://doi.org/10.1371/journal.pgen.1004606

  5. Berglund A., Stochholm K., Gravholt C.H. 2020. The epidemiology of sex chromosome abnormalities. Am. J. Med. Genet. V. 184. P. 202. https://doi.org/10.1002/ajmg.c.31805

  6. Bishop D.V.M., Jacobs P.A., Lachlan K., Wellesley D., Barnicoat A., Boyd P.A., Fryer A., Middlemiss P., Smithson S., Metcalfe K., Shears D., Leggett V., Nation K., Scerif G. 2011. Autism, language and communication in children with sex chromosome trisomies. Archives of Disease in Childhood. V. 96. P. 954. https://doi.org/10.1136/adc.2009.179747

  7. Bojesen A., Gravholt C.H. 2011. Morbidity and mortality in Klinefelter syndrome (47,XXY): Morbidity and mortality in KS. Acta Paediatrica. V. 100. P. 807. https://doi.org/10.1111/j.1651-2227.2011.02274.x

  8. Bzikadze A.V., Pevzner P.A. 2020. Automated assembly of centromeres from ultra-long error-prone reads. Nat. Biotechnol. V. 38. P. 1309. https://doi.org/10.1038/s41587-020-0582-4

  9. Carlson M., Brutlag D. 1977. Cloning and characterization of a complex satellite DNA from drosophila melanogaster. Cell. V. 11. P. 371. https://doi.org/10.1016/0092-8674(77)90054-X

  10. Cimini D., Howell B., Maddox P., Khodjakov A., Degrassi F., Salmon E.D. 2001. Merotelic Kinetochore Orientation Is a Major Mechanism of Aneuploidy in Mitotic Mammalian Tissue Cells. Journal of Cell Biology. V. 153. P. 517. https://doi.org/10.1083/jcb.153.3.517

  11. Dumont M., Gamba R., Gestraud P., Klaasen S., Worrall J.T., De Vries S.G., Boudreau V., Salinas-Luypaert C., Maddox P.S., Lens S.M., Kops G.J., McClelland S.E., Miga K.H., Fachinetti D. 2020. Human chromosome-specific aneuploidy is influenced by DNA-dependent centromeric features. EMBO J. V. 39. https://doi.org/10.15252/embj.2019102924

  12. Durfy S.J., Willard H.F. 1989. Patterns of intra- and interarray sequence variation in alpha satellite from the human X chromosome: Evidence for short-range homogenization of tandemly repeated DNA sequences. Genomics. V. 5. P. 810. https://doi.org/10.1016/0888-7543(89)90123-7

  13. Earnshaw W., Bordwell B., Marino C., Rothfield N. 1986. Three human chromosomal autoantigens are recognized by sera from patients with anti-centromere antibodies. J. Clin. Invest. V. 77. P. 426. https://doi.org/10.1172/JCI112320

  14. Earnshaw W.C., Cooke C.A. 1989. Proteins of the inner and outer centromere of mitotic chromosomes. Genome. V. 31. P. 541. https://doi.org/10.1139/g89-103

  15. Earnshaw W.C., Rothfield N. 1985. Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma. V. 91. P. 313. https://doi.org/10.1007/BF00328227

  16. Fung H.-C., Scholz S., Matarin M., Simón-Sánchez J., Hernandez D., Britton A., Gibbs J.R., Langefeld C., Stiegert M.L., Schymick J., Okun M.S., Mandel R.J., Fernandez H.H., Foote K.D., Rodríguez R.L. et al. 2006. Genome-wide genotyping in Parkinson’s disease and neurologically normal controls: first stage analysis and public release of data. The Lancet Neurology. V. 5. P. 911. https://doi.org/10.1016/S1474-4422(06)70578-6

  17. Ge Y., Wagner M.J., Siciliano M., Wells D.E. 1992. Sequence, higher order repeat structure, and long-range organization of alpha satellite DNA specific to human chromosome 8. Genomics. V. 13. P. 585. https://doi.org/10.1016/0888-7543(92)90128-F

  18. Gershman A., Sauria M.E.G., Guitart X., Vollger M.R., Hook P.W., Hoyt S.J., Jain M., Shumate A., Razaghi R., Koren S., Altemose N., Caldas G.V., Logsdon G.A., Rhie A., Eichler E.E. et al. 2022. Epigenetic patterns in a complete human genome. Science. V. 376. NO. 6588. https://doi.org/10.1126/science.abj5089

  19. Ghareghani M., Porubskỳ D., Sanders A.D., Meiers S., Eichler E.E., Korbel J.O., Marschall T. 2018. Strand-seq enables reliable separation of long reads by chromosome via expectation maximization. Bioinformatics. V. 34. P. i115. https://doi.org/10.1093/bioinformatics/bty290

  20. Herold C., Hooli B.V., Mullin K., Liu T., Roehr J.T., Mattheisen M., Parrado A.R., Bertram L., Lange C., Tanzi R.E. 2016. Family-based association analyses of imputed genotypes reveal genome-wide significant association of Alzheimer’s disease with OSBPL6, PTPRG, and PDCL3. Mol. Psychiatry. V. 21. P. 1608. https://doi.org/10.1038/mp.2015.218

  21. International Human Genome Sequencing Consortium. 2004. Finishing the euchromatic sequence of the human genome. Nature. V. 431. P. 931. https://doi.org/10.1038/nature03001

  22. International Human Genome Sequencing Consortium, Whitehead Institute for Biomedical Research, Center for Genome Research:, Lander E.S., Linton L.M., Birren B., Nusbaum C., Zody M.C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W., Funke R., Gage D. et al. 2001. Initial sequencing and analysis of the human genome. Nature. V. 409. P. 860. https://doi.org/10.1038/35057062

  23. Iourov I.Y., Vorsanova S.G., Yurov Y.B., Kutsev S.I. 2019. Ontogenetic and pathogenetic views on somatic chromosomal mosaicism. Genes. V. 10. P. 379. https://doi.org/10.3390/genes10050379

  24. Jain M., Koren S., Miga K.H., Quick J., Rand A.C., Sasani T.A., Tyson J.R., Beggs A.D., Dilthey A.T., Fiddes I.T., Malla S., Marriott H., Nieto T., O’Grady J., Olsen H.E. et al. 2018a. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. V. 36. P. 338. https://doi.org/10.1038/nbt.4060

  25. Jain M., Olsen H.E., Turner D.J., Stoddart D., Bulazel K.V., Paten B., Haussler D., Willard H.F., Akeson M., Miga K.H. 2018b. Linear assembly of a human centromere on the Y chromosome. Nat. Biotechnol. V. 36. P. 321. https://doi.org/10.1038/nbt.4109

  26. Jarvis E.D., Formenti G., Rhie A., Guarracino A., Yang C., Wood J., Tracey A., Thibaud-Nissen F., Vollger M.R., Porubsky D., Cheng H., Asri M., Logsdon G.A., Carnevali P., Chaisson M.J.P. et al. 2022. Semi-automated assembly of high-quality diploid human reference genomes. Nature. V. 611. P. 519. https://doi.org/10.1038/s41586-022-05325-5

  27. Kazakov A.E., Shepelev V.A., Tumeneva I.G., Alexandrov A.A., Yurov Y.B., Alexandrov I.A. 2003. Interspersed repeats are found predominantly in the “old” α satellite families. Genomics. V. 82. P. 619. https://doi.org/10.1016/S0888-7543(03)00182-4

  28. Langley S.A., Miga K.H., Karpen G.H., Langley C.H. 2019. Haplotypes spanning centromeric regions reveal persistence of large blocks of archaic DNA. eLife. V. 8. e42989. https://doi.org/10.7554/eLife.42989

  29. Lee I., Razaghi R., Gilpatrick T., Molnar M., Gershman A., Sadowski N., Sedlazeck F.J., Hansen K.D., Simpson J.T., Timp W. 2020. Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing. Nat. Methods. V. 17. P. 1191. https://doi.org/10.1038/s41592-020-01000-7

  30. Levine M.S., Holland A.J. 2018. The impact of mitotic errors on cell proliferation and tumorigenesis. Genes Dev. V. 32. P. 620. https://doi.org/10.1101/gad.314351.118

  31. Levy S., Sutton G., Ng P.C., Feuk L., Halpern A.L., Walenz B.P., Axelrod N., Huang J., Kirkness E.F., Denisov G., Lin Y., MacDonald J.R., Pang A.W.C., Shago M., Stockwell T.B. et al. 2007. The Diploid Genome Sequence of an Individual Human. PLoS Biol. V. 5. P. e254. https://doi.org/10.1371/journal.pbio.0050254

  32. Lieberman-Aiden E., van Berkum N.L., Williams L., Imakaev M., Ragoczy T., Telling A., Amit I., Lajoie B.R., Sabo P.J., Dorschner M.O., Sandstrom R., Bernstein B., Bender M.A., Groudine M., Gnirke A. et al. 2009. Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome. Science. V. 326. P. 289. https://doi.org/10.1126/science.1181369

  33. Logsdon G.A., Vollger M.R., Hsieh P., Mao Y., Liskovykh M.A., Koren S., Nurk S., Mercuri L., Dishuck P.C., Rhie A., de Lima L.G., Dvorkina T., Porubsky D., Harvey W.T., Mikheenko A. et al. 2021. The structure, function and evolution of a complete human chromosome 8. Nature. V. 593. P. 101. https://doi.org/10.1038/s41586-021-03420-7

  34. Mahtani M.M., Willard H.F. 1998. Physical and Genetic Mapping of the Human X Chromosome Centromere: Repression of Recombination. Genome Res. V. 8. P. 100. https://doi.org/10.1101/gr.8.2.100

  35. Manuelidis L. 1976. Repeating restriction fragments of human DNA. Nucleic Acids Research. V. 3. P. 3063. https://doi.org/10.1093/nar/3.11.3063

  36. Manuelidis L., Wu J.C. 1978. Homology between human and simian repeated DNA. Nature. V. 276. P. 92. https://doi.org/10.1038/276092a0

  37. Miga K.H. 2019. Centromeric satellite DNAs: Hidden sequence variation in the human population. Genes. V. 10. P. 352. https://doi.org/10.3390/genes10050352

  38. Miga K.H., Alexandrov I.A. 2021. Variation and Evolution of Human Centromeres: A Field Guide and Perspective. Annu. Rev. Genet. V. 55. P. 583. https://doi.org/10.1146/annurev-genet-071719-020519

  39. Miga K.H., Eisenhart C., Kent W.J. 2015. Utilizing mapping targets of sequences underrepresented in the reference assembly to reduce false positive alignments. Nucleic Acids Res. V. 43. P. e133. https://doi.org/10.1093/nar/gkv671

  40. Miga K.H., Koren S., Rhie A., Vollger M.R., Gershman A., Bzikadze A., Brooks S., Howe E., Porubsky D., Logsdon G.A., Schneider V.A., Potapova T., Wood J., Chow W., Armstrong J. et al. 2020. Telomere-to-telomere assembly of a complete human X chromosome. Nature. V. 585. P. 79. https://doi.org/10.1038/s41586-020-2547-7

  41. Miga K.H., Newton Y., Jain M., Altemose N., Willard H.F., Kent W.J. 2014. Centromere reference models for human chromosomes X and Y satellite arrays. Genome Res. V. 24. P. 697. https://doi.org/10.1101/gr.159624.113

  42. Miga K.H., Wang T. 2021. The Need for a Human Pangenome Reference Sequence. Annu. Rev. Genom. Hum. Genet. V. 22. P. 81. https://doi.org/10.1146/annurev-genom-120120-081921

  43. Mikheenko A., Bzikadze A.V., Gurevich A., Miga K.H., Pevzner P.A. 2020. TandemTools: mapping long reads and assessing/improving assembly quality in extra-long tandem repeats. Bioinformatics. V. 36. P. i75. https://doi.org/10.1093/bioinformatics/btaa440

  44. Nechemia-Arbely Y., Fachinetti D., Miga K.H., Sekulic N., Soni G.V., Kim D.H., Wong A.K., Lee A.Y., Nguyen K., Dekker C., Ren B., Black B.E., Cleveland D.W. 2017. Human centromeric CENP-A chromatin is a homotypic, octameric nucleosome at all cell cycle points. Journal of Cell Biology. V. 216. P. 607. https://doi.org/10.1083/jcb.201608083

  45. Nechemia-Arbely Y., Miga K.H., Shoshani O., Aslanian A., McMahon M.A., Lee A.Y., Fachinetti D., Yates J.R., Ren B., Cleveland D.W. 2019. DNA replication acts as an error correction mechanism to maintain centromere identity by restricting CENP-A to centromeres. Nat. Cell Biol. V. 21. P. 743. https://doi.org/10.1038/s41556-019-0331-4

  46. Nurk S., Koren S., Rhie A., Rautiainen M., Bzikadze A.V., Mikheenko A., Vollger M.R., Altemose N., Uralsky L., Gershman A., Aganezov S., Hoyt S.J., Diekhans M., Logsdon G.A., Alonge M. et al. 2022. The complete sequence of a human genome. Science. V. 376. P. 44. https://doi.org/10.1126/science.abj6987

  47. Nurk S., Walenz B.P., Rhie A., Vollger M.R., Logsdon G.A., Grothe R., Miga K.H., Eichler E.E., Phillippy A.M., Koren S. 2020. HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Res. V. 30. P. 1291. https://doi.org/10.1101/gr.263566.120

  48. Osoegawa K., Vessere G.M., Li Shu C., Hoskins R.A., Abad J.P., de Pablos B., Villasante A., de Jong P.J. 2007. BAC clones generated from sheared DNA. Genomics. V. 89. P. 291. https://doi.org/10.1016/j.ygeno.2006.10.002

  49. Palmer J.D., Nugent J.M., Herbon L.A. 1987. Unusual structure of geranium chloroplast DNA: A triple-sized inverted repeat, extensive gene duplications, multiple inversions, and two repeat families. Proc. Natl. Acad. Sci. U.S.A. V. 84. P. 769. https://doi.org/10.1073/pnas.84.3.769

  50. Rautiainen M., Nurk S., Walenz B.P., Logsdon G.A., Porubsky D., Rhie A., Eichler E.E., Phillippy A.M., Koren S. 2022. Verkko: telomere-to-telomere assembly of diploid chromosomes (preprint). Bioinformatics. https://doi.org/10.1101/2022.06.24.497523

  51. Rhie A., Nurk S., Cechova M., Hoyt S.J., Taylor D.J., Altemose N., Hook P.W., Koren S., Rautiainen M., Alexandrov I.A., Allen J., Asri M., Bzikadze A.V., Chen N.-C., Chin C.-S. et al. 2022. The complete sequence of a human Y chromosome (preprint). Genomics. https://doi.org/10.1101/2022.12.01.518724

  52. Rudd M.K., Willard H.F. 2004. Analysis of the centromeric regions of the human genome assembly. Trends in Genetics. V. 20. P. 529. https://doi.org/10.1016/j.tig.2004.08.008

  53. Rudd M.K., Wray G.A., Willard H.F. 2006. The evolutionary dynamics of α-satellite. Genome Res. V. 16. P. 88. https://doi.org/10.1101/gr.3810906

  54. Schueler M.G., Higgins A.W., Rudd M.K., Gustashaw K., Willard H.F. 2001. Genomic and Genetic Definition of a Functional Human Centromere. Science. V. 294. P. 109. https://doi.org/10.1126/science.1065042

  55. She X., Horvath J.E., Jiang Z., Liu G., Furey T.S., Christ L., Clark R., Graves T., Gulden C.L., Alkan C., Bailey J.A., Sahinalp C., Rocchi M., Haussler D., Wilson R.K. et al. 2004. The structure and evolution of centromeric transition regions within the human genome. Nature. V. 430. P. 857. https://doi.org/10.1038/nature02806

  56. Shepelev V.A., Alexandrov A.A., Yurov Y.B., Alexandrov I.A. 2009. The Evolutionary Origin of Man Can Be Traced in the Layers of Defunct Ancestral Alpha Satellites Flanking the Active Centromeres of Human Chromosomes. PLoS Genet. V. 5, e1000641. https://doi.org/10.1371/journal.pgen.1000641

  57. Simpson J.T., Workman R.E., Zuzarte P.C., David M., Dursi L.J., Timp W. 2017. Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods. V. 14. P. 407. https://doi.org/10.1038/nmeth.4184

  58. Singer M.F. 1982. Highly Repeated Sequences in Mammalian Genomes. International Review of Cytology. V. 76. P. 67. https://doi.org/10.1016/S0074-7696(08)61789-1

  59. Skakkebæk A., Gravholt C.H., Rasmussen P.M., Bojesen A., Jensen J.S., Fedder J., Laurberg P., Hertz J.M., Østergaard J.R., Pedersen A.D., Wallentin M. 2014. Neuroanatomical correlates of Klinefelter syndrome studied in relation to the neuropsychological profile. NeuroImage: Clinical. V. 4. P. 1. https://doi.org/10.1016/j.nicl.2013.10.013

  60. Steinberg K.M., Schneider V.A., Graves-Lindsay T.A., Fulton R.S., Agarwala R., Huddleston J., Shiryev S.A., Morgulis A., Surti U., Warren W.C., Church D.M., Eichler E.E., Wilson R.K. 2014. Single haplotype assembly of the human genome from a hydatidiform mole. Genome Res. V. 24. P. 2066. https://doi.org/10.1101/gr.180893.114

  61. Sullivan B.A., Wolff D.J., Schwartz S. 1994. Analysis of centromeric activity in Robertsonian translocations: implications for a functional acrocentric hierarchy. Chromosoma. V. 103. P. 459. https://doi.org/10.1007/BF00337384

  62. Suzuki Y., Myers E.W., Morishita S. 2020. Rapid and ongoing evolution of repetitive sequence structures in human centromeres. Sci. Adv. V. 6. eabd9230. https://doi.org/10.1126/sciadv.abd9230

  63. Tartaglia N.R., Howell S., Sutherland A., Wilson R., Wilson L. 2010. A review of trisomy X (47,XXX). Orphanet J. Rare Dis. V. 5. P. 8. https://doi.org/10.1186/1750-1172-5-8

  64. Thakur J., Henikoff S. 2018. Unexpected conformational variations of the human centromeric chromatin complex. Genes Dev. V. 32. P. 20. https://doi.org/10.1101/gad.307736.117

  65. Uralsky L.I., Shepelev V.A., Alexandrov A.A., Yurov Y.B., Rogaev E.I., Alexandrov I.A. 2019. Classification and monomer-by-monomer annotation dataset of suprachromosomal family 1 alpha satellite higher-order repeats in hg38 human genome assembly. Data in Brief. V. 24. P. 103708. https://doi.org/10.1016/j.dib.2019.103708

  66. Vázquez-Diez C., FitzHarris G. 2018. Causes and consequences of chromosome segregation error in preimplantation embryos. Reproduction. V. 155. P. R63. https://doi.org/10.1530/REP-17-0569

  67. Venter J.C., Adams M.D., Myers E.W., Li P.W., Mural R.J., Sutton G.G., Smith H.O., Yandell M., Evans C.A., Holt R.A., Gocayne J.D., Amanatides P., Ballew R.M., Huson D.H., Wortman J.R. et al. 2001. The sequence of the human genome. Science. V. 291. P. 1304. https://doi.org/10.1126/science.1058040

  68. Vorsanova S.G., Kolotii A.D., Kurinnaia O.S., Kravets V.S., Demidova I.A., Soloviev I.V., Yurov Y.B., Iourov I.Y. 2021. Turner’s syndrome mosaicism in girls with neurodevelopmental disorders: a cohort study and hypothesis. Mol. Cytogenet. V. 14. P. 9. https://doi.org/10.1186/s13039-021-00529-2

  69. Vorsanova S.G., Demidova I.A., Kolotii A.D., Kurinnaia O.S., Kravets V.S., Soloviev I.V., Yurov Y.B., Iourov I.Y. 2022. Klinefelter syndrome mosaicism in boys with neurodevelopmental disorders: a cohort study and an extension of the hypothesis. Mol. Cytogenet. V. 15. P. 8. https://doi.org/10.1186/s13039-022-00588-z

  70. Warburton P.E., Willard H.F. 1990. Genomic analysis of sequence variation in tandemly repeated DNA. Journal of Molecular Biology. V. 216. P. 3. https://doi.org/10.1016/S0022-2836(05)80056-7

  71. Warburton P.E., Willard H.F. 1995. Interhomologue sequence variation of alpha satellite DNA from human chromosome 17: Evidence for concerted evolution along haplotypic lineages. J. Mol. Evol. V. 41. https://doi.org/10.1007/BF00173182

  72. Wenger A.M., Peluso P., Rowell W.J., Chang P.-C., Hall R.J., Concepcion G.T., Ebler J., Fungtammasan A., Kolesnikov A., Olson N.D., Töpfer A., Alonge M., Mahmoud M., Qian Y., Chin C.-S. et al. 2019. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. V. 37. P. 1155. https://doi.org/10.1038/s41587-019-0217-9

  73. Wevrick R., Willard H.F. 1991. Physical map of the centromeric region of human chromosome 7: relationship between two distinct alpha satellite arrays. Nucl. Acids Res. V. 19. P. 2295. https://doi.org/10.1093/nar/19.9.2295

  74. Wevrick R., Willard H.F. 1989. Long-range organization of tandem arrays of alpha satellite DNA at the centromeres of human chromosomes: high-frequency array-length polymorphism and meiotic stability. Proc. Natl. Acad. Sci. U.S.A. V. 86. P. 9394. https://doi.org/10.1073/pnas.86.23.9394

  75. Willard H.F. 1985. Chromosome-specific organization of human alpha satellite DNA. Am. J. Hum. Genet. V. 37. P. 524.

  76. Willard H.F., Waye J.S. 1987. Hierarchical order in chromosome-specific human alpha satellite DNA. Trends in Genetics. V. 3. P. 192. https://doi.org/10.1016/0168-9525(87)90232-0

Дополнительные материалы отсутствуют.