Доклады Российской академии наук. Математика, информатика, процессы управления, 2023, T. 512, № 1, стр. 10-17

ИНВАРИАНТНЫЕ ФОРМЫ ГЕОДЕЗИЧЕСКИХ, ПОТЕНЦИАЛЬНЫХ И ДИССИПАТИВНЫХ СИСТЕМ НА КАСАТЕЛЬНОМ РАССЛОЕНИИ КОНЕЧНОМЕРНОГО МНОГООБРАЗИЯ

М. В. Шамолин 1*

1 Московский государственный университет имени М.В. Ломоносова
Москва, Россия

* E-mail: shamolin@rambler.ru

Поступила в редакцию 12.04.2023
После доработки 27.04.2023
Принята к публикации 05.05.2023

Аннотация

Как известно [1–3], нахождение достаточного количества тензорных инвариантов (не только первых интегралов) позволяет точно проинтегрировать систему дифференциальных уравнений. Например, наличие инвариантной дифференциальной формы фазового объема позволяет уменьшить количество требуемых первых интегралов. Для консервативных систем этот факт естественен, но для систем, обладающих притягивающими или отталкивающими предельными множествами, не только некоторые первые интегралы, но и коэффициенты имеющихся инвариантных дифференциальных форм должны, вообще говоря, включать функции, обладающие существенно особыми точками (см. также [4–6]). В работе для рассматриваемого класса динамических систем предъявлены полные наборы инвариантных дифференциальных форм для однородных систем на касательных расслоениях к гладким конечномерным многообразиям.

Ключевые слова: динамическая система, диссипация, интегрируемость, тензорный инвариант

Список литературы

  1. Poincaré H. Calcul des probabilités, Gauthier-Villars, Paris, 1912. 340 pp.

  2. Колмогоров А.Н. О динамических системах с интегральным инвариантом на торе // Доклады АН СССР. 1953. Т. 93. № 5. С. 763–766.

  3. Козлов В.В. Тензорные инварианты и интегрирование дифференциальных уравнений // Успехи матем. наук. 2019. Т. 74. Вып. 1. С. 117–148.

  4. Шамолин М.В. Об интегрируемости в трансцендентных функциях // Успехи матем. наук. 1998. Т. 53. Вып. 3. С. 209–210.

  5. Шамолин М.В. Новые случаи интегрируемых систем с диссипацией на касательном расслоении четырехмерного многообразия // Доклады РАН. 2018. Т. 479. № 3. С. 270–276.

  6. Шамолин М.В. Тензорные инварианты геодезических, потенциальных и диссипативных систем на касательном расслоении двумерного многообразия // Доклады РАН. Математика, информатика, процессы управления, 2021. Т. 501. № 1. С. 89–94.

  7. Шамолин М.В. Новый случай интегрируемости в динамике многомерного твердого тела в неконсервативном поле при учете линейного демпфирования // Доклады РАН, 2014. Т. 457. № 5. С. 542–545.

  8. Козлов В.В. Рациональные интегралы квазиоднородных динамических систем // Прикл. матем. и механ. 2015. Т. 79. № 3. С. 307–316.

  9. Клейн Ф. Неевклидова геометрия. Пер. с нем. Изд. 4, испр., обновл. М.: URSS, 2017. 352 с.

  10. Вейль Г. Симметрия. М.: URSS, 2007.

  11. Козлов В.В. Интегрируемость и неинтегрируемость в гамильтоновой механике // Успехи матем. наук. 1983. Т. 38. Вып. 1. С. 3–67.

  12. Камке Э. Справочник по обыкновенным дифференциальным уравнениям. М.: Наука, 1976.

  13. Шабат Б.В. Введение в комплексный анализ. М.: Наука, 1987.

  14. Трофимов В.В., Шамолин М.В. Геометрические и динамические инварианты интегрируемых гамильтоновых и диссипативных систем // Фундам. и прикл. матем. 2010. Т. 16. Вып. 4. С. 3–229.

  15. Шамолин М.В. Новые случаи интегрируемых систем с диссипацией на касательном расслоении многомерного многообразия // Доклады РАН. 2018. Т. 482. № 5. С. 527–533.

  16. Шамолин М.В. Новые случаи интегрируемых систем нечетного порядка с диссипацией // Доклады РАН. Математика, информатика, процессы управления. 2020. Т. 491. № 1. С. 95–101.

  17. Трофимов В.В. Симплектические структуры на группах автоморфизмов симметрических пространств // Вестн. Моск. ун-та. Сер. 1. Математика. Механика. 1984. № 6. С. 31–33.

  18. Трофимов В.В., Фоменко А.Т. Методика построения гамильтоновых потоков на симметрических пространствах и интегрируемость некоторых гидродинамических систем // ДАН СССР. 1980. Т. 254. № 6. С. 1349–1353.

  19. Новиков С.П., Тайманов И.А. Современные геометрические структуры и поля. М.: МЦНМО, 2005.

  20. Тамура И. Топология слоений. М.: Мир, 1979.

Дополнительные материалы отсутствуют.

Инструменты

Доклады Российской академии наук. Математика, информатика, процессы управления