Доклады Российской академии наук. Математика, информатика, процессы управления, 2023, T. 513, № 1, стр. 57-65

ОБ ИНТЕГРАЛЬНОЙ СХОДИМОСТИ ЧИСЛЕННЫХ СХЕМ ПРИ РАСЧЕТЕ ГАЗОДИНАМИЧЕСКИХ УДАРНЫХ ВОЛН

В. В. Остапенко 1*, Е. И. Полунина 1, Н. А. Хандеева 1

1 Институт гидродинамики им. М.А. Лаврентьева Сибирского отделения Российской академии наук
Новосибирск, Россия

* E-mail: ostigil@mail.ru

Поступила в редакцию 28.04.2023
После доработки 11.08.2023
Принята к публикации 17.08.2023

Аннотация

Проведен сравнительный анализ точности численных схем RBM (Rusanov-Burstein-Mirin), CWA (Compact high order Weak Approximation) и A-WENO (Alternative Weighted Essentially Non-Oscillatory) при сквозном расчете газодинамических ударных волн, возникающих при численном моделировании задачи Коши с гладкими периодическими начальными данными. Показано, что при наличии ударных волн схемы RBM и CWA (при построении которых нелинейная коррекция потоков не используется) имеют более высокий порядок интегральной сходимости, что обеспечивает этим схемам существенно более высокую точность (по сравнению со схемой A-WENO) в областях влияния ударных волн, несмотря на заметные нефизические осцилляции на их фронтах. Это позволяет использовать схемы RBM и CWA в качестве базисных при построении комбинированных схем, которые монотонно локализуют фронты ударных волн и одновременно сохраняют повышенную точность в областях их влияния.

Ключевые слова: уравнения газовой динамики, ударные волны, разностные схемы, интегральная сходимость

Список литературы

  1. Годунов С.К. Разностный метод численного расчета разрывных решений уравнений гидродинамики // Мат. сб. 1959. Т. 47. № 3. С. 271–306.

  2. Van Leer B. Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method // J. Comput. Phys. 1979. V. 32. № 1. P. 101–136. https://doi.org/10.1016/0021-9991(79)90145-1

  3. Harten A. High resolution schemes for hyperbolic conservation laws // J. Comput. Phys. 1983. V. 49. P. 357–393. https://doi.org/10.1016/0021-9991(83)90136-5

  4. Jiang G.S., Shu C.W. Efficient implementation of weighted ENO schemes // J. Comput. Phys. 1996. V. 126. P. 202–228. https://doi.org/10.1006/jcph.1996.0130

  5. Cockburn B. An introduction to the discontinuous Galerkin method forconvection–dominated problems // Lect. Notes Math. 1998. V. 1697. P. 150–268. https://doi.org/10.1007/BFb0096353

  6. Karabasov S.A., Goloviznin V.M. Compact accurately boundary-adjusting high-resolution technique for fluid dynamics // J. Comput. Phys. 2009. V. 228. P. 7426–7451. https://doi.org/10.1016/j.jcp.2009.06.037

  7. Karni S., Kurganov A., Petrova, G. A smoothness indicator for adaptivealgorithms for hyperbolic systems // J. Comput. Phys. 2002. V. 178. P. 323–341. https://doi.org/10.1006/jcph.2002.7024

  8. Куликовский А.Г., Погорелов Н.В., Семенов А.Ю. Математические вопросы численного решения гиперболических систем уравнений. М.: Физматлит, 2001.

  9. LeVeque R.J. Finite volume methods for hyperbolic problems. Cambridge: Cambridge University Press, 2002. https://doi.org/10.1017/CBO9780511791253

  10. Toro E.F. Riemann solvers and numerical methods for fluid dynamics: A practical introduction. Berlin: Springer-Verlag, 2009. https://doi.org/10.1007/b79761

  11. Остапенко В.В. О сходимости разностных схем за фронтом нестационарной ударной волны // Ж. вычисл. матем. и матем. физ. 1997. Т. 37. № 10. С. 1201–1212.

  12. Casper J., Carpenter M.H. Computational consideration for the simulation of shock-induced sound // SIAM J. Sci. Comput. 1998. V. 19. N. 1. P. 813–828.

  13. Chu S., Kovyrkina O.A., Kurganov A., Ostapenko V.V. Experimental convergence rate study for three shock-capturing schemes and development of highly accurate combined schemes // Numer. Meth. Part. Diff. Eq. 2023. V. 5. P. 1–30. https://doi.org/10.1002/num.23053

  14. Ковыркина О.А., Остапенко В.В. О реальной точности разностных схем сквозного счета // Матем. моделир. 2013. Т. 25. № 9. С. 63–74. https://doi.org/10.1134/S2070048214020069

  15. Михайлов Н.А. О порядке сходимости разностных схем WENO за фронтом ударной волны // Матем. моделир. 2015. Т. 27. № 2. С. 129-138. https://doi.org/10.1134/S2070048215050075

  16. Ковыркина О.А., Остапенко В.В. О построении комбинированных разностных схем повышенной точности // Докл. АН. 2018. Т. 478. № 5. С. 517–522. https://doi.org/10.1134/S1064562418010246

  17. Зюзина Н.А., Ковыркина О.А., Остапенко В.В. Монотонная разностная схема, сохраняющая повышенную точность в областях влияния ударных волн // Докл. АН. 2018. Т. 482. № 6. С. 639–643. https://doi.org/10.1134/S1064562418060315

  18. Ладонкина М.Е., Неклюдова О.А., Остапенко В.В., Тишкин В.Ф. Комбинированная схема разрывного метода Галеркина, сохраняющая повышенную точность в областях влияния ударных волн // Докл. АН. 2019. Т. 489. № 2. С. 119–124. https://doi.org/10.1134/S106456241906005X

  19. Брагин М.Д., Рогов Б.В. О точности бикомпактных схем при расчете нестационарных ударных волн // Ж. вычисл. матем. и матем. физ. 2020. Т. 60. № 5. С. 884–899. https://doi.org/10.1134/S0965542520050061

  20. Ковыркина О.А., Курганов А. А., Остапенко В.В. Сравнительный анализ точности трех различных схем при сквозном расчете ударных волн // Матем. моделир. 2022. Т. 34. №10. С. 43–64. https://doi.org/10.20948/mm-2022-10-03

  21. Брагин М.Д., Ковыркина О.А., Ладонкина М.Е., Остапенко В.В., Тишкин В.Ф., Хандеева Н.А. Комбинированные численные схемы // Ж. вычисл. матем. и матем. физ. 2022. Т. 62. № 11. С. 1763–1803. https://doi.org/10.1134/S0965542522100025

  22. Русанов В.В. Разностные схемы третьего порядка точности для сквозного счета разрывных решений // Докл. АН СССР. 1968. Т. 180. № 6. С. 1303–1305.

  23. Burstein S.Z., Mirin A.A. Third order difference methods for hyperbolic equations // J. Comput. Phys. 1970. V. 5. N. 3. P. 547–571. https://doi.org/10.1016/0021-9991(70)90080-X

  24. Остапенко В.В. О построении разностных схем повышенной точности для сквозного расчета нестационарных ударных волн // Ж. вычисл. матем. и матем. физ. 2000. Т. 40. № 12. С. 1857–1874.

  25. Wang B.-S., Don W.S., Kurganov A., Liu Y. Fifth-order A-WENO schemes based on the adaptive diffusion central-upwind Rankine-Hugoniot fluxes // Commun. Appl. Math. Comput. 2021. https://doi.org/10.1007/s42967-021-00161-2

Дополнительные материалы отсутствуют.

Инструменты

Доклады Российской академии наук. Математика, информатика, процессы управления