Журнал эволюционной биохимии и физиологии, 2021, T. 57, № 1, стр. 17-32

ТУЧНЫЕ КЛЕТКИ В ГОЛОВНОМ МОЗГЕ ПОЗВОНОЧНЫХ – ЛОКАЛИЗАЦИЯ И ФУНКЦИИ

И. П. Григорьев 1*, Д. Э. Коржевский 1

1 Федеральное государственное бюджетное научное учреждение “Институт экспериментальной медицины”
Санкт-Петербург, Россия

* E-mail: iemmorphol@yandex.ru

Поступила в редакцию 12.02.20
После доработки 19.03.20
Принята к публикации 11.04.2020

Аннотация

В обзоре представлены сведения о тучных клетках (мастоцитах), которые присутствуют в ЦНС у различных представителей млекопитающих, птиц, пресмыкающихся, земноводных и рыб. Подробно рассмотрено их распределение в мозге различных видов животных. У млекопитающих они располагаются чаще всего в сосудистом сплетении, мозговых оболочках, таламусе, медиальном ядре поводка, гипоталамусе и циркумвентрикулярных органах, причем, как правило, в непосредственной близости от сосудов и часто вблизи ликвороносных пространств. Количество их непостоянно и меняется в ходе постнатального онтогенеза и под действием гормональных и иммунных факторов. Описаны различные способы выброса медиаторов из цитоплазматических гранул мастоцитов, которые обеспечивают точечное или диффузное действие на окружающие клетки. Тучные клетки обладают большим числом рецепторов к иммуноглобулинам, многим нейромедиаторам и гормонам, что делает их высокочувствительными к изменениям внешней и внутренней среды организма. Множество медиаторов, содержащихся в мастоцитах, позволяют им вызывать воспалительный, противовоспалительный, иммуно-, васкуло-, глиоцито- и/или нейрономодулирующий эффект, интенсивность и направленность которого зависит от состава и количества экскретируемых медиаторов и способа их выброса, что, в свою очередь зависит от того, какие именно рецепторы на тучных клетках активируются. Тучные клетки контролируют проницаемость гемато-энцефалического и гемато-ликворного барьеров, участвуют в ангиогенезе и, совместно с глиальными клетками, участвуют в регуляции нейровоспаления (которое является ведущим фактором патогенеза ряда нервных и психических заболеваний) и защите ЦНС от патогенных факторов. Тучные клетки мозга играют роль нейроиммунных центров с афферентными и эфферентными функциями, которые связывают периферические органы со специализированными клетками ЦНС и активно участвуют в поддержании гомеостаза ЦНС в физиологических условиях и при действии патологических факторов.

Ключевые слова: тучные клетки, головной мозг, позвоночные, нейровоспаление

DOI: 10.31857/S0044452921010046

Список литературы

  1. Galli S. J. New insights into “the riddle of the mast cells”: microenvironmental regulation of mast cell development and phenotypic heterogeneity. Lab. Invest. 62 (1): 5–33. 1990.

  2. Wernersson S., Pejler G. Mast cell secretory granules: armed for battle. Nat. Rev. Immunol. 14 (7): 478–494. 2014.

  3. Федорова Е.А., Григорьев И.П., Сырцова М.А., Суфиева Д.А., Новикова А.Д., Коржевский Д.Э. Выявление морфологических признаков дегрануляции тучных клеток сосудистого сплетения головного мозга человека с использованием различных методов окраски и иммуногистохимии. Морфология. 153 (2): 70–75. 2018. [Fedorova E.A., Grigorev I.P., Syrtzova M.A., Sufieva D.A., Novikova A.D., Korzhevskii D.E. Detection of morphological signs of mast cell degranulation in the human choroid plexus using different staining methods. Morfologiia. 153 (2): 70–75. 2018. (In Russ)].

  4. Федорова Е.А., Суфиева Д.А., Григорьев. И.П., Коржевский Д.Э. Тучные клетки эпифиза человека. Усп. геронтол., 31 (4): 484–489. 2018. [Fedorova E.A., Sufieva D.A., Grigorev I.P., Korzhevskii D.E. Mast cells of the human pineal gland. Adv. Gerontol. 9 (1): 62–66. 2019.]

  5. Nelissen S., Lemmens E., Geurts N., Kramer P., Maurer M., Hendriks J., Hendrix S. The role of mast cells in neuroinflammation. Acta Neuropathol. 125 (5): 637–650. 2013.

  6. Maślińska D., Dąmbska M., Kaliszek A., Maśliński S. Accumulation, distribution and phenotype heterogeneity of mast cells (MC) in human brains with neurocysticercosis. Folia Neuropathol. 39 (1): 7–13. 2001.

  7. Maślińska D., Laure-Kamionowska M., Gujski M., Ciurzynska G., Wojtecka-Lukasik E. Post-infectional distribution and phenotype of mast cells penetrating human brains. Inflamm. Res. 54 (Suppl. 1): S15-6. 2005.

  8. Crivellato E., Nico B., Gallo V.P., Ribatti D. Cell secretion mediated by granule-associated vesicle transport: a glimpse at evolution. Anat. Rec. (Hoboken). 293 (7): 1115–1124. 2010.

  9. Florenzano F., Bentivoglio M. Degranulation, density, and distribution of mast cells in the rat thalamus: a light and electron microscopic study in basal conditions and after intracerebroventricular administration of nerve growth factor. J. Comp. Neurol. 424 (4): 651–669. 2000.

  10. Ibrahim M.Z.M. The mast cells of the mammalian central nervous system. 1. Morphology, distribution and histochemistry. J. Neurol. Sci. 21 (4): 431–478. 1974.

  11. Manning K.A., Pienkowski T.P., Uhlrich D.J. Histaminergic and non-histamine-immunoreactive mast cells within the cat lateral geniculate complex examined with light and electron microscopy. Neuroscience, 63 (1): 191–206. 1994.

  12. Wilhelm M. Neuro-immune interactions in the dove brain. Gen. Comp. Endocrinol. 172 (1): 173–180. 2011.

  13. Wilhelm M., Silver R., Silverman A.J. Central nervous system neurons acquire mast cell products via transgranulation. Eur. J. Neurosci. 22 (9): 2238–2248. 2005.

  14. Machado A.B.M., Faleiro L.C.M., Da Silva W.D. Study of mast cell histamine contents of the pineal body. Z. Zellforsch. 65 (4): 521–529. 1965.

  15. Mukai K., Tsai M., Saito H., Galli S.J. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol. Rev. 282 (1): 121–150. 2018.

  16. Theoharides T.C., Alysandratos K.D., Angelidou A., Delivanis D.A., Sismanopoulos N., Zhang B., Asadi S., Vasiadi M., Weng Z., Miniati A., Kalogeromitros D. Mast cells and inflammation. Biochim Biophys Acta. 1822 (1): 21–33. 2012.

  17. Traina G. Mast cells in the brain – Old cells, new target. J. Integr. Neurosci. 16 (S1): S69-S83. 2017.

  18. Vukman K.V., Försönits A., Oszvald Á., Toth E.A., Buzas E.I. Mast cell secretome: soluble and vesicular components. Semin. Cell Dev. Biol. 67: 65–73. 2017.

  19. Dubayle D., Servière J., Menétrey D. Evidence for serotonin influencing the thalamic infiltration of mast cells in rat. J. Neuroimmunol. 159 (1–2): 20–30. 2005.

  20. Michaloudi H.C., Papadopoulos G.C. Mast cells in the sheep, hedgehog and rat forebrain. J. Anat. 195 (Pt 4): 577–586. 1999.

  21. Yang M.F., Chien C.L., Lu K.S. Compound 48/80-induced degranulation of GnRH-like immunoreactive mast cells in the brain and mesentery of the gerbil. Zool. Stud. 41 (1): 99–110. 2002.

  22. Lehman M., Silver R. CSF signaling in physiology and behavior. Prog. Brain Res. 125: 415–433. 2000.

  23. Gaudenzio N., Sibilano R., Marichal T., Starkl P., Reber L.L., Cenac N., McNeil B.D., Dong X., Hernandez J.D., Sagi-Eisenberg R., Hammel I., Roers A., Valitutti S., Tsai M., Espinosa E., Galli S.J. Different activation signals induce distinct mast cell degranulation strategies. J. Clin. Invest. 126 (10): 3981–3998. 2016.

  24. Wilhelm M., King B., Silverman A.J., Silver R. Gonadal steroids regulate the number and activational state of mast cells in the medial habenula. Endocrinology. 141 (3): 1178–1186. 2000.

  25. Baccari G.C., Pinelli C., Santillo A., Minucci S., Rastogi R.K. Mast cells in nonmammalian vertebrates: an overview. Int. Rev. Cell Mol. Biol. 290: 1–53. 2011.

  26. Crivellato E., Ribatti D. The mast cell: an evolutionary perspective. Biol. Rev., 85 (2): 347–360. 2010.

  27. Weiss J. Über Vorkommen und Ultrastruktur von Mastzellen im Hypothalamus der Knochenfische. Z. Mikrosk. Anat. Forsch. 93 (1): 147–160. 1979.

  28. Ali N.M. Mast cells enter a teleost’s brain by Xth cranial nerve in response to Diplostomum phoxini (Trematoda). Experientia 40 (2): 197–198. 1984.

  29. Inagaki N., Panula P., Yamatodani A., Wada H. Organization of the histaminergic system in the brain of the turtle Chinemys reevesii. J. Comp. Neurol. 297 (1): 132–144. 1990.

  30. Nacher J., Ramírez C., Palop J.J., Artal P., Molowny A., López-García C. Microglial cells during the lesion-regeneration of the lizard medial cortex. Histol. Histopathol. 14 (1): 103–117. 1999.

  31. Monteforte R., Pinelli C., Santillo A., Rastogi R.K., Polese G., Baccari G.C. Mast cell population in the frog brain: distribution and influence of thyroid status. J. Exp. Biol. 213 (10): 1762–1770. 2010.

  32. Ciani F., Franceschini V., Del Grande P., Minelli G. Mast cells in the central nervous system of Triturus cristatus carnifex. Z. Mikrosk. Anat. Forsch. 100 (6): 838–846. 1986.

  33. Inoue Y., Akita M., Shimai K. The mast cells in the brain of the Triturus pyrrhogaster (Boie). I. The histologic studies. Keio J. Med. 17 (4): 235–249. 1968.

  34. Kappers J.A., Ten Kate I., De Bruyn H.J. On mast cells in the choroid plexus of the axolotl (Ambystoma mex.). Z. Zellforsch. Mikrosk. Anat. 48 (6): 617–634. 1958.

  35. Zhuang X., Silverman A.J., Silver R. Distribution and local differentiation of mast cells in the parenchyma of the forebrain. J. Comp. Neurol. 408 (4): 477–488. 1999.

  36. Quay W.B. Histological structure and cytology of the pineal organ in birds and mammals. Prog. Brain Res. 10: 49–86. 1965.

  37. Ribatti D., Bertossi M., Nico B., Roncali L. Mast cells in the chick embryo choroid plexuses. J. Submicrosc. Cytol. 19 (2): 371–373. 1987.

  38. Johnson D., Yasui D., Seeldrayers P. An analysis of mast cell frequency in the rodent nervous system: numbers vary between different strains and can be reconstituted in mast cell-deficient mice. J. Neuropathol. Exp. Neurol. 50 (3): 227–234. 1991.

  39. Kiernan J.A. A comparative survey of the mast cells of the mammalian brain. J. Anat. 12 (2): 303–311. 1976.

  40. Kovács K.J., Larson A.A. Mast cells accumulate in the anogenital region of somatosensory thalamic nuclei during estrus in female mice. Brain Res. 1114 (1): 85–97. 2006.

  41. Taiwo O.B., Kovacs K.J., Larson A.A. Chronic daily intrathecal injections of a large volume of fluid increase mast cells in the thalamus of mice. Brain Res. 1056 (1): 76–84. 2005.

  42. Yang M., Chien C., Lu K. Morphological, immunohistochemical and quantitative studies of murine brain mast cells after mating. Brain Res. 1999; 846 (1): 30–39.

  43. Hendrix S., Kramer P., Pehl D., Warnke K., Boato F., Nelissen S., Lemmens E., Pejler G., Metz M., Siebenhaar F., Maurer M. Mast cells protect from post-traumatic brain inflammation by the mast cell-specific chymase mouse mast cell protease-4. FASEB J. 27 (3): 920–929. 2013.

  44. Nautiyal K.M., Dailey C.A., Jahn J.L., Rodriquez E., Son N.H., Sweedler J.V., Silver R. Serotonin of mast cell origin contributes to hippocampal function. Eur. J. Neurosci. 36 (3): 2347–2359. 2012.

  45. Hendrix S., Warnke K., Siebenhaar F., Peters E. M., Nitsch R., Maurer M. The majority of brain mast cells in B10.PL mice is present in the hippocampal formation. Neurosci. Lett. 392 (3): 174–177. 2006.

  46. Brenner T., Soffer D., Shalit M., Levi-Schaffer F. Mast cells in experimental allergic encephalomyelitis: characterization, distribution in the CNS and in vitro activation by myelin basic protein and neuropeptides. J. Neurol. Sci. 122 (2): 210–213. 1994.

  47. Dropp J.J. Mast cells in the central nervous system of several rodents. Anat. Rec. 174 (2): 227–237. 1972.

  48. Persinger M.A. Brain mast cell numbers in the albino rat: sources of variability. Behav. Neural Biol. 25 (3): 380–386. 1979.

  49. Goldschmidt R.C., Hough L.B., Glick S.D., Padawer J. Mast cells in rat thalamus: nuclear localization, sex difference and left-right asymmetry. Brain Res. 323 (2): 209–217. 1984.

  50. Dimitriadou V., Rouleau A., Tuong M.D., Ligneau X., Newlands G.F., Miller H.R., Schwartz J.C., Garbarg M. Rat cerebral mast cells undergo phenotypic changes during development. Brain Res. Dev. Brain Res. 97 (1): 29–41. 1996.

  51. Lambracht-Hall M., Dimitriadou V., Theoharides T.C. Migration of mast cells in the developing rat brain. Brain Res. Dev. Brain Res. 56 (2): 151–159. 1990.

  52. Michaloudi H., Grivas I., Batzios C., Chiotelli M., Papadopoulos G.C. Parallel development of blood vessels and mast cells in the lateral geniculate nuclei. Brain Res. Dev. Brain Res. 140 (2): 269–276. 2003.

  53. Persinger M.A. Developmental alterations in mast cell numbers and distributions within the thalamus of the albino rat. Dev. Neurosci. 4 (3): 220–224. 1981.

  54. Dropp J.J. Mast cells in mammalian brain. I. Distribution. Acta Anat. (Basel). 94 (1): 1–21. 1976.

  55. Cammermeyer J. Mast cells in the mammalian area postrema. Z. Anat. Entwickl. Gesch. 139 (1): 71–92. 1972.

  56. Cammermeyer J. Mast cells and postnatal topographic anomalies in mammalian subfornical body and supraoptic crest. Z. Anat. Entwickl. Gesch. 140 (3): 245–269. 1973.

  57. Edvinsson L., Cervos-Navarro J., Larsson L.I., Owman C., Rönnberg A.L. Regional distribution of mast cells containing histamine, dopamine, or 5-hydroxytryptamine in the mammalian brain. Neurology. 27 (9): 878–883. 1977.

  58. Gill C.J., Rissman E.F. Mast cells in the neonate musk shrew brain: implications for neuroendocrine immune interactions. Brain Res. Dev. Brain Res. 111 (1): 129–136. 1998.

  59. Kriegsfeld L.J., Hotchkiss A.K., Demas G.E., Silverman A.J., Silver R., Nelson R.J. Brain mast cells are influenced by chemosensory cues associated with estrus induction in female prairie voles (Microtus ochrogaster). Horm. Behav. 44 (5): 377–384. 2003.

  60. brahim M.Z.M. The immediate and delayed effects of compound 48/80 on the mast cells and parenchyma of rabbit brain. Brain Res. 17 (2): 348–350. 1970

  61. Krüger G. Mast cells in the brain of the hedgehog (Erinaceus europaeus Lin.). Distribution and seasonal variations. Acta Zool. 51 (1–2), 85–93. 1970.

  62. Коржевский Д.Э. Тучные клетки в сосудистом сплетении у детей. Морфология. 112 (5): 48–50. 1997. [Korzhevskii D.E. Mast cells in choroid plexus of kids. Morfologiia. 112 (5): 48–50. 1997. (In Russ)].

  63. Турыгин В.В., Бабик Т.М., Бояков А.А. Характеристика тучных клеток сосудистых сплетений желудочков головного мозга человека при старении. Морфология. 126 (6): 61–62. 2004. [Turygin V.V., Babik T.M., Boyakov A.A. Characteristics of mast cells in the choroid plexus of the ventricles of the human brain in aging. Neurosci. Behav. Physiol. 35 (9): 909–911. 2005.]

  64. Юнеман О.А. Морфологическая организация эпифиза и сосудистого сплетения III желудочка головного мозга человека. Морфол. ведом. 3: 97–100. 2012. [Yuneman O.A. Morphological organization of pineal gland and third ventricle choroid plexus of human brain. Morfol. Vedom. 3: 97–100. 2012. (In Russ)].

  65. Cammermeyer J., Adams R.D. The histopathological reaction of the area postrema. Acta Psychiat. Scand. 23 (3–4): 205–229. 1948.

  66. Dropp J.J. Mast cells in the human brain. Acta Anat. (Basel). 105 (4): 505–513. 1979.

  67. Maślińska D., Laure-Kamionowska M., Deręgowski K., Maśliński S. Association of mast cells with calcification in the human pineal gland. Folia Neuropathol. 48 (4): 276–282. 2010.

  68. Porzionato A., Macchi V., Parenti A., De Caro R. The distribution of mast cells in the human area postrema. J. Anat. 204 (2): 141–147. 2004.

  69. Fiala M., Chattopadhay M., La Cava A., Tse E., Liu G., Lourenco E., Eskin A., Liu P.T., Magpantay L., Tse S., Mahanian M., Weitzman R., Tong J., Nguyen C., Cho T., Koo P., Sayre J., Martinez-Maza O., Rosenthal M.J., Wiedau-Pazos M. IL-17A is increased in the serum and in spinal cord CD8 and mast cells of ALS patients. J. Neuroinflammation. 7 (1): 76. 2010.

  70. Kempuraj D., Mentor S., Thangavel R., Ahmed M.E., Selvakumar G.P., Raikwar S.P., Dubova I., Zaheer S., Iyer S.S., Zaheer A. Mast cells in stress, pain, blood-brain barrier, neuroinflammation and Alzheimer’s disease. Front. Cell Neurosci. 13: 54. 2019.

  71. Persinger M.A. Handling factors not body marking influence thalamic mast cell numbers in the preweaned albino rat. Behav. Neural Biol. 30 (4): 448–459. 1980.

  72. Rozniecki J.J., Dimitriadou V., Lambracht-Hall M., Pang X., Theoharides T.C. Morphological and functional demonstration of rat dura mater mast cell–neuron interactions in vitro and in vivo. Brain Res. 849 (1): 1–15. 1999.

  73. Chikahisa S., Harada S., Shimizu N., Shiuchi T., Otsuka A., Nishino S., Séi H. Mast cell involvement in glucose tolerance impairment caused by chronic mild stress with sleep disturbance. Sci. Rep. 7: 13640. 2017.

  74. Zhuang X., Silverman A.J., Silver R. Reproductive behavior, endocrine state, and the distribution of GnRH-like immunoreactive mast cells in dove brain. Horm. Behav. 27 (3): 283–295. 1993.

  75. Zhuang X., Silverman A.J., Silver R. Mast cell number and maturation in the central nervous system: influence of tissue type, location and exposure to steroid hormones. Neuroscience. 80 (4): 1237–1245. 1997.

  76. Asarian L, Yousefzadeh E., Silverman A.J., Silver R. Stimuli from conspecifics influence brain mast cell population in male rats. Horm. Behav. 42 (1): 1–12. 2002.

  77. Silverman A.J., Sutherland A.K., Wilhelm M., Silver R. Mast cells migrate from blood to brain. J. Neurosci. 20 (1): 401–408. 2000.

  78. Каредина В.С., Довбыш Т.В., Кожевникова Т.А. Суточный цикл функциональной активности тучных клеток твердой мозговой оболочки крыс. Бюлл. эксп. биол. мед. 90 (3): 356–357. 1980. [Karedina V.S., Dovbysch T.V. Kozhevnikova T.A. Circadian rhythm of mast cell function in the rat dura. Biul. Eksper. Biol. i Medit. 90 (9): 1286–1288. 1981].

  79. Mareš V., Brückner G., Biesold D. Mast cells in the rat brain and changes in their number under different light regimens. Exp. Neurol. 65 (2): 278–283. 1979.

  80. Tümkaya L., Kalkan Y., Gökçe F.M., Erdivanli B., Yilmaz A., Bahceci I., Yazici Z. A., Mercantepe T. The effects of mobile phone exposure on mast cells in rat dura mater. Int. J. Morphol. 37 (2): 719–723. 2019.

  81. Ferrante F., Ricci A., Felici L., Cavallotti C., Amenta F. Suggestive evidence for a functional association between mast cells and symphathetic nerves in meningeal membranes. Acta Histochem. Cytochem. 23 (5): 637–646. 1990.

  82. Keller J., Dimlich R., Zuccarello M., Lanker L., Strauss T., Fritts M. Influence of the sympathetic nervous system as well as trigeminal sensory fibres on rat dural mast cells. Cephalalgia. 11 (5): 215–222. 1991.

  83. Каредина В.С. Экспериментальные доказательства холинореактивности тканевых базофилов твердой мозговой оболочки головного мозга крыс. Арх. анат. 86 (4): 19–26. 1984. [Karedina V.S. Experimental evidence of the cholinoreactivity of tissue basophils of the dura mater of the brain in the rat. Arkh. Anat. Gistol. Embriol. 1984; 86 (4): 19–26. (In Russ)].

  84. Hendriksen H., van Bergeijk D., Oosting R.S., Redegeld F.A. Mast cells in neuroinflammation and brain disorders. Neurosci. Biobehav. Rev. 79: 119–133. 2017.

  85. Nautiyal K.M., Liu C., Dong X., Silver R. Blood-borne donor mast cell precursors migrate to mast cell-rich brain regions in the adult mouse. J. Neuroimmunol. 240–241: 142–146. 2011.

  86. Ookawara S., Mitsuhashi U., Suminaga Y., Mato M. Study on distribution of pericyte and fluorescent granular perithelial (FGP) cell in the transitional region between arteriole and capillary in rat cerebral cortex. Anat Rec. 244 (2): 257–264. 1996.

  87. Ribatti D. The crucial role of mast cells in blood-brain barrier alterations. Exp. Cell Res. 338 (1): 119–125. 2015.

  88. Kubes P., Granger D. N. Leukocyte-endothelial cell interactions evoked by mast cells. Cardiovasc. Res. 32 (4): 699–708. 1996.

  89. Khalil M., Ronda J., Weintraub M., Jain K., Silver R., Silverman A.J. Brain mast cell relationship to neurovasculature during development. Brain Res. 1171: 18–29. 2007.

  90. Soucek L., Lawlor E.R., Soto D., Shchors K., Swigart L.B., Evan G.I. Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat. Med. 13: 1211–1218. 2007.

  91. Norrby K. Mast cells and angiogenesis. APMIS. 110 (5): 355–371. 2002.

  92. Ribatti D., Ranieri G. Tryptase, a novel angiogenic factor stored in mast cell granules. Exp. Cell Res. 332: 157–162. 2015.

  93. Koroleva K., Gafurov O., Guselnikova V., Nurkhametova D., Giniatullina R., Sitdikova G., Mattila O.S., Lindsberg P.J., Malm T.M., Giniatullin R. Meningeal mast cells contribute to ATP-induced nociceptive firing in trigeminal nerve terminals: direct and indirect purinergic mechanisms triggering migraine pain. Front. Cell. Neurosci. 13: 195. 2019.

  94. Minucci S., Izzo Vitiello I., Marmorino C., Di Matteo L., Chieffi Baccari G. Mast cell-Leydig cell relationships in the testis of the lizard Podarcis s. sicula Raf: thermal manipulation, ethane 1,2-dimethane sulphonate (EDS) and sex hormone treatment. Zygote 3 (3): 259–264. 1995.

  95. Haas H.L., Sergeeva O.A., Selbach O. Histamine in the nervous system. Physiol. Rev. 88 (3): 1183–1241. 2008.

  96. Chikahisa S., Kodama T., Soya A., Sagawa Y., Ishimaru Y., Séi H., Nishino S. Histamine from brain resident mast cells promotes wakefulness and modulates behavioral states. PLoS ONE 8 (10): e78434. 2013.

  97. Larson A.A., Thomas M.J., McElhose A., Kovács K.J. Spontaneous locomotor activity correlates with the degranulation of mast cells in the meninges rather than in the thalamus: disruptive effect of cocaine. Brain Res., 1395: 30–37. 2011.

  98. Manchanda R.K., Jaggi A.S., Singh N. Ameliorative potential of sodium cromoglycate and diethyldithiocarbamic acid in restraint stress-induced behavioral alterations in rats. Pharmacol. Rep. 63 (1): 54–63. 2011.

  99. Fitzpatrick C.J., Morrow J.D. Thalamic mast cell activity is associated with sign-tracking behavior in rats. Brain Behav. Immun. 65: 222–229. 2017.

  100. Zhang X., Yao H., Qian Q., Li N., Jin W., Qian Y. Cerebral mast cells participate in postoperative cognitive dysfunction by promoting astrocyte activation. Cell Physiol. Biochem. 40 (1–2): 104–116. 2016.

  101. Picard M., Giavina-Bianchi P., Mezzano V., Castells M. Expanding spectrum of mast cell activation disorders: monoclonal and idiopathic mast cell activation syndromes. Clin. Ther. 35 (5): 548–562. 2013.

  102. Малашенкова И.К., Крынский С.А., Хайлов Н.А., Казанова Г.В., Величковский Б.Б., Дидковский Н.А. Роль цитокинов в консолидации памяти. Усп. соврем. биол. 135 (5): 419–436. 2015. [Malashenkova I.K., Krynskiy S.A., Hailov N.A., Kazanova G.V., Velichkovsky B.B., Didkovsky N.A. The role of cytokines in memory consolidation. Usp. Sovrem. Biol. 135 (5): 419–436. 2015. (In Russ)].

  103. Yirmiya R., Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav. Immun. 25 (2): 181–213. 2011.

  104. Jonas S., Sugimori M., Llinás R. Is low molecular weight heparin a neuroprotectant? Ann. N. Y. Acad. Sci. 825: 389–393. 1997.

  105. Kőszegi Z., Kovács P., Wilhelm M., Atlasz T., Babai N., Kállai V., Hernádi I. The application of in vivo microiontophoresis for the investigation of mast cell–neuron interactions in the rat brain. J. Biochem. Biophys. Meth. 69 (1–2): 227–231. 2006.

  106. Kovács P., Hernádi I., Wilhelm M. Mast cells modulate maintained neuronal activity in the thalamus in vivo. J. Neuroimmunol. 171 (1–2): 1–7. 2006.

  107. Pickering M., O’Connor J.J. Pro-inflammatory cytokines and their effects in the dentate gyrus. Prog Brain Res. 163: 339–354. 2007.

  108. Borsini A., Zunszain P.A., Thuret S., Pariante C.M. The role of inflammatory cytokines as key modulators of neurogenesis. Trends Neurosci. 38 (3): 145–157. 2015.

  109. Kempuraj D., Selvakumar G.P., Zaheer S., Thangavel R., Ahmed M.E., Raikwar S., Govindarajan R., Iyer S., Zaheer A. Cross-talk between glia, neurons and mast cells in neuroinflammation associated with Parkinson’s disease. J. Neuroimmune Pharmacol. 13 (1): 100–112. 2018.

  110. Kempuraj D., Thangavel R., Selvakumar G.P., Ahmed M.E., Zaheer S., Raikwar S.P., Zahoor H., Saeed D., Dubova I., Giler G., Herr S., Iyer S.S., Zaheer A. Mast cell proteases activate astrocytes and glia-neurons and release interleukin-33 by activating p38 and ERK1/2 MAPKs and NF-κB. Mol. Neurobiol. 56 (3): 1681–1693. 2019.

  111. Skaper S.D., Facci L., Zusso M., Giusti P. An inflammation-centric view of neurological disease: beyond the neuron. Front. Cell Neurosci. 12:72. 2018.

  112. Zeng X., Zhang S., Xu L., Yang H., He S. Activation of protease-activated receptor 2-mediated signaling by mast cell tryptase modulates cytokine production in primary cultured astrocytes. Mediators Inflamm. 2013: 140812. 2013.

  113. Fang Q., Hu W.W., Wang X.F., Yang Y., Lou G.D., Jin M.M., Yan H.J., Zeng W.Z., Shen Y., Zhang S.H., Xu T.L., Chen Z. Histamine up-regulates astrocytic glutamate transporter 1 and protects neurons against ischemic injury. Neuropharmacology. 77: 156–66. 2014.

  114. Dong H., Zhang X., Wang Y., Zhou X., Qian Y., Zhang S. Suppression of brain mast cells degranulation inhibits microglial activation and central nervous system inflammation. Mol. Neurobiol. 54 (2): 997–1007. 2017.

  115. Zhang S., Zeng X., Yang H., Hu G., He S. Mast cell tryptase induces microglia activation via protease-activated receptor 2 signaling. Cell Physiol. Biochem. 29 (5–6): 931–940. 2012.

  116. Medic N., Lorenzon P., Vita F., Trevisan E., Marchioli A., Soranzo M.R., Fabbretti E., Zabucchi G. Mast cell adhesion induces cytoskeletal modifications and programmed cell death in oligodendrocytes. J. Neuroimmunol. 218 (1–2): 57–66. 2010.

Дополнительные материалы отсутствуют.