Физиология растений, 2023, T. 70, № 3, стр. 319-326

Устойчивость к альтернариозу трансгенных растений картофеля, экспрессирующих ген антимикробных пептидов ProSmAMP1 под контролем светоиндуцибельного промотора Cab

Д. В. Беляев a*, Н. О. Юрьева a, Д. В. Терешонок a, М. К. Деревягина b, А. А. Мелешин b

a Федеральное государственное бюджетное учреждение науки Институт физиологии растений им. К.А. Тимирязева Российской академии наук
Москва, Россия

b Федеральное государственное бюджетное научное учреждение Федеральный исследовательский центр картофеля имени А.Г. Лорха
Красково, Россия

* E-mail: bdv@ippras.ru

Поступила в редакцию 30.11.2022
После доработки 08.12.2022
Принята к публикации 09.12.2022

Аннотация

Геном растения звездчатка Stellaria media содержит семейство генов гевеин-подобных антимикробных пептидов, про некоторые из которых известно, что они кодируют два пептида, высвобождающиеся из продукта трансляции в результате пост-трансляционного протеолиза. Ранее было показано, что данные пептиды подавляют рост бактерий и грибов, в том числе, патогенов картофеля Alternaria solani и Alternaria alternata. В данной работе один из таких генов, ProSmAMP1, был введен в геном картофеля под контролем светоиндуцибельного промотора гена Cab мягкой пшеницы. Полученные трансгенные линии экспрессировали мРНК ProSmAMP1 в течение нескольких вегетативных пассажей и их устойчивость к альтернариозу была оценена по нескольким показателям заражения отделенных листьев, причем растения с наибольшей экспрессией трансгена продемонстрировали также наибольшую устойчивость.

Список литературы

  1. Schepers H., Hausladen H., Hansen J.G. Epidemics and control of early & late blight, 2017 & 2018 in Europe // Proceedings of the seventeenth EuroBlight Workshop. 2019. V. 19. P. 11. https://doi.org/https://agro.au.dk/fileadmin/euroblight/Workshops/Proceedings/Special_Report_19_Totaal_LR.pdf

  2. Gravesen S. Fungi as a cause of allergic disease // Allergy. 1979. V. 34. P. 135. https://doi.org/10.1111/J.1398-9995.1979.TB01562.X

  3. Tsedaley B. Review on early blight (Alternaria spp.) of potato disease and its management options // J. Biol. Agricul. Healthcare. 2014. V. 4 P. 191. https://www.iiste. org/Journals/index.php/JBAH/article/view/18650

  4. Adolf B., Andrade-Piedra J., Bittara Molina F., Przetakiewicz J., Hausladen H., Kromann P., Lees A., Lindqvist-Kreuze H., Perez W., Secor G.A. Fungal, oomycete, and plasmodiophorid diseases of potato // The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind. 2019. V. 9. P. 307. https://doi.org/10.1007/978-3-030-28683-5_9

  5. Van Der Waals J.E., Korsten L., Aveling T.A.S. A review of early blight of potato // African Plant Protection. 2001. V. 7. P. 1

  6. Kumar Chaudhary A., Yadav J., Kumar Gupta A., Gupta K. Integrated disease management of early blight (Alternaria Solani) of potato // Tropical Agrobiodiversity. 2021. V. 2. P. 77. https://doi.org/10.26480/trab.02.2021.77.81

  7. Shinde B.A., Dholakia B.B., Hussain K., Panda S., Meir S., Rogachev I., Aharoni A., Giri A.P., Kamble A.C. Dynamic metabolic reprogramming of steroidal glycol-alkaloid and phenylpropanoid biosynthesis may impart early blight resistance in wild tomato (Solanum arcanum Peralta) // Plant Mol. Biol. 2017. V. 95. P. 411. https://doi.org/10.1007/S11103-017-0660-2/FIGURES/7

  8. Roddick J.G., Rijnenberg A.L. Effect of steroidal glycoalkaloids of the potato on the permeability of liposome membranes // Physiol. Plant. 1986. V. 68. P. 436. https://doi.org/10.1111/j.1399-3054.1986.tb03378.x

  9. Yamunarani K., Jaganathan R., Bhaskaran R., Govindaraju P., Velazhahan R. Induction of early blight resistance in tomato by Quercus infectoria gall extract in association with accumulation of phenolics and defense-related enzymes // Acta Physiol. Plant. 2004. V. 26. P. 281. https://doi.org/10.1007/S11738-004-0018-7

  10. Johansen T.J., Mølmann J.A.B. Seed potato performance after storage in light at elevated temperatures // Potato Research. 2018. V. 61. P. 133. https://doi.org/10.1007/S11540-018-9363-6/FIGURES/3

  11. Henrique S.S.D., Zambolim L., Rodrigues F.A., Paul P.A., Pádua J.G., Ribeiro J.I. Field resistance of potato cultivars to foliar early blight and its relationship with foliage maturity and tuber skin types // Tropical Plant Pathology. 2014. V. 39. P. 294

  12. Busnello F.J., Boff M.I.C., Agostinetto L., Souza Z. da S., Boff P. Potato genotypes reaction to early blight and late blight in organic cultivation // Ciência Rural. 2019. V. 49. https://doi.org/10.1590/0103-8478CR20180469

  13. Weber B.N., Jansky S.H. Resistance to Alternaria solani in Hybrids Between a Solanum tuberosum Haploid and S. raphanifolium // Phytopathology. 2012. V. 102. P. 214. https://doi.org/10.1094/PHYTO-05-11-0146

  14. Odintsova T.I., Slezina M.P., Istomina E.A., Korostyleva T.V., Kasianov A.S., Kovtun A.S., Makeev V.J., Shcherbakova L.A., Kudryavtsev A.M. Defensin-like peptides in wheat analyzed by whole-transcriptome sequencing: A focus on structural diversity and role in induced resistance // Peer J. 2019. V. 2019. P. e6125. https://doi.org/10.7717/PEERJ.6125/SUPP-16

  15. Toufiq N., Tabassum B., Bhatti M.U., Khan A., Tariq M., Shahid N., Nasir I.A., Husnain T. Improved antifungal activity of barley derived chitinase I gene that overexpress a 32kDa recombinant chitinase in Escherichia coli host // Braz. J. Microbiol. 2018. V. 49. P. 414. https://doi.org/10.1016/J.BJM.2017.05.007

  16. Moravčíková J., Matušíková I., Libantová J., Bauer M., Mlynárová L. Expression of a cucumber class III chitinase and Nicotiana plumbaginifoliaclass I glucanase genes in transgenic potato plants // Plant Cell, Tissue Organ Cult. 2004. V. 79. P. 161. https://doi.org/10.1007/S11240-004-0656-X

  17. Islam K.T., Velivelli S.L.S., Berg R.H., Oakley B., Shah D.M. A novel bi-domain plant defensin MtDef5 with potent broad-spectrum antifungal activity binds to multiple phospholipids and forms oligomers // Sci. Rep. 2017. https://doi.org/10.1038/s41598-017-16508-w

  18. Huang X., Xie W.J., Gong Z.Z. Characteristics and antifungal activity of a chitin binding protein from Ginkgo biloba // FEBS Letters. 2000. https://doi.org/10.1016/S0014-5793(00)01834-2

  19. Vasilchenko A.S., Smirnov A.N., Zavriev S.K., Grishin E.V., Vasilchenko A.V., Rogozhin E.A. Novel thionins from black seed (Nigella sativa L.) demonstrate antimicrobial activity // International Journal of Peptide Research and Therapeutics. 2017. V. 23. P. 171. https://doi.org/10.1007/S10989-016-9549-1/FIGURES/5

  20. Mithril C., Dragsted L.O. Safety evaluation of some wild plants in the New Nordic Diet // Food Chem. Toxicol. 2012. V. 50. P. 4461. https://doi.org/10.1016/J.FCT.2012.09.016

  21. Yilmaz S., Ergün S. Chickweed (Stellaria media) leaf meal as a feed ingredient for tilapia (Oreochromis mossambicus) // J. Appl. Aquac. 2013. V. 25. P. 329. https://doi.org/10.1080/10454438.2013.851531

  22. Rogowska M., Lenart M., Srečec S., Ziaja M., Parzonko A., Bazylko A. Chemical composition, antioxidative and enzyme inhibition activities of chickweed herb (Stelaria media L., Vill.) ethanolic and aqueous extracts // Industrial Crops and Products. 2017. V. 97. P. 448. https://doi.org/10.1016/J.INDCROP.2016.12.058

  23. Shukurov R.R., Voblikova V.D., Nikonorova A.K., Komakhin R.A., Komakhina V.V., Egorov T.A., Grishin E.V., Babakov A.V. Transformation of tobacco and Arabidopsis plants with Stellaria media genes encoding novel hevein-like peptides increases their resistance to fungal pathogens // Transgenic Res. 2012. V. 21. P. 313. https://doi.org/10.1007/s11248-011-9534-6

  24. Vetchinkina E.M., Komakhina V.V., Vysotskii D.A., Zaitsev D.V., Smirnov A.N., Babakov A.V., Komakhin R.A. Expression of plant antimicrobial peptide pro-SmAMP2 gene increases resistance of transgenic potato plants to Alternaria and Fusarium pathogens // Russ. J. Genet. 2016. V. 52. P. 939. https://doi.org/10.1134/s1022795416080147

  25. Beliaev D.V., Yuorieva N.O., Tereshonok D.V., Tashlieva I.I., Derevyagina M.K., Meleshin A.A., Rogozhin E.A., Kozlov S.A. High resistance of potato to early blight is achieved by expression of the Pro-SmAMP1 gene for hevein-like antimicrobial peptides from common chickweed (Stellaria media) // Plants. 2021. V. 10. P. 1395. https://doi.org/10.3390/PLANTS10071395

  26. Muhammad A.F., Naz F., Irshad G. Important fungal diseases of potato and their management-a brief review // Mycopath. 2013. V. 11. P. 45.

  27. Timerbaev V., Dolgov S. Functional characterization of a strong promoter of the early light-inducible protein gene from tomato // Planta. 2019. V. 250. P. 1307. https://doi.org/10.1007/S00425-019-03227-X

  28. Nagy F., Boutry M., Hsu M.Y., Wong M., Chua N.H. The 5′-proximal region of the wheat Cab-1 gene contains a 268-bp enhancer-like sequence for phytochrome response. // EMBO J. 1987. V. 6. P. 2537. https://doi.org/10.1002/J.1460-2075.1987.TB02541.X

  29. An G. Integrated regulation of the photosynthetic gene family from Arabidopsis thaliana in transformed tobacco cells // Mol. General Genet. 1987. V. 207. P. 210. https://doi.org/10.1007/BF00331580

  30. Bevan M. Binary agrobacterium vectors for plant transformation // Nucleic acids research. 1984. V. 12. P. 8711. https://doi.org/10.1093/NAR/12.22.8711

  31. Banerjee A.K., Prat S., Hannapel D.J. Efficient production of transgenic potato (S. tuberosum L. ssp. andigena) plants via Agrobacterium tumefaciens ‒ mediated transformation // Plant Sci. 2006. V. 170. P. 732. https://doi.org/10.1016/j.plantsci.2005.11.007

  32. Lazo G.R., Stein P.A., Ludwig R.A. A DNA transformation–competent Arabidopsis genomic library in Agrobacterium // BioTechnol. 1991. V. 9. P. 963. https://doi.org/10.1038/nbt1091-963

  33. Дерябин А.Н., Юрьева Н.О. Образование и морфометрические показатели микроклубней картофеля in vitro при разном составе сахаров в среде // Сельскохозяйственная биология. 2011. Т. 1. С. 54. http://www.agrobiology.ru/1-2011deryabin-eng.html

  34. Yuorieva N.O., Voronkov A.S., Tereshonok D.V., Osipova E.S., Platonova E.V., Belyaev D.V. An assay for express screening of potato transformants by GFP fluorescence // Moscow Univ. Biol. Sci. Bull. 2018. V. 73. P. 69. https://doi.org/10.3103/s0096392518020086

  35. Nicot N., Hausman J.F., Hoffmann L., Evers D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress // J. Exp. Bot. 2005. V. 56. P. 2907. https://doi.org/10.1093/JXB/ERI285

  36. Tzfira T., Li J., Lacroix B., Citovsky V. Agrobacterium T-DNA integration: molecules and models // Trends Genet. 2004. V. 20. P. 375. https://doi.org/10.1016/J.TIG.2004.06.004

  37. Cluster P.D., O’Dell M., Metzlaff M., Flavell R.B. Details of T-DNA structural organization from a transgenic Petunia population exhibiting co-suppression // Plant Mol. Biol. 1996. V. 32. P. 1197. https://doi.org/10.1007/BF00041406

  38. Escoubas J.M., Lomas M., LaRoche J., Falkowski P.G. Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. // Proc. Natl. Acad. Sci. 1995. V. 92. P. 10237. https://doi.org/10.1073/PNAS.92.22.10237

  39. Czajka K.M., Nkongolo K. Transcriptome analysis of trembling aspen (Populus tremuloides) under nickel stress // PLOS ONE. 2022. V. 17. P. e0274740. https://doi.org/10.1371/JOURNAL.PONE.0274740

  40. Daley M., Knauf V.C., Summerfelt K.R., Turner J.C. C-o-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants // Plant Cell Rep. 1998. V. 17. P. 489. https://doi.org/10.1007/S002990050430

Дополнительные материалы отсутствуют.