Известия РАН. Серия биологическая, 2021, № 1, стр. 30-43

Коронавирусные инфекции животных: будущие риски для человека

И. М. Донник 1, Иг. В. Попов 23, С. В. Середа 2, Ил. В. Попов 3, М. Л. Чикиндас 24, А. М. Ермаков 2*

1 Российская академия наук
119991 Москва, Ленинский просп., 14, Россия

2 Донской государственный технический университет
344000 Ростов-на-Дону, пл. Гагарина, 1, Россия

3 Ростовский государственный медицинский университет
344022 Ростов-на-Дону, пер. Нахичеванский, 29, Россия

4 Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey
NJ 08901 New Brunswick, 65 Dudley Road, USA

* E-mail: amermakov@yandex.ru

Поступила в редакцию 04.05.2020
После доработки 27.06.2020
Принята к публикации 17.07.2020

Аннотация

Установлено, что коронавирусы обладают огромным эволюционным потенциалом, и на данный момент в новейшей истории человечества отмечены три крупные вспышки новых коронавирусных инфекций человека. Определены закономерности возникновения новых зоонозных коронавирусных инфекций и роль биоветеринарного контроля в предотвращении их потенциальных вспышек в будущем, а также рассмотрена возможность заражения животных-компаньонов SARS-CoV-2. Продемонстрировано, что вмешательство человека в дикую природу приводит к столкновению в одной пространственно-временнóй точке разных видов животных и их вирусов, провоцируя подчас появление новых, непредсказуемых форм патогенных вирусов. Рассмотрена возможность использования пробиотиков для контроля вирусных инфекций у животных.

DOI: 10.31857/S0002332921010057

Список литературы

  1. Abdelhamid A.G., El-Masry S.S., El-Dougdoug N.K. Probiotic Lactobacillus and Bifidobacterium strains possess safety characteristics, antiviral activities and host adherence factors revealed by genome mining // EPMA J. 2019. V. 10. № 4. P. 337–350. https://doi.org/10.1007/s13167-019-00184-z

  2. Adney D.R., van Doremalen N., Brown V.R., Bushmaker T., Scott D., de Wit E., Bowen R.A., Munster V.J. Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels // Emerg. Infect. Dis. 2014. V. 20. № 12. P. 1999–2005. https://doi.org/10.3201/eid2012.141280

  3. Agrawal A.S., Garron T., Tao X., Peng B.H., Wakamiya M., Chan T.S., Couch R.B., Tseng C.T. Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease // J. Virol. 2015. V. 89. № 7. P. 3659–3670. https://dx.doi.org/10.1128%2FJVI.03427-14

  4. Ahn M., Anderson D.E., Zhang Q., Tan C.W., Lim B.L., Luko K., Wen M., Chia W.N., Mani S., Wang L.C., Ng J.H.J., Sobota R.M., Dutertre C.A., Ginhoux F., Shi Z.L., Irving A.T., Wang L.F. Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host // Nat. Microbiol. 2019. V. 4. № 5. P. 789–799. https://dx.doi.org/10.1038%2Fs41564-019-0371-3

  5. Barlough J.E., Johnson-Lussenburg C.M., Stoddart C.A., Jacobson R.H., Scott F.W. Experimental inoculation of cats with human coronavirus 229E and subsequent challenge with feline infectious peritonitis virus // Can. J. Comp. Med. 1985. V. 49. № 3. P. 303–307.

  6. Barlough J.E., Stoddart C.A., Sorresso G.P., Jacobson R.H., Scott F.W. Experimental inoculation of cats with canine coronavirus and subsequent challenge with feline infectious peritonitis virus // Lab. Anim. Sci. 1984. V. 34. № 6. P. 592–597.

  7. Binn L.N., Lazar E.C., Keenan K.P., Huxsoll D.L., Marchwicki R.H., Strano A.J. Recovery and characterization of a coronavirus from military dogs with diarrhea // Proc. Annu. Meet. US Anim. Health. Assoc. 1974. V. 78. P. 359–366.

  8. Brook C.E., Boots M., Chandran K., Dobson A.P., Drosten C., Graham A.L., Grenfell B.T., Müller M.A., Ng M., Wang L.F., van Leeuwen A. Accelerated viral dynamics in bat cell lines, with implications for zoonotic emergence // Elife. 2020. V. 9. e48401. https://dx.doi.org/10.7554%2FeLife.48401

  9. Carman P.S., Hazlett M.J. Bovine coronavirus infection in Ontario 1990-1991 // Can. Vet. J. 1992. V. 33. № 12. P. 812–814.

  10. Chu H., Chan J.F.W., Yuen T.T.T., Shuai H., Yuan S., Wang Y., Hu B., Yip C.C.Y., Tsang J.O.L., Huang X., Chai Y., Yang D., Hou Y., Chik K.K.H., Zhang X., Fung A.Y.F., Tsoi H.W., Cai J.P., Chan W.M., Ip J.D., Chu A.W.H., Zhou J., Lung D.C., Kok K.H., To K.K.W., Tsang O.T.Y., Chan K.H., Yuen K.Y. Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study // The Lancet Microbe. 2020. V. 1. № 1. P. e14–e23. https://dx.doi.org/10.1016%2FS2666-5247(20)30004-5

  11. Collins S.E., Mossman K.L. Danger, diversity and priming in innate antiviral immunity // Cytokine Growth Factor Rev. 2014. V. 25. № 5. P. 525–531. https://doi.org/10.1016/j.cytogfr.2014.07.002

  12. Corman V.M., Muth D., Niemeyer D., Drosten C. Hosts and Sources of Endemic Human Coronaviruses // Adv. Virus. Res. 2018. V. 100. P. 163–188. https://dx.doi.org/10.1016%2Fbs.aivir.2018.01.001

  13. Corman V.M., Baldwin H.J., Tateno A.F., Zerbinati R.M., Annan A., Owusu M., Nkrumah E.E., Maganga G.D., Oppong S., Adu-Sarkodie Y., Vallo P., da Silva Filho L.V., Leroy E.M., Thiel V., van der Hoek L., Poon L.L., Tschapka M., Drosten C., Drexler J.F. Evidence for an Ancestral Association of Human Coronavirus 229E with Bats // J. Virol. 2015. V. 89. № 23. P. 11858–11870. https://dx.doi.org/10.1128%2FJVI.01755-15

  14. Crossley B.M., Mock R.E., Callison S.A., Hietala S.K. Identification and characterization of a novel alpaca respiratory coronavirus most closely related to the human coronavirus 229E // Viruses. 2012. V. 4. № 12. P. 3689–3700. https://dx.doi.org/10.3390%2Fv4123689

  15. Crossley B.M., Barr B.C., Magdesian K.G., Ing M., Mora D., Jensen D., Loretti A.P., McConnell T., Mock R. Identification of a novel coronavirus possibly associated with acute respiratory syndrome in alpacas (Vicugna pacos) in California, 2007 // J. Vet. Diagn. Invest. 2010. V. 22. № 1. P. 94–97. https://doi.org/10.1177/104063871002200118

  16. Cui J., Li F., Shi Z.L. Origin and evolution of pathogenic coronaviruses // Nat. Rev. Microbiol. 2019. V. 17. № 3. P. 181–192. https://dx.doi.org/10.1038%2Fs41579-018-0118-9

  17. Decaro N., Buonavoglia C. An update on canine coronaviruses: viral evolution and pathobiology // Vet. Microbiol. 2008. V. 132. № 3–4. P. 221–234. https://dx.doi.org/10.1016%2Fj.vetmic.2008.06.007

  18. Decaro N., Buonavoglia C. Canine coronavirus: not only an enteric pathogen // Vet. Clin. North Am. Small Anim. Pract. 2011. V. 41. № 6. P. 1121–1132. https://doi.org/10.1016/j.cvsm.2011.07.005

  19. Decaro N., Mari V., Elia G., Addie D.D., Camero M., Lucente M.S., Martella V., Buonavoglia C. Recombinant canine coronaviruses in dogs, Europe // Emerg. Infect. Dis. 2010a. V. 16. № 1. P. 41–47. https://dx.doi.org/10.3201%2Feid1601.090726

  20. Decaro N., Mari V., Campolo M., Lorusso A., Camero M., Elia G., Martella V., Cordioli P., Enjuanes L., Buonavoglia C. Recombinant canine coronaviruses related to transmissible gastroenteritis virus of Swine are circulating in dogs // J. Virol. 2009. V. 83. № 3. P. 1532–1537. https://dx.doi.org/10.1128%2FJVI.01937-08

  21. Decaro N., Elia G., Martella V., Campolo M., Mari V., Desario C., Lucente M.S., Lorusso E., Kanellos T., Gibbons R.H., Buonavoglia C. Immunity after natural exposure to enteric canine coronavirus does not provide complete protection against infection with the new pantropic CB/05 strain // Vaccine. 2010b. V. 28. № 3. P. 724–729. https://dx.doi.org/10.1016%2Fj.vaccine.2009.10.077

  22. Decaro N., Campolo M., Desario C., Cirone F., D’Abramo M., Lorusso E., Greco G., Mari V., Colaianni M.L., Elia G., Martella V., Buonavoglia C. Respiratory disease associated with bovine coronavirus infection in cattle herds in Southern Italy // J. Vet. Diagn. Invest. 2008. V. 20. № 1. P. 28–32. https://doi.org/10.1177/104063870802000105

  23. DiVincenti L., Jr., Rehrig A.N. The Social Nature of European Rabbits (Oryctolagus cuniculus) // J. Am. Assoc. Lab. Anim. Sci. 2016. V. 55. № 6. P. 729–736.

  24. Drexler J.F., Corman V.M., Müller M.A., Maganga G.D., Vallo P., Binger T., Gloza-Rausch F., Cottontail V.M., Rasche A., Yordanov S., Seebens A., Knörnschild M., Oppong S., Adu Sarkodie Y., Pongombo C., Lukashev A.N., Schmidt-Chanasit J., Stöcker A., Carneiro A.J., Erbar S., Maisner A., Fronhoffs F., Buettner R., Kalko E.K., Kruppa T., Franke C.R., Kallies R., Yandoko E.R., Herrler G., Reusken C., Hassanin A., Krüger D.H., Matthee S., Ulrich R.G., Leroy E.M., Drosten C. Bats host major mammalian paramyxoviruses // Nat. Commun. 2012. V. 3. P. 796. https://dx.doi.org/10.1038%2Fncomms1796

  25. Erles K., Brownlie J. Canine respiratory coronavirus: an emerging pathogen in the canine infectious respiratory disease complex // Vet. Clin. North Am. Small Anim. Pract. 2008. V. 38. № 4. P. 815–825. https://dx.doi.org/10.1016%2Fj.cvsm.2008.02.008

  26. Erles K., Shiu K.B., Brownlie J. Isolation and sequence analysis of canine respiratory coronavirus // Virus. Res. 2007. V. 124. № 1–2. P. 78–87. https://dx.doi.org/10.1016%2Fj.virusres.2006.10.004

  27. Felten S., Hartmann K. Diagnosis of Feline Infectious Peritonitis: A Review of the Current Literature // Viruses. 2019. V. 11. № 11. P. 1068. https://dx.doi.org/10.3390%2Fv11111068

  28. Forbes K.M., Webala P.W., Jääskeläinen A.J., Abdurahman S., Ogola J., Masika M.M., Kivistö I., Alburkat H., Plyusnin I., Levanov L., Korhonen E.M., Huhtamo E., Mwaengo D., Smura T., Mirazimi A., Anzala O., Vapalahti O., Sironen T. Bombali Virus in Mops condylurus Bat, Kenya // Emerg. Infect. Dis. 2019. V. 25. № 5. P. 955–957. https://dx.doi.org/10.3201%2Feid2505.181666

  29. Goldstein T., Anthony S.J., Gbakima A., Bird B.H., Bangura J., Tremeau-Bravard A., Belaganahalli M.N., Wells H.L., Dhanota J.K., Liang E., Grodus M., Jangra R.K., DeJesus V.A., Lasso G., Smith B.R., Jambai A., Kamara B.O., Kamara S., Bangura W., Monagin C., Shapira S., Johnson C.K., Saylors K., Rubin E.M., Chandran K., Lipkin W.I., Mazet J.A.K. The discovery of Bombali virus adds further support for bats as hosts of ebolaviruses // Nat. Microbiol. 2018. V. 3. № 10. P. 1084–1089. https://dx.doi.org/10.1038%2Fs41564-018-0227-2

  30. Gong S.R., Bao L.L. The battle against SARS and MERS coronaviruses: Reservoirs and Animal Models // Anim. Model Exp. Med. 2018. V. 1. № 2. P. 125–133. https://dx.doi.org/10.1002%2Fame2.12017

  31. Gorbalenya A.E., Baker S.C., Baric R.S., de Groot R.J., Drosten C., Gulyaeva A.A., Haagmans B.L., Lauber C., Leontovich A.M., Neuman B.W., Penzar D., Perlman S., Poon L.L.M., Samborskiy D.V., Sidorov I.A., Sola I., Ziebuhr J. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 // Nat. Microbiol. 2020. V. 5. № 4. P. 536–544. https://doi.org/10.1038/s41564-020-0695-z

  32. Guan Y., Zheng B.J., He Y.Q., Liu X.L., Zhuang Z.X., Cheung C.L., Luo S.W., Li P.H., Zhang L.J., Guan Y.J., Butt K.M., Wong K.L., Chan K.W., Lim W., Shortridge K.F., Yuen K.Y., Peiris J.S., Poon L.L. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China // Science. 2003. V. 302. № 5643. P. 276–278. https://doi.org/10.1126/science.1087139

  33. Guo H., Guo A., Wang C., Yan B., Lu H., Chen H. Expression of feline angiotensin converting enzyme 2 and its interaction with SARS-CoV S1 protein // Res. Vet. Sci. 2008. V. 84. № 3. P. 494–496. https://dx.doi.org/10.1016%2Fj.rvsc.2007.05.011

  34. Haagmans B.L., van den Brand J.M., Provacia L.B., Raj V.S., Stittelaar K.J., Getu S., de Waal L., Bestebroer T.M., van Amerongen G., Verjans G.M., Fouchier R.A., Smits S.L., Kuiken T., Osterhaus A.D. Asymptomatic Middle East respiratory syndrome coronavirus infection in rabbits // J. Virol. 2015. V. 89. № 11. P. 6131–6135. https://dx.doi.org/10.1128%2FJVI.00661-15

  35. Hawkins J.A., Kaczmarek M.E., Müller M.A., Drosten C., Press W.H., Sawyer S.L. A metaanalysis of bat phylogenetics and positive selection based on genomes and transcriptomes from 18 species // Proc. Natl Acad. Sci. USA. 2019. V. 116. № 23. P. 11351–11360. https://dx.doi.org/10.1073%2Fpnas.1814995116

  36. Heckert R.A., Saif L.J., Hoblet K.H., Agnes A.G. A longitudinal study of bovine coronavirus enteric and respiratory infections in dairy calves in two herds in Ohio // Vet. Microbiol. 1990. V. 22. № 2–3. P. 187–201. https://dx.doi.org/10.1016%2F0378-1135(90)90106-6

  37. Jaimes J.A., Whittaker G.R. Feline coronavirus: Insights into viral pathogenesis based on the spike protein structure and function // Virology. 2018. V. 517. P. 108–121. https://dx.doi.org/10.1016%2Fj.virol.2017.12.027

  38. Ji W., Wang W., Zhao X., Zai J., Li X. Cross-species transmission of the newly identified coronavirus 2019-nCoV // J. Med. Virol. 2020. V. 92. № 4. P. 433–440. https://dx.doi.org/10.1002%2Fjmv.25682

  39. Kaneshima T., Hohdatsu T., Hagino R., Hosoya S., Nojiri Y., Murata M., Takano T., Tanabe M., Tsunemitsu H., Koyama H. The infectivity and pathogenicity of a group 2 bovine coronavirus in pups // J. Vet. Med. Sci. 2007. V. 69. № 3. P. 301–303. https://doi.org/10.1292/jvms.69.301

  40. Kanmani P., Albarracin L., Kobayashi H., Hebert E.M., Saavedra L., Komatsu R., Gatica B., Miyazaki A., Ikeda-Ohtsubo W., Suda Y., Aso H., Egusa S., Mishima T., Salas-Burgos A., Takahashi H., Villena J., Kitazawa H. Genomic characterization of Lactobacillus delbrueckii TUA4408L and evaluation of the antiviral activities of its extracellular polysaccharides in porcine intestinal epithelial cells // Front. Immunol. 2018. V. 9. P. 2178. https://doi.org/10.3389/fimmu.2018.02178

  41. Lam T.T., Jia N., Zhang Y.W., Shum M.H., Jiang J.F., Zhu H.C., Tong Y.G., Shi Y.X., Ni X.B., Liao Y.S., Li W.J., Jiang B.G., Wei W., Yuan T.T., Zheng K., Cui X.M., Li J., Pei G.Q., Qiang X., Cheung W.Y., Li L.F., Sun F.F., Qin S., Huang J.C., Leung G.M., Holmes E.C., Hu Y.L., Guan Y., Cao W.C. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins // Nature. 2020. V. 583. № 7815. P. 282–285. https://doi.org/10.1038/s41586-020-2169-0

  42. Lau S.K., Woo P.C., Li K.S., Huang Y., Tsoi H.W., Wong B.H., Wong S.S., Leung S.Y., Chan K.H., Yuen K.Y. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats // Proc. Natl Acad. Sci. USA. 2005. V. 102. № 39. P. 14040–14045. https://dx.doi.org/10.1073%2Fpnas.0506735102

  43. Lau S.K.P., Zhang L., Luk H.K.H., Xiong L., Peng X., Li K.S.M., He X., Zhao P.S., Fan R.Y.Y., Wong A.C.P., Ahmed S.S., Cai J.P., Chan J.F.W., Sun Y., Jin D., Chen H., Lau T.C.K., Kok R.K.H., Li W., Yuen K.Y., Woo P.C.Y. Receptor usage of a novel bat lineage C betacoronavirus reveals evolution of Middle East respiratory syndrome-Related coronavirus spike proteins for human dipeptidyl peptidase 4 binding // J. Infect. Dis. 2018. V. 218. № 2. P. 197–207. https://dx.doi.org/10.1093%2Finfdis%2Fjiy018

  44. Le Poder S. Feline and canine coronaviruses: common genetic and pathobiological features // Adv. Virol. 2011. V. 2011. P. 609465. https://dx.doi.org/10.1155%2F2011%2F609465

  45. Li W., Shi Z., Yu M., Ren W., Smith C., Epstein J.H., Wang H., Crameri G., Hu Z., Zhang H., Zhang J., McEachern J., Field H., Daszak P., Eaton B.T., Zhang S., Wang L.F. Bats are natural reservoirs of SARS-like coronaviruses // Science. 2005. V. 310. № 5748. P. 676–679. https://doi.org/10.1126/science.1118391

  46. Li X., Luk H.K.H., Lau S.K.P., Woo P.C.Y. Human Coronaviruses: General Features // Ref. Mod. Biomed. Sci. 2019. P. B978-0-12-801238-3.95704-0. https://dx.doi.org/10.1016%2FB978-0-12-801238-3.95704-0

  47. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., Wang W., Song H., Huang B., Zhu N., Bi Y., Ma X., Zhan F., Wang L., Hu T., Zhou H., Hu Z., Zhou W., Zhao L., Chen J., Meng Y., Wang J., Lin Y., Yuan J., Xie Z., Ma J., Liu W.J., Wang D., Xu W., Holmes E.C., Gao G.F., Wu G., Chen W., Shi W., Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding // Lancet. 2020. V. 395. № 10224. P. 565–574. https://dx.doi.org/10.1016%2FS0140-6736(20)30251-8

  48. Lu S., Wang Y., Chen Y., Wu B., Qin K., Zhao J., Lou Y., Tan W. Discovery of a novel canine respiratory coronavirus support genetic recombination among betacoronavirus1 // Virus. Res. 2017. V. 237. P. 7–13. https://dx.doi.org/10.1016%2Fj.virusres.2017.05.006

  49. Luo C.M., Wang N., Yang X.L., Liu H.Z., Zhang W., Li B., Hu B., Peng C., Geng Q.B., Zhu G.J., Li F., Shi Z.L. Discovery of novel bat coronaviruses in South China that use the same receptor as Middle East respiratory syndrome coronavirus // J. Virol. 2018. V. 92. № 13. P. e00116–00118. https://dx.doi.org/10.1128%2FJVI.00116-18

  50. Martina B.E., Haagmans B.L., Kuiken T., Fouchier R.A., Rimmelzwaan G.F., Van Amerongen G., Peiris J.S., Lim W., Osterhaus A.D. Virology: SARS virus infection of cats and ferrets // Nature. 2003. V. 425. № 6961. P. 915. https://dx.doi.org/10.1038%2F425915a

  51. Milewska A., Nowak P., Owczarek K., Szczepanski A., Zarebski M., Hoang A., Berniak K., Wojarski J., Zeglen S., Baster Z., Rajfur Z., Pyrc K. Entry of Human Coronavirus NL63 into the cell // J. Virol. 2018. V. 92. № 3. P. e01933–01917. https://dx.doi.org/10.1128%2FJVI.01933-17

  52. Milne-Price S., Miazgowicz K.L., Munster V.J. The emergence of the Middle East respiratory syndrome coronavirus // Pathog. Dis. 2014. V. 71. № 2. P. 121–136. https://dx.doi.org/10.1111%2F2049-632X.12166

  53. Mingmongkolchai S., Panbangred W. Bacillus probiotics: an alternative to antibiotics for livestock production // J. Appl. Microbiol. 2018. V. 124. № 6. P. 1334–1346. https://doi.org/10.1111/jam.13690

  54. Mohd H.A., Al-Tawfiq J.A., Memish Z.A. Middle East Respiratory Syndrome Coronavirus (MERS-CoV) origin and animal reservoir // Virol. J. 2016. V. 13. P. 87. https://dx.doi.org/10.1186%2Fs12985-016-0544-0

  55. Ogando N.S., Ferron F., Decroly E., Canard B., Posthuma C.C., Snijder E.J. The Curious Case of the Nidovirus Exoribonuclease: Its Role in RNA Synthesis and Replication Fidelity // Front. Microbiol. 2019. V. 10. P. 1813. https://dx.doi.org/10.3389%2Ffmicb.2019.01813

  56. Omrani A.S., Al-Tawfiq J.A., Memish Z.A. Middle East respiratory syndrome coronavirus (MERS-CoV): animal to human interaction // Pathog. Glob. Health. 2015. V. 109. № 8. P. 354–362. https://dx.doi.org/10.1080%2F20477724.2015.1122852

  57. Pavlovich S.S., Lovett S.P., Koroleva G., Guito J.C., Arnold C.E., Nagle E.R., Kulcsar K., Lee A., Thibaud-Nissen F., Hume A.J., Mühlberger E., Uebelhoer L.S., Towner J.S., Rabadan R., Sanchez-Lockhart M., Kepler T.B., Palacios G. The Egyptian Rousette Genome Reveals Unexpected Features of Bat Antiviral Immunity // Cell. 2018. V. 173. № 5. P. 1098–1110.e18. https://dx.doi.org/10.1016%2Fj.cell.2018.03.070

  58. Perlman S., Netland J. Coronaviruses post-SARS: update on replication and pathogenesis // Nat. Rev. Microbiol. 2009. V. 7. P. 439–450. https://doi.org/10.1038/nrmicro2147

  59. Petrosillo N., Viceconte G., Ergonul O., Ippolito G., Petersen E. COVID-19, SARS and MERS: are they closely related? // Clin. Microbiol. Infect. 2020. V. 26. № 6. P. 729–734. https://dx.doi.org/10.1016%2Fj.cmi.2020.03.026

  60. Raj V.S., Smits S.L., Provacia L.B., van den Brand J.M., Wiersma L., Ouwendijk W.J., Bestebroer T.M., Spronken M.I., van Amerongen G., Rottier P.J., Fouchier R.A., Bosch B.J., Osterhaus A.D., Haagmans B.L. Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus // J. Virol. 2014a. V. 88. № 3. P. 1834–1838. https://dx.doi.org/10.1128%2FJVI.02935-13

  61. Raj V.S., Farag E.A., Reusken C.B., Lamers M.M., Pas S.D., Voermans J., Smits S.L., Osterhaus A.D., Al-Mawlawi N., Al-Romaihi H.E., AlHajri M.M., El-Sayed A.M., Mohran K.A., Ghobashy H., Alhajri F., Al-Thani M., Al-Marri S.A., El-Maghraby M.M., Koopmans M.P., Haagmans B.L. Isolation of MERS coronavirus from a dromedary camel, Qatar, 2014 // Emerg. Infect. Dis. 2014b. V. 20. № 8. P. 1339–1342. https://dx.doi.org/10.3201%2Feid2008.140663

  62. Sabir J.S., Lam T.T., Ahmed M.M., Li L., Shen Y., Abo-Aba S.E., Qureshi M.I., Abu-Zeid M., Zhang Y., Khiyami M.A., Alharbi N.S., Hajrah N.H., Sabir M.J., Mutwakil M.H., Kabli S.A., Alsulaimany F.A., Obaid A.Y., Zhou B., Smith D.K., Holmes E.C., Zhu H., Guan Y. Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia // Science. 2016. V. 351. № 6268. P. 81–84. https://doi.org/10.1126/science.aac8608

  63. Samara E.M., Abdoun K.A. Concerns about misinterpretation of recent scientific data implicating dromedary camels in epidemiology of Middle East respiratory syndrome (MERS) // mBio. 2014. V. 5. № 4. P. e01430–01414. https://dx.doi.org/10.1128%2FmBio.01430-14

  64. Sazmand A., Joachim A., Otranto D. Zoonotic parasites of dromedary camels: so important, so ignored // Parasit. Vectors. 2019. V. 12. № 1. P. 610. https://dx.doi.org/10.1186%2Fs13071-019-3863-3

  65. Sekar A., Packyam M., Kim K. Growth enhancement of shrimp and reduction of shrimp infection by Vibrio parahaemolyticus and white spot syndrome virus with dietary administration of Bacillus sp. Mk22 // Microb. Biotechnol. Lett. 2016. V. 44. P. 261–267. https://doi.org/10.4014/mbl.1605.05001

  66. Shi J., Wen Z., Zhong G., Yang H., Wang C., Huang B., Liu R., He X., Shuai L., Sun Z., Zhao Y., Liu P., Liang L., Cui P., Wang J., Zhang X., Guan Y., Tan W., Wu G., Chen H., Bu Z. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2 // Science. 2020. P. eabb7015. https://dx.doi.org/10.1126%2Fscience.abb7015

  67. Shi W., Li J., Zhou H., Gao G.F. Pathogen genomic surveillance elucidates the origins, transmission and evolution of emerging viral agents in China // Sci. China Life Sci. 2017. V. 60. № 12. P. 1317–1330. https://dx.doi.org/10.1007%2Fs11427-017-9211-0

  68. So R.T.Y., Chu D.K.W., Miguel E., Perera R.A.P.M., Oladipo J.O., Fassi-Fihri O., Aylet G., Ko R.L.W., Zhou Z., Cheng M.S., Kuranga S.A., Roger F.L., Chevalier V., Webby R.J., Woo P.C.Y., Poon L.L.M., Peiris M. Diversity of Dromedary Camel Coronavirus HKU23 in African Camels Revealed Multiple Recombination Events among Closely Related Betacoronaviruses of the Subgenus Embecovirus // J. Virol. 2019. V. 93. № 23. P. 1–18. https://doi.org/10.1128/JVI.01236-19

  69. Sun J., He W.T., Wang L., Lai A., Ji X., Zhai X., Li G., Suchard M.A., Tian J., Zhou J., Veit M., Su S. COVID-19: Epidemiology, evolution, and cross-disciplinary perspectives // Trends. Mol. Med. 2020. V. 26. № 5. P. 483–495. https://dx.doi.org/10.1016%2Fj.molmed.2020.02.008

  70. Tang X., Wu C., Li X., Song Y., Yao X., Wu X., Duan Y., Zhang H., Wang Y., Qian Z., Cui J., Lu J. On the origin and continuing evolution of SARS-CoV-2 // Nat. Sci. Rev. 2020. nwaa036. https://doi.org/10.1093/nsr/nwaa036

  71. Temmam S., Barbarino A., Maso D., Behillil S., Enouf V., Huon C., Jaraud A., Chevallier L., Backovic M., Pérot P., Verwaerde P., Tiret L., van der Werf S., Eloit M. Absence of SARS-CoV-2 infection in cats and dogs in close contact with a cluster of COVID-19 patients in a veterinary campus // bioRxiv. 2020. [Epub ahead of print]https://doi.org/10.1101/2020.04.07.029090

  72. Tseng C.T., Sbrana E., Iwata-Yoshikawa N., Newman P.C., Garron T., Atmar R.L., Peters C.J., Couch R.B. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus // PLoS One. 2012. V. 7. № 4. P. e35421. https://doi.org/10.1371/journal.pone.0035421

  73. Tu C., Crameri G., Kong X., Chen J., Sun Y., Yu M., Xiang H., Xia X., Liu S., Ren T., Yu Y., Eaton B.T., Xuan H., Wang L.F. Antibodies to SARS coronavirus in civets // Emerg. Infect. Dis. 2004. V. 10. № 12. P. 2244–2248. https://dx.doi.org/10.3201%2Feid1012.040520

  74. van Boheemen S., de Graaf M., Lauber C., Bestebroer T.M., Raj V.S., Zaki A.M., Osterhaus A.D., Haagmans B.L., Gorbalenya A.E., Snijder E.J., Fouchier R.A. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans // mBio. 2012. V. 3. № 6. P. e00473-12. https://dx.doi.org/10.1128%2FmBio.00473-12

  75. van den Brand J.M., Haagmans B.L., Leijten L., van Riel D., Martina B.E., Osterhaus A.D., Kuiken T. Pathology of experimental SARS coronavirus infection in cats and ferrets // Vet. Pathol. 2008. V. 45. № 4. P. 551–562. https://doi.org/10.1354/vp.45-4-551

  76. Vijgen L., Keyaerts E., Moës E., Thoelen I., Wollants E., Lemey P., Vandamme A.M., Van Ranst M. Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event // J. Virol. 2005. V. 79. № 3. P. 1595–1604. https://dx.doi.org/10.1128%2FJVI.79.3.1595-1604.2005

  77. Vijgen L., Keyaerts E., Lemey P., Maes P., Van Reeth K., Nauwynck H., Pensaert M., Van Ranst M. Evolutionary history of the closely related group 2 coronaviruses: porcine hemagglutinating encephalomyelitis virus, bovine coronavirus, and human coronavirus OC43 // J. Virol. 2006. V. 80. № 14. P. 7270–7274. https://dx.doi.org/10.1128%2FJVI.02675-05

  78. Wicker L.V., Canfield P.J., Higgins D.P. Potential Pathogens Reported in Species of the Family Viverridae and Their Implications for Human and Animal Health // Zoonoses Public Health. 2017. V. 64. № 2. P. 75–93. https://doi.org/10.1111/zph.12290

  79. Widagdo W., Sooksawasdi Na Ayudhya S., Hundie G.B., Haagmans B.L. Host determinants of MERS-CoV transmission and pathogenesis // Viruses. 2019. V. 11. № 3. P. E280. https://doi.org/10.3390/v11030280

  80. Wong A.C.P., Li X., Lau S.K.P., Woo P.C.Y. Global Epidemiology of bat coronaviruses // Viruses. 2019. V. 11. № 2. P. 174. https://dx.doi.org/10.3390%2Fv11020174

  81. Woo P.C., Lau S.K., Fan R.Y., Lau C.C., Wong E.Y., Joseph S., Tsang A.K., Wernery R., Yip C.C., Tsang C.C., Wernery U., Yuen K.Y. Isolation and characterization of dromedary camel coronavirus UAE-HKU23 from dromedaries of the Middle East: minimal serological cross-reactivity between MERS coronavirus and dromedary camel coronavirus UAE-HKU23 // Int. J. Mol. Sci. 2016. V. 17. № 5. P. 691. https://dx.doi.org/10.3390%2Fijms17050691

  82. Woo P.C., Lau S.K., Wernery U., Wong E.Y., Tsang A.K., Johnson B., Yip C.C., Lau C.C., Sivakumar S., Cai J.P., Fan R.Y., Chan K.H., Mareena R., Yuen K.Y. Novel betacoronavirus in dromedaries of the Middle East, 2013 // Emerg. Infect. Dis. 2014. V. 20. № 4. P. 560–572. https://dx.doi.org/10.3201%2Feid2004.131769

  83. Wu D., Tu C., Xin C., Xuan H., Meng Q., Liu Y., Yu Y., Guan Y., Jiang Y., Yin X., Crameri G., Wang M., Li C., Liu S., Liao M., Feng L., Xiang H., Sun J., Chen J., Sun Y., Gu S., Liu N., Fu D., Eaton B.T., Wang L.F., Kong X. Civets are equally susceptible to experimental infection by two different severe acute respiratory syndrome coronavirus isolates // J. Virol. 2005. V. 79. № 4. P. 2620–2625. https://dx.doi.org/10.1128%2FJVI.79.4.2620-2625.2005

  84. Xia X. Extreme genomic CpG deficiency in SARS-CoV-2 and evasion of host antiviral defense // Mol. Biol. Evol. msaa094. 2020. [Epub ahead of print]https://doi.org/10.1093/molbev/msaa094

  85. Xiao Y., Meng Q., Yin X., Guan Y., Liu Y., Li C., Wang M., Liu G., Tong T., Wang L.F., Kong X., Wu D. Pathological changes in masked palm civets experimentally infected by severe acute respiratory syndrome (SARS) coronavirus // J. Comp. Pathol. 2008. V. 138. № 4. P. 171–179. https://dx.doi.org/10.1016%2Fj.jcpa.2007.12.005

  86. Yang Y., Peng F., Wang R., Guan K., Jiang T., Xu G., Sun J., Chang C. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China // J. Autoimmun. 2020. V. 109. P. 102434. https://dx.doi.org/10.1016%2Fj.jaut.2020.102434

  87. Ye Z.W., Yuan S., Yuen K.S., Fung S.Y., Chan C.P., Jin D.Y. Zoonotic origins of human coronaviruses // Int. J. Biol. Sci. 2020. V. 16. № 10. P. 1686–1697. https://dx.doi.org/10.7150%2Fijbs.45472

  88. Zhang G., Cowled C., Shi Z., Huang Z., Bishop-Lilly K.A., Fang X., Wynne J.W., Xiong Z., Baker M.L., Zhao W., Tachedjian M., Zhu Y., Zhou P., Jiang X., Ng J., Yang L., Wu L., Xiao J., Feng Y., Chen Y., Sun X., Zhang Y., Marsh G.A., Crameri G., Broder C.C., Frey K.G., Wang L.F., Wang J. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity // Science. 2013. V. 339. № 6118. P. 456–460. https://doi.org/10.1126/science.1230835

  89. Zhang Q., Zhang H., Huang K., Yang Y., Hui X., Gao J., He X., Li C., Gong W., Zhang Y., Peng C., Gao X., Chen H., Zou Z., Shi Z., Jin M. SARS-CoV-2 neutralizing serum antibodies in cats: a serological investigation // bioRxiv. 2020. [Epub ahead of print]https://doi.org/10.1101/2020.04.01.021196

  90. Zhao S., Li W., Schuurman N., van Kuppeveld F., Bosch B.J., Egberink H. Serological screening for coronavirus infections in cats // Viruses. 2019. V. 11. № 8. P. 743. https://dx.doi.org/10.3390%2Fv11080743

  91. Zhu S., Zimmerman D., Deem S.L. A review of zoonotic pathogens of dromedary camels // Ecohealth. 2019. V. 16. № 2. P. 356–377. https://doi.org/10.1007/s10393-019-01413-7

Дополнительные материалы отсутствуют.