Известия РАН. Серия физическая, 2023, T. 87, № 2, стр. 201-207

Аптасенсоры на основе трековых мембран с наноструктурированным слоем серебра для определения вирусов гриппа А и Б

В. И. Кукушкин 1, О. В. Криставчук 2, Г. А. Жданов 3, А. К. Кешек 3, А. С. Гамбарян 4, Е. В. Андреев 2, А. Н. Нечаев 2, Е. Г. Завьялова 3*

1 Федеральное государственное бюджетное учреждение науки Институт физики твердого тела имени Ю.А. Осипьяна Российской академии наук
Черноголовка, Россия

2 Международная межправительственная научно-исследовательская организация Объединенный институт ядерных исследований
Дубна, Россия

3 Федеральное государственное бюджетное образовательное учреждение высшего образования “Московский государственный университет имени М.В. Ломоносова”
Москва, Россия

4 Федеральное государственное автономное научное учреждение “Федеральный научный центр исследований и разработки иммунобиологических препаратов имени М.П. Чумакова Российской академии наук” (Институт полиомиелита)
Москва, Россия

* E-mail: zlenka2006@gmail.com

Поступила в редакцию 17.09.2022
После доработки 05.10.2022
Принята к публикации 26.10.2022

Полный текст (HTML)

Аннотация

Предложен биосенсор на основе трековой мембраны из полиэтилентерефталата с покрытием из наночастиц серебра для определения вирусов гриппа А и Б с использованием аптамеров для специфической сорбции вирусов на поверхности мембраны, а также для введения раман-активной или флуоресцентной метки. Аналитический сигнал регистрировали с помощью рамановского спектрометра, наблюдая эффекты поверхностного усиления интенсивности оптических откликов от меток.

Полный текст статьи недоступен в настоящий момент.

Список литературы

  1. Кукушкин В.И., Гришина Я.В., Соловьев В.В. и др. // Письма ЖЭТФ. 2017. Т. 105. С. 637; Kukushkin V.I., Grishina Y.V., Solov’ev V.V. et al. // JETP Lett. 2017. V. 105. P. 677.

  2. Кукушкин В.И., Гришина Я.В., Егоров С.В. и др. // Письма ЖЭТФ. 2016. Т. 103. С. 572; Kukushkin V.I., Grishina Y.V., Egorov S.V. et al. // JETP Lett. 2016. V. 103. P. 508.

  3. Белик А.Я., Кукушкин В.И., Рыбин А.Я. и др. // Докл. РАН. 2018. Т. 481. С. 270; Belik A.Y., Kukushkin V.I., Rybkin A.Y. et al. // Dokl. Phys. Chem. 2018. V. 481. P. 95.

  4. Kukushkin V.I., Mukhametzhanov I.M., Kukushkin I.V. et al. // Phys. Rev. B. V. 90. Art. No. 235313.

  5. Perumal J., Wang Y., Attia A.B.E. et al. // Nanoscale. 2021. V. 13. No. 2. P. 553.

  6. Ambartsumyan O., Gribanyov D., Kukushkin V. et al. // Int. J. Mol. Sci. 2020. V. 21. No. 9. Art. No. 3373.

  7. Eskandari V., Sahbafar H., Zeinalizad L., Hadi A. // ISSS J. Micro Smart Syst. 2022. V. 11. P. 363.

  8. Zavyalova E., Tikhonova D., Zhdanov G. et al. // Analyt. Chim. Acta. 2022. V. 1221. Art. No. 340140.

  9. Kukushkin V.I., Ivanov N.M., Novoseltseva A.A. et al. // PLoS One. 2019. V. 14. No. 4. Art. No. e0216247.

  10. Ye J., Yeh Y.T., Xue Y. et al. // Proc. National. Acad. Sci. USA. 2022. V. 119. No. 23. Art. No. e2118836119.

  11. Lin Y.-J., Wu C.-Y., Li T. et al. // J. Biosens. Bioelectron. 2014. V. 5. P. 2.

  12. Lee J.H., Kim B.C., Oh B.K., Choi J.W. // J. Biomed. Nanotechnol. 2015. V. 11. No. 12. P. 2223.

  13. Adachi T., Nakamura Y. // Molecules. 2019. V. 24. No. 23. Art. No. 4229.

  14. Ni S., Zhuo Z., Pan Y. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13. No. 8. P. 9500.

  15. Жданов Г.А., Грибанев Д.А., Гамбарян А.С. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 4. С. 527; Zhdanov G.A., Gribanyov D.A., Gambaryan A.S. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 4. P. 434.

  16. Zhdanov G., Nyhrikova E., Meshcheryakova N. et al. // Front. Chem. 2022. V. 10. Art. No. 937180.

  17. Kristavchuk O.V., Nikiforov I.V., Kukushkin V.I. et al. // Colloid J. 2017. V. 79. P. 637.

  18. Laserna J.J., Campiglia A.D., Winefordner J.D. // Analyt. Chim. Acta. 1988. V. 208. P. 21.

  19. Muniz-Miranda M., Neto N., Sbrana G. // J. Mol. Struct. 1997. V. 410. P. 205.

  20. Taurozzi J.S., Tarabara V.V. // Environ. Engin. Sci. 2007. V. 24. No. 1. P. 122.

  21. Apel P.Yu. // Rad. Inst. 1995. V. 25. No. 1–4. P. 667.

  22. Bizyaeva A.A., Bunin D.A., Moiseenko V.L. et al. // Int. J. Mol. Sci. 2021. V. 22. No. 5. Art. No. 2409.

  23. Novoseltseva A.A., Ivanov N.M., Novikov R.A. et al. // Biomolecules. 2020. V. 10. No. 1. P. 119.

  24. Musafia B., Oren-Banaroya R., Noiman S. // PLoS One. 2014. V. 9. No. 5. Art. No. e97696.

  25. Zavyalova E., Kopylov A. // In: Nanostructures for the engineering of cells, tissues and organs. From design to applications. Chennai: William Andrew, Elsevier, 2018. 249 p.

  26. Серебренникова С.И., Кукушкин В.И., Криставчук О.В. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 4. С. 516; Serebrennikova S.I., Kukushkin V.I., Kristavchuk O.V. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 4. P. 423.

  27. Herrmann B., Larsson C., Zweygberg B.W. // J. Clin. Microbiol. 2001. V. 39. P. 134.

  28. Chan K.-H., To K.K.W., Chan J.F.W. et al. // J. Clin. Microbiol. 2013. V. 51. P. 3160.

  29. Peters T.R., Blakeney E., Vannoy L., Poehling K.A. // Diagnostic Microbiol. Infect. Dis. 2013. V. 75. P. 200.

Дополнительные материалы отсутствуют.