Известия РАН. Механика твердого тела, 2022, № 5, стр. 141-149
РАСПРОСТРАНЕНИЕ ПЛОСКОГО УДАРНОГО ФРОНТА В УПРУГОМ СЛОЕ
a Московский Государственный строительный университет
Москва, Россия
* E-mail: avi_56@mail.ru
Поступила в редакцию 24.01.2022
После доработки 03.02.2022
Принята к публикации 04.02.2022
- EDN: RCABUC
- DOI: 10.31857/S0572329922050075
Полные тексты статей выпуска доступны только авторизованным пользователям.
Аннотация
Исследуется задача о волновом фронте в анизотропном упругом слое. Показано, что в случае упругой изотропии однородная волна с плоским фронтом в слое возможна лишь в одном частном случае, при нулевом коэффициенте Пуассона. В других случаях для существования волны с плоским фронтом, волна должна быть неоднородной по отношению к трансверсальной координате. Аналитическое решение, обеспечивающее существование плоского ударного волнового фронта, получено впервые.
Полные тексты статей выпуска доступны только авторизованным пользователям.
Список литературы
Strutt J.W. (Lord Rayleigh) On wave propagating along the plane surface of an elastic solid // Proc. London Math. Soc. 1885. V. 17. P. 4–11.
Farnell G.W. Properties of elastic surface waves // Phys. Acoust. 1970. V. 6. P. 109–166.
Ventura P., Hodre J.M., Desbois J., Solal M. Combined FEM and Green’s function analysis of periodic SAW structure, application to the calculation of reflection and scattering parameters // IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 2001. V. 48. P. 1259–1274.
Synge J.L. Elastic waves in anisotropic media // J. Math. Phys. 1956. V. 35. P. 323–334.
Stoneley R. The propagation of surface elastic waves in a cubic crystal // Proc. Roy. Soc. 1955. A232. P. 447–458.
Stroh A.N. Steady state problems in anisotropic elasticity // J. Math. Phys. 1962. V. 41. P. 77–103.
Lim T.C., Farnell G.W. Search for forbidden directions of elastic surface-wave propagation in anisotropic crystals // J. Appl. Phys. 1968. V. 39. P. 4319–4325.
Lim T.C., Farnell G.W. Character of pseudo surface waves on anisotropic crystals // J. Acoust. Soc. Amer. 1969. V. 45. P. 845–851.
Farnell G.W. Properties of elastic surface waves // Phys. Acoust. 1970. V. 6. P. 109–166.
Bauerschmidt P., Lerch R., Machui J., Ruile W., Visintini G. Reflection and transmission coefficients of SAW in a periodic grating computed by finite element analysis // Proc. IEEE Ultrasonics Symposium. 1990. P. 421–423. https://doi.org/10.1109/ULTSYM.1990.171400
Davies R.M. A critical study of the Hopkinson pressure bar // Phil. Trans. R. Soc. 1948. V. A240. P. 375–457.
Mindlin R.D., Hermann G. A one-dimensional theory of compressive waves in an elastic rod // Proc. First U.S. National Congress Appl. Mech. Chicago, 1955.
Haskell N.A. Dispersion of surface waves on multilayered media // Bull. Seismol. Soc. America. 1953. V. 43. № 1. P. 17–34.
Knopoff L. A matrix method for elastic wave problems // Bull. Seismol. Soc. America. 1964. V. 54. № 1. P. 431–438.
Graff K.F. Wave Motion in Elastic Solids. New York: Dover Publ., 1975. 649 p.
Ting T.C.T. Anisotropic elasticity: theory and applications. New York: Oxford Univ. Press, 1996.
Kravtsov A.V. et al. Finite element models in Lamb’s problem // Mech. Solids. 2011. V. 46. P. 952–959. https://doi.org/10.3103/S002565441106015X
Fortunato D., Hale N., Townsend A. The ultraspherical spectral element method // J. Comput. Phys. 2021. V. 436. P. 110087. https://doi.org/10.1016/j.jcp.2020.110087
Orszag S.A. Spectral methods for problems in complex geometries // J. Comput. Phys. 1980. V. 37. P. 70–92. https://doi.org/10.1016/0021-9991(80)90005-4
Martinsson P. A direct solver for variable coefficient elliptic PDEs discretized via a composite spectral collocation method // J. Comput. Phys. 2013. V. 242 P. 460–479. https://doi.org/10.1016/j.jcp.2013.02.019
Babb T., Gillman A., Hao S., Martinsson P.-G. An accelerated Poisson solver based on multidomain spectral discretization // BIT Numer. Math. 2018. V. 58. P. 851–879. https://doi.org/10.1007/s10543-018-0714-0
Chua C., Stoffab P.L. Nonuniform grid implicit spatial finite difference method for acoustic wave modeling in tilted transversely isotropic media // J. Appl. Geophys. 2012. V. 76. P. 44–49.
Falk J., Tessmer E., Gajewski D. Efficient finite-difference modelling of seismic waves using locally adjustable time steps // Geophys. Prospecting. 1998. V. 46. P. 603–616.
Moczo P., Kristek J., Galis M., Pazak P. On accuracy of the finite-difference and finite-element schemes with respect to p-wave to s-wave speed ratio // Geophys. J. Int. 2010. V. 182. P. 493–510.
Antunes A.J.M., Leal-Toledo R.C.P., Filho O.T.S., Toledo, Elson M. Finite difference method for solving acoustic wave equation using locally adjustable time-steps // Procedia Computer Sci. 2014. V. 29. P. 627–636. https://doi.org/10.1016/j.procs.2014.05.056
Oliveira S.A.M. A fourth-order finite-difference method for the acoustic wave equation on irregular grids // Geophys. 2003. V. 68 (2). P. 672–676.
Wu T.W. Boundary Element Acoustics: Fundamentals and Computer Codes. Advances in Boundary Elements. Southampton, Boston: Witpress, 2000.
Silva J.J.R. Acoustic and Elastic Wave Scattering using Boundary Elements. Southampton: Computational Mechanics Publications, 1994.
Wang X., Chen H., Zhang J. An efficient boundary integral equation method for multi-frequency acoustics analysis // Eng. Anal. Boundary Elem. 2015. V. 61. P. 282–286. https://doi.org/10.1016/j.enganabound.2015.08.006
Zhang Y.O., Zhang T., Ouyang H., Li T.Y. SPH simulation of acoustic waves: Effects of frequency, sound pressure, and particle spacing // Math. Problems Eng. 2015. V. 2015. P. 348314. P. 1–7. https://doi.org/10.1155/2015/348314
Wang Sh., Zhang Y.O., Wu J.P. Lagrangian meshfree finite difference particle method with variable smoothing length for solving wave equations // Adv. Mech. Eng. 2018. V. 10 (7). P. 1–12. https://doi.org/10.1177/1687814018789248
Cleckler J., Elghobashi S., Liu F. On the motion of inertial particles by sound waves // Phys. Fluids. 2012. V. 24 (3). P. 033301. https://doi.org/10.1063/1.3696243
Gogoladze V.G. Dispersion of Rayleigh waves in a layer // Publ. Inst. Seism. Acad. Sci. U.R.S.S. 1947. V. 119. P. 27–38.
Thomson W.T. Transmission of elastic waves through a stratified solid medium // J. Appl. Phys. 1950. V. 21 (2). P. 89–93.
Kuznetsov S.V. SH-waves in laminated plates // Quart. Appl. Math. 2006. V. 64 (1). P. 153–165. https://doi.org/10.1090/s0033-569x-06-00992-1
Evans R.B. The decoupling of seismic waves // Wave Motion. 1986. V. 8 (4). P. 321–328.
Kuznetsov S.V. Abnormal dispersion of Lamb waves in stratified media // Z. Angew. Math. Phys. 2019. V. 70. P. 175. https://doi.org/10.1007/s00033-019-1222-z
Ilyashenko A. et al. SH waves in anisotropic (monoclinic) media // Z. Angew. Math. Phys. 2018. V. 69. P. 17. https://doi.org/10.1007/s00033-018-0916-y
Goldstein R.V. Rayleigh waves and resonance phenomena in elastic bodies // J. Appl. Math. Mech. 1965. V. 29 (3). P. 608–619. https://doi.org/10.1016/0021-8928(65)90066-3
Goldstein R.V., Kuznetsov S.V. Long-wave asymptotics of Lamb waves // Mech. Solids. 2017. V. 52. P. 700–707. https://doi.org/10.3103/S0025654417060097
Argatov I., Iantchenko A. Rayleigh surface waves in functionally graded materials – long-wave limit // 2019. Quart. J. Mech. Appl. Math. V. 72 (2) P. 197–211. https://doi.org/10.1093/qjmam/hbz002
Kaplunov J., Prikazchikov D. Asymptotic theory for Rayleigh and Rayleigh-type waves // Adv. Appl. Mech. 2017. V. 50. P. 1–106. https://doi.org/10.1016/bs.aams.2017.01.001
Craster R.V., Joseph L.M., Kaplunov J. Long-wave asymptotic theories: The connection between functionally graded waveguides and periodic media // Wave Motion 2014. V. 51 (4). P. 581–588. https://doi.org/10.1016/j.wavemoti.2013.09.007
Wootton P.T., Kaplunov J., Prikazchikov D. A second order asymptotic model for Rayleigh waves on a linearly elastic half plane // IMA J. Appl. Math. 2020. V. 85 (1). P. 113–131. https://doi.org/10.1093/imamat/hxz037
Djeran-Maigre I. et al. Solitary SH waves in two-layered traction-free plates // Comptes Rendus. Mec. 2008. V. 336 (1–2). P. 102–107. https://doi.org/10.1016/j.crme.2007.11.001
Karman T., Duwez P. The propagation of plastic deformation in solids // J. Appl. Phys. 1950. V. 21. P. 987–994. https://doi.org/10.1063/1.1699544
Knowles J. Impact-induced tensile waves in a rubberlike material // J. Appl. Math. 2002. V. 62. P. 1153–1175. /https://doi.org/10.1137/S0036139901388234
Molinari A., Ravichandran G. Fundamental structure of steady plastic shock waves in metals // J. Appl. Phys. 2004. V. 95. P. 1718–1732. https://doi.org/10.1063/1.1640452
Kuznetsova M., Khudyakov M., Sadovskii V. Wave propagation in continuous bimodular media // Mech. Adv. Mater. Struct. 2021. https://doi.org/10.1080/15376494.2021.1889725
Hafskjold B., Bedeaux D., Kjelstrup S., Wilhelmsen Ø. Theory and simulation of shock waves: Entropy production and energy conversion // Phys. Rev. Ser. E. 2021. V. 104 (1). https://doi.org/10.1103/physreve.104.014131
Ilyashenko A.V. et al. Pochhammer–Chree waves: polarization of the axially symmetric modes // Arch. Appl. Mech. 2018. V. 88. P. 1385–1394. https://doi.org/10.1007/s00419-018-1377-7
Ilyashenko A.V. Pochhammer–Cree Longitudinal Waves: Anomalous Polarization // Mech. Solids. 2019. V. 54. P. 598–606. https://doi.org/10.3103/S0025654419040149
Мокряков В.В. Максимумы напряжений в продольных волнах Похгаммера–Кри // Изв. РАН. МТТ. 2019. № 5. С. 86–103. https://doi.org/10.1134/S057232991905012X
Гаджибеков Т.А., Ильяшенко А.В. Теоретические аспекты применения волн Похгаммера–Кри к задачам определения динамического коэффициента Пуассона // Изв. РАН. МТТ. 2021. № 5. С. 113–126. https://doi.org/10.31857/S0572329921050044
Дополнительные материалы отсутствуют.
Инструменты
Известия РАН. Механика твердого тела