Микология и фитопатология, 2021, T. 55, № 1, стр. 36-50

Ферментативная и антимикробная активность полярных штаммов почвенных микроскопических грибов

Д. А. Никитин 1*, В. С. Садыкова 24**, А. Е. Куварина 2***, А. Г. Дах 2****, М. В. Бирюков 3*****

1 Почвенный институт им. В.В. Докучаева
119017 Москва, Россия

2 Научно-исследовательский институт по изысканию новых антибиотиков им. Г.Ф. Гаузе РАН
119021 Москва, Россия

3 Московский государственный университет имени М.В. Ломоносова
119991 Москва, Россия

4 Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова
117997 Москва, Россия

* E-mail: dimnik90@mail.ru
** E-mail: sadykova_09@mail.ru
*** E-mail: nastena.lysenko@mail.ru
**** E-mail: alex1_96@list.ru
***** E-mail: metrim@gmail.com

Поступила в редакцию 10.04.2020
После доработки 15.09.2020
Принята к публикации 19.11.2020

Аннотация

Оценена способность к продукции вторичных метаболитов: индуцибельных ферментов (некоторые гидролазы и оксидазы) и антибиотиков для почвенных штаммов микромицетов Арктики (Земля Франца-Иосифа, Новая Земля) и Антарктиды (оазисы Холмы Тала, Холмы Ларсеманн, Ширмахера, Земля Мери Бэрд). Максимальная эстеразная активность обнаружена у штаммов типичных антарктических видов Hyphozyma variabilis 218 и Thelebolus ellipsoideus 210 – 51 и 29 нмоль ФДА/г мицелия × час соответственно. Наибольшие значения целлюлолитической активности – 89 мкмоль глюкозы/мг биомассы – отмечены у Ascochyta pisi 192. Активности внеклеточных фенолоксидаз лакказ и пероксидаз среди протестированных штаммов не обнаружено. Антибактериальная активность к B. subtilis ATCC 6633 выявлена у 75% исследованных антарктических штаммов микромицетов. Высокоактивные штаммы выделены из богатых органикой и влагой биотопов с моховым/лишайниковым покровом. Наибольшую активность проявили Paecilomyces marquandii 166, Penicillium janczewskii 165, Penicillium roseopurpureum 169 и Thelebolus ellipsoideus 210. Антагонистическую активность по отношению к антарктическим штаммам бактерий проявляло 77% протестированных штаммов грибов. Максимальное ингибирование обнаружено у штаммов типичных для Антарктиды Antarctomyces psychrotrophicus MT303855, а также эвритопного Sarocladium kiliense MT303856. Антимикотическая активность проявилась у 42% исследованных штаммов. У 38% антарктических штаммов выявлены оба типа активности.

Ключевые слова: Антарктида, антибиотическая активность, Арктика, микроорганизмы, микромицеты, ферментативная активность

DOI: 10.31857/S0026364821010086

Список литературы

  1. Abrashev R., Feller G., Kostadinova N. et al. Production, purification, and characterization of a novel cold-active superoxide dismutase from the Antarctic strain Aspergillus glaucus 363. Fungal biology. 2016. V. 120 (5). P. 679–689. https://doi.org/10.1016/j.funbio.2016.03.002

  2. Al-Maqtari Q.A., Waleed A.-A., Mahdi A.A. Cold-active enzymes and their applications in industrial fields – A review. Int. J. Res. Agric. Sci. 2019. V. 6 (4). P. 2348–3997.

  3. Arenz B.E., Blanchette R.A. Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and McMurdo Dry Valleys. Soil Biology and Biochemistry. 2011. V. 43 (2). P. 308–315. https://doi.org/10.1016/j.soilbio.2010.10.016

  4. Bell T.H., Callender K.L., Whyte L.G. et al. Microbial competition in polar soils: a review of an understudied but potentially important control on productivity. Biology. 2013. V. 2 (2). P. 533–554. https://doi.org/10.3390/biology2020533

  5. Bhange K., Chaturvedi V., Bhatt R. Simultaneous production of detergent stable keratinolytic protease, amylase and biosurfactant by Bacillus subtilis PF1 using agro industrial waste. Biotechnology reports. 2016. V. 10. P. 94–104. https://doi.org/10.1016/j.btre.2016.03.007

  6. Brakhage A.A. Regulation of fungal secondary metabolism. Nature Reviews Microbiology. 2013. V. 11 (1). P. 21–32. https://doi.org/10.1038/nrmicro2916

  7. Bratchkova A., Ivanova V. Bioactive metabolites produced by microorganisms collected in Antarctica and the Arctic. Biotechnology and Biotechnological Equipment. 2011. V. 25 (1). P. 1–7. https://doi.org/10.5504/BBEQ.2011.0116

  8. Castro P., Mendoza L., Vásquez C. et al. Antifungal Activity against Botrytis cinerea of 2,6-Dimethoxy-4-(phenylimino) cyclohexa-2, 5-dienone Derivatives. Molecules. 2019. V. 24 (4). P. 706. https://doi.org/10.3390/molecules24040706

  9. Corry J.E., Curtis G.D., Baird R.M. Handbook of culture media for food and water microbiology. Royal Society of Chemistry, 2011.

  10. Cowan D.A., Makhalanyane T.P., Dennis P.G. et al. Microbial ecology and biogeochemistry of continental Antarctic soils. Frontiers in microbiology. 2014. V. 5. P. 154. https://doi.org/10.3389/fmicb.2014.0015

  11. De Hoog G.S., Gottlich E., Platas G., Genilloud O. et al. Evolution, taxonomy and ecology of the genus Thelebolus in Antarctica. Stud. Mycol. 2005. V. 51. P. 33–76.

  12. Domsch K.H., Gams W., Anderson T.H. Compendium of soil fungi, 2nd taxonomically revised edition by W. Gams. IHW, Eching, 2007.

  13. Dzoyem et al. Cytotoxicity, antioxidant and antibacterial activity of four compounds produced by an endophytic fungus Epicoccum nigrum associated with Entada abyssinica. Rev. Bras. Farmacogn. 2017. V. 27 (2). P. 251–253. https://doi.org/10.1016/j.bjp.2016.08.011

  14. Egorov N.S. Antibiotics: A Scientific Approach. Moscow, 2004 (in Russ.).

  15. Fenice M., Barghini P., Selbmann L. et al. Combined effects of agitation and aeration on the chitinolytic enzymes production by the Antarctic fungus Lecanicillium muscarium CCFEE 5003. Microbial cell factories. 2012. V. 11 (1). P. 12. https://doi.org/10.1186/1475-2859-11-12

  16. Gesheva V. Production of antibiotics and enzymes by soil microorganisms from the windmill islands region, Wilkes Land, East Antarctica. Polar Biol. 2010. V. 33 (10). P. 1351–1357. https://doi.org/10.1007/s00300-010-0824-x

  17. Giudice A.L., Fani R. Antimicrobial Potential of Cold-Adapted Bacteria and Fungi from Polar Regions. In Biotechnology of Extremophiles: Springer International Publishing, 2016. https://doi.org/10.1007/978-3-319-13521-2_3

  18. Glushakova A.M., Kachalkin A.V., Chernov I.Y. Specific features of the dynamics of epiphytic and soil yeast communities in the thickets of Indian balsam on mucky gley soil. Eurasian Soil Science. 2011. V. 44 (8). P. 886–892. https://doi.org/10.1134/S1064229311080059

  19. Gonçalves V.N., Carvalho C.R., Johann S. et al. Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica. Polar Biology. 2015. V. 38 (8). P. 1143–1152. https://doi.org/10.1007/s00300-015-1672-5

  20. Gupta P., Sangwan N., Lal R. et al. Bacterial diversity of Drass, cold desert in Western Himalaya, and its comparison with Antarctic and Arctic. Arch. Microbiol. 2015. V. 197 (6). P. 851–860. https://doi.org/10.1007/s00203-015-1121-4

  21. Gupta R., Kumari A., Syal P. et al. Molecular and functional diversity of yeast and fungal lipases: their role in biotechnology and cellular physiology. Progress in Lipid Research. 2015. V. 57. P. 40–54. https://doi.org/10.1016/j.plipres.2014.12.001

  22. Hamdan A. Psychrophiles: Ecological significance and potential industrial application. South African Journal of Science. 2018. V. 114 (5–6). P. 1–6. https://doi.org/10.17159/sajs.2018/20170254

  23. Henríquez M., Vergara K., Norambuena J. et al. Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential. World J. Microbiol. Biotechnol. 2014. V. 30 (1). P. 65–76. https://doi.org/10.1007/s11274-013-1418-x

  24. Johannes C., Majcherczyk A. Laccase activity tests and laccase inhibitors. J. Biotechnol. 2000. V. 78 (2). P. 193–199. https://doi.org/10.1016/S0168-1656(00)00208-X

  25. Kawaguchi M., Nonaka K., Masuma R. et al. New method for isolating antibiotic-producing fungi. Journal of Antibiotics. 2013. V. 66 (1). P. 17–21. https://doi.org/10.1038/ja.2012.79

  26. Kirtsideli I.Yu., Vlasov D.Yu., Abakumov E.V. et al. The diversity and enzymatic activity of micromycetes from underdeveloped soils of the Coastal Antarctic. Mikologiya i fitopatologiya. 2010. V. 44 (5). P. 387–397 (in Russ.).

  27. Krishnan A., Alias S.A., Wong C.M. et al. Extracellular hydrolase enzyme production by soil fungi from King George Island, Antarctica. Polar biology. 2011. V. 34 (10). P. 1535–1542. https://doi.org/10.1007/s00300-011-1012-3

  28. Kumar A., Kumar A. Synthesis and regulation of fungal secondary metabolites. Springer, Singapore, 2019. https://doi.org/10.1007/978-981-13-8844-6_2

  29. Kümmerer K. Antibiotics in the aquatic environment – a review – part I. Chemosphere. 2009. V. 75. P. 417–434. https://doi.org/10.1016/j.chemosphere.2008.11.086

  30. Lasek R., Dziewit L., Ciok A. et al. Genome content, metabolic pathways and biotechnological potential of the psychrophilic Arctic bacterium Psychrobacter sp. DAB_AL43B, a source and a host of novel Psychrobacter-specific vectors. J. Biotechnol. 2017. V. 263. P. 64–74. https://doi.org/10.1016/j.jbiotec.2017.09.011

  31. Machavariani N.G., Terekhova L.P. Biologically active compounds formed by endophyte microorganisms. Antibiotics and chemotherapy. 2014. V. 59 (5-6). P. 26–33 (in Russ.).

  32. Maggi O., Tosi S., Angelova M., Lagostina E. et al. Adaptation of fungi, including yeasts, to cold environments. Plant Biosystems. 2013. V. 147 (1). P. 247–258. https://doi.org/10.1080/11263504.2012.753135

  33. Marfenina O.E., Nikitin D.A., Ivanova A.E. The structure of mushroom biomass and the diversity of cultivated micromycetes in the soils of Antarctica (Progress and Russkaya stations). Soil Science. 2016. V. 8. P. 991–999. (in Russ.). https://doi.org/10.7868/S0032180X16080074

  34. Margesin R., Collins T. Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge. Applied microbiology and biotechnology. 2019. V. 103 (4). P. 2537–2549. https://doi.org/10.1007/s00253-019-09631-3

  35. Maxime S., Tytgat B., Verleyen E. et al. Biogeography and macroevolution in the Arctic and Antarctic lacustrine microbiomes. Abstracts. 2017.

  36. Mergelov N.S., Dolgikh A.V., Zazovskaya E.P. et al. Soils and soil-like bodies of oases and nunataks of East Antarctica. Geography Issues. 2016. V. 142. P. 593–628 (in Russ.).

  37. Nikitin D.A., Marfenina O.E., Maksimova I.A. Using the succession approach in studying the species composition of microscopic fungi and the content of mushroom biomass in Antarctic soils. Mikologiya i fitopatologiya. 2017. T. 51 (4). P. 211–219.

  38. Nisa H., Kamili A.N., Nawchoo I.A. et al. Fungal endophytes as prolific source of phytochemicals and other bioactive naturalproducts: a review. Microbial Pathogenesis. 2015. V. 82. P. 50–59. https://doi.org/10.1016/j.micpath.2015.04.001

  39. Pearce D.A., Newsham K.K., Thorne M.A. et al. Metagenomic analysis of a southern maritime Antarctic soil. Frontiers in Microbiology. 2012. V. 3. P. 403. https://doi.org/10.3389/fmicb.2012.00403

  40. Prakash O., Mahabare K., Yadav K.K. et al. Fungi from Extreme Environments: A Potential Source of Laccases Group of Extremozymes. In: Fungi in Extreme Environments: Ecological Role and Biotechnological Significance. Springer, 2019.

  41. Pudasaini S., Wilson J., Ji M. et al. Microbial Diversity of Browning Peninsula, Eastern Antarctica Revealed Using Molecular and Cultivation Methods. Frontiers in microbiology. 2017. V. 8. P. 591. https://doi.org/10.3389/fmicb.2017.00591

  42. Rosa L.H., Zani C.L., Cantrell C.L. et al. Fungi in Antarctica: diversity, ecology, effects of climate change, and bioprospection for bioactive compounds. In Fungi of Antarctica. Springer, 2019. https://doi.org/10.1007/978-3-030-18367-7_1

  43. Sánchez L.A., Gómez F.F., Delgado O.D. Cold-adapted microorganisms as a source of new antimicrobials. Extremophiles. 2008. V. 13. P. 111–120. https://doi.org/10.1007/s00792-008-0203-5

  44. Schnürer J., Rosswall T. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Applied and environmental microbiology. 1982. V. 43 (6). P. 1256–1261.

  45. Silveira M.H.L., Aguiar R.S., Siika-aho M. et al. Assessment of the enzymatic hydrolysis profile of cellulosic substrates based on reducing sugar release. Bioresource Technology. 2014. V. 151. P. 392–396. https://doi.org/10.1016/j.biortech.2013.09.135

  46. Singh J., Dubey A.K., Singh R.P. Antarctic terrestrial ecosystem and role of pigments in enhanced UV-B radiations. Reviews in Environmental Science and BioTechnology. 2011. V. 10 (1). P. 63–77. https://doi.org/10.1007/s11157-010-9226-3

  47. Svahn K.S., Chryssanthou E., Olsen B. et al. Penicillium nalgiovense Laxa isolated from Antarctica is a new source of the antifungal metabolite amphotericin B. Fungal Biology and Biotechnology. 2015. V. 2 (1). P. 1. https://doi.org/10.1186/s40694-014-0011-x

  48. Tomova I., Stoilova-Disheva M., Lazarkevich I. et al. Antimicrobial activity and resistance to heavy metals and antibiotics of heterotrophic bacteria isolated from sediment and soil samples collected from two Antarctic islands. Frontiers in Life Science. 2015. V. 8 (4). P. 348–357. https://doi.org/10.1080/21553769.2015.1044130

  49. Tosi S., Kostadinova N., Krumova E. et al. Antioxidant enzyme activity of filamentous fungi isolated from Livingston Island, Maritime Antarctica. Polar biology. 2010. V. 33 (9). P. 1227–1237. https://doi.org/10.1007/s00300-010-0812-1

  50. Vaca I., Chávez R. Bioactive compounds produced by Antarctic filamentous fungi. In Fungi of Antarctica. Springer, 2019.

  51. Vaz A.B., Rosa L.H., Vieira M.L. et al. The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Brazilian J. Microbiol. 2011. V. 42 (3). P. 937–947. https://doi.org/10.1590/S1517-83822011000300012

  52. Zhelezova A., Chernov T., Tkhakakhova A. et al. Prokaryotic community shifts during soil formation on sands in the tundra zone. PloS one. 2019. V. 14 (4). https://doi:. pone.0206777 Егоров Н.С. (Egorov) Основы учения об антибиотиках. М.: МГУ, 2004. С. 528.https://doi.org/10.1371/journal

  53. Кирцидели И.Ю., Власов Д.Ю., Абакумов Е.В. и др. (Kirtsideli et al.) Разнообразие и ферментативная активность микромицетов из слаборазвитых почв Береговой Антарктики // Микология и фитопатология. 2010. Т. 44. № 5. С. 387–397.

  54. Марфенина О.Е., Никитин Д.А., Иванова А.Е. (Marfenina et al.) Структура грибной биомассы и разнообразие культивируемых микромицетов в почвах Антарктиды (станции Прогресс и Русская) // Почвоведение. 2016. Т. 8. С. 991–999. https://doi.org/10.7868/S0032180X16080074

  55. Мачавариани Н.Г., Терехова Л.П. (Machavariani et al.) Биологически активные соединения, образуемые микроорганизмами-эндофитами // Антибиотики и химиотерапия. 2014. Т. 59. № 5–6. С. 5–6.

  56. Мергелов Н.С., Долгих А.В., Зазовская Э.П. и др. (Mergelov et al.) Почвы и почвоподобные тела оазисов и нунатаков Восточной Антарктиды // Вопросы географии. 2016. Т. 142. С. 593–628.

  57. Никитин Д.А., Марфенина О.Е., Максимова И.А. (Nikitin et al.) Использование сукцессионного подхода при изучении видового состава микроскопических грибов и содержания грибной биомассы в антарктических почвах // Микология и фитопатология. 2017. Т. 51. № 4. С. 211–219.

Дополнительные материалы отсутствуют.