Молекулярная биология, 2020, T. 54, № 6, стр. 922-938

Проблемы создания вакцин против бетакоронавирусов: антителозависимое усиление инфекции и вирус Сендай как возможный вакцинный вектор

Т. А. Зайчук a, Ю. Д. Нечипуренко b*, А. А. Аджубей bc, С. Б. Оникиенко d, В. А. Черешнев e, С. С. Зайнутдинов f, Г. В. Кочнева f, С. В. Нетесов g, О. В. Матвеева ah**

a Sendai Viralytics
117261 Acton, MA, USA

b Институт молекулярной биологии им. В.А. Энгельгардта Российской академии наук
119991 Москва, Россия

c George Washington University
20052 Washington, DC, USA

d Военно-медицинская академия им. С.М. Кирова
194044 Санкт-Петербург, Россия

e Институт иммунологии и физиологии Уральского отделения Российской академии наук
620049 Екатеринбург, Россия

f Государственный научный центр вирусологии и биотехнологии “Вектор”
630559 Новосибирская область, Кольцово, Россия

g Факультет естественных наук Новосибирского государственного университета
630090 Новосибирск, Россия

h Biopolymer Design
117281 Acton, MA, USA

* E-mail: nech99@mail.ru
** E-mail: olga.matveeva@gmail.com

Поступила в редакцию 30.04.2020
После доработки 04.06.2020
Принята к публикации 05.06.2020

Аннотация

Для конструирования вакцины против бетакоронавирусов необходимо использование их эволюционно консервативных антигенных детерминант, на которые у вакцинируемых будет вырабатываться не только гуморальный, но и клеточный иммунный ответ. При разработке вакцин, нацеленных на такие детерминанты, будет минимизирован риск антителозависимого усиления инфекции, которое наблюдали при испытаниях на животных экспериментальных вакцин против таких бетакоронавирусов, как SARS-CoV-1 и MERS-CoV. Эти вакцины были сделаны на основании инактивированного коронавируса или векторных конструктов, экспрессирующих шиповидный белок (S) вириона. Присущая этому белку вариабельность аминокислотных остатков в антигенных детерминантах, в частности рецепторсвязывающего домена (RBD), а также его конформационная изменчивость могут привести к такому же эффекту и при разработке вакцины против SARS-CoV-2. Использование более консервативных структурных и неструктурных вирусных белков для создания вакцины позволит избежать этой проблемы. Одним из них может быть белок нуклеокапсида (N). Согласно данным предварительных исследований, на белок N у выздоровевших пациентов, перенесших COVID-19, вырабатываются антитела в достаточном для нейтрализации вируса титре. В обзоре рассмотрены подходы к разработке вакцин против нового коронавируса ‒ SARS-CoV-2, ‒ которые основаны на векторах не патогенных для человека вирусов. Одним из перспективных вирусных векторов считается вирус Сендай. На его основе возможно создать конструкцию, экспрессирующую целевые антигены (в данном случае SARS-CoV-2). Такая конструкция при интраназальном применении будет индуцировать мукозальный иммунный ответ в слизистой верхних дыхательных путей ‒ “входных воротах” респираторных вирусов, к которым относится и SARS-CoV-2. Именно такой подход будет эффективен для профилактики заболеваний типа COVID-19 и, что важно, позволит избежать антителозависимого усиления SARS-CoV-2-инфекции.

Ключевые слова: SARS-CoV-2, SARS-CoV-1, COVID-19, антителозависимое усиление инфекции, ADE, вакцина, вакцинный вектор, вирус Сендай, мышиный респировирус, консервативные антигенные детерминанты

DOI: 10.31857/S0026898420060154

Список литературы

  1. (2020) COVID-19 vaccine development pipeline. https://vac-lshtm.shinyapps.io/ncov_vaccine_landscape/.

  2. Amanat F., Krammer F. (2020) SARS-CoV-2 vaccines: status report. Immunity. 52, 583‒589.

  3. Zhang J., Zeng H., Gu J., Li H., Zheng L., Zou Q. (2020) Progress and prospects on vaccine development against SARS-CoV-2. Vaccines (Basel). 8, E153.

  4. Chen W.H., Strych U., Hotez P.J., Bottazzi M.E. (2020) The SARS-CoV-2 vaccine pipeline: an overview. Curr. Trop. Med. Rep. 7, 61‒64.

  5. Callaway E. (2020) The race for coronavirus vaccines: a graphical guide. Nature. 580, 576‒577.

  6. (2017) Sanofi restricts dengue vaccine but downplays antibody enhancement. http://www.cidrap.umn.edu/ news-perspective/2017/12/sanofi-restricts-dengue-vaccine-downplays-antibody-enhancement.

  7. Миронов А.Н., Супотницкий М.В., Лебединская Е.В. (2013) Феномен антитело-зависимого усиления инфекции у вакцинированных и переболевших. БИОпрепараты. Профилактика, диаг-ностика, лечение. 3, 12‒25.

  8. Tirado S.M., Yoon K.J. (2003) Antibody-dependent enhancement of virus infection and disease. Viral Immunol. 16, 69‒86.

  9. Супотницкий М.В. (2016) Неугодная иммунология. Актуальная инфектология. 2, 73‒97.

  10. Супотницкий М.В. (2016) Слепые пятна вакцинологии. Ред. Нестенко И.А., Москва: Русская панорама.

  11. Smatti M.K., Al Thani A.A., Yassine H.M. (2018) Viral-induced enhanced disease illness. Front. Microbiol. 9, 2991.

  12. Jaume M., Yip M.S., Kam Y.W., Cheung C.Y., Kien F., Roberts A., Li P.H., Dutry I., Escriou N., Daeron M., Bruzzone R., Subbarao K., Peiris J.S., Nal B., Altmeyer R. (2012) SARS CoV subunit vaccine: antibody-mediated neutralisation and enhancement. Hong Kong Med. J. 18 (Suppl. 2), 31‒36.

  13. Yip M.S., Leung N.H., Cheung C.Y., Li P.H., Lee H.H., Daeron M., Peiris J.S., Bruzzone R., Jaume M. (2014) Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus. Virol. J. 11, 82.

  14. Wang Q., Zhang L., Kuwahara K., Li L., Liu Z., Li T., Zhu H., Liu J., Xu Y., Xie J., Morioka H., Sakaguchi N., Qin C., Liu G. (2016) Immunodominant SARS coronavirus epitopes in humans elicited both enhancing and neutralizing effects on infection in non-human primates. ACS Infect. Dis. 2, 361‒376.

  15. Yip M.S., Leung H.L., Li P.H., Cheung C.Y., Dutry I., Li D., Daeron M., Bruzzone R., Peiris J.S., Jaume M. (2016) Antibody-dependent enhancement of SARS coronavirus infection and its role in the pathogenesis of SARS. Hong Kong Med. J. 22, 25‒31.

  16. Wan Y., Shang J., Sun S., Tai W., Chen J., Geng Q., He L., Chen Y., Wu J., Shi Z., Zhou Y., Du L., Li F. (2020) Molecular mechanism for antibody-dependent enhancement of coronavirus entry. J. Virol. 94, e02015‒e02019.

  17. Li L., Wo J., Shao J., Zhu H., Wu N., Li M., Yao H., Hu M., Dennin R.H. (2003) SARS-coronavirus replicates in mononuclear cells of peripheral blood (PBMCs) from SARS patients. J. Clin. Virol. 28, 239‒244.

  18. Yilla M., Harcourt B.H., Hickman C.J., McGrew M., Tamin A., Goldsmith C.S., Bellini W.J., Anderson L.J. (2005) SARS-coronavirus replication in human peripheral monocytes/macrophages. Virus Res. 107, 93‒101.

  19. Iwasaki A., Yang Y. (2020) The potential danger of suboptimal antibody responses in COVID-19. Nat. Rev. Immunol. 20, 339–341.

  20. Jaume M., Yip M.S., Cheung C.Y., Leung H.L., Li P.H., Kien F., Dutry I., Callendret B., Escriou N., Altmeyer R., Nal B., Daeron M., Bruzzone R., Peiris J.S. (2011) Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcγR pathway. J. Virol. 85, 10582‒10597.

  21. Kam Y.W., Kien F., Roberts A., Cheung Y.C., Lamirande E.W., Vogel L., Chu S.L., Tse J., Guarner J., Zaki S.R., Subbarao K., Peiris M., Nal B., Altmeyer R. (2007) Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcγRII-dependent entry into B cells in vitro. Vaccine. 25, 729‒740.

  22. Banerjee A., Nasir J.A., Budylowski P., Yip L., Aftanas P., Christie N., Ghalami A., Baid K., Raphenya A.R., Hirota J.A., Miller M.S., McGeer A.J., Ostrowski M., Kozak R.A., McArthur A.G., Mossman K., Mubareka S. (2020) Isolation, sequence, infectivity, and replication kinetics of severe acute respiratory syndrome coronavirus 2. Emerg. Infect. Dis. 26, 2054‒2063.

  23. Wrapp D., Wang N., Corbett K.S., Goldsmith J.A., Hsieh C.L., Abiona O., Graham B.S., McLellan J.S. (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 367, 1260‒1263.

  24. Hoffmann M., Kleine-Weber H., Pohlmann S. (2020) A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell. 78, 779‒784.

  25. (2020) RCSB PDP. https://www.rcsb.org/pdb/static.do?p=general_information/about_pdb/index.html#:~:text=The%20Protein%20Data%20Bank%20 (PDB,%2C%20other%20animals%2C%20and%20humans.

  26. Ricke D., Malone R. (2020) Medical countermeasures analysis of 2019-nCoV and vaccine risks for antibody-dependent enhancement (ADE). Preprints. 2020030138. https://doi.org/10.20944/preprints202003.0138.v1

  27. Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 181, 281‒292.

  28. Yao H., Lu X., Chen Q., Xu K., Chen Y., Cheng L., Liu F., Wu Z., Wu H., Jin C., Zheng M., Wu N., Jiang C., Li L. (2020) Patient-derived mutations impact pathogenicity of SARS-CoV-2. medRxiv. 2020.2004.2014.20060160. https://doi.org/10.1101/2020.04.14.20060160

  29. Yuan M., Wu N.C., Zhu X., Lee C.D., So R.T.Y., Lv H., Mok C.K.P., Wilson I.A. (2020) A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV. Science. 368, 630‒633.

  30. To K.K., Tsang O.T., Leung W.S., Tam A.R., Wu T.C., Lung D.C., Yip C.C., Cai J.P., Chan J.M., Chik T.S., Lau D.P., Choi C.Y., Chen L.L., Chan W.M., Chan K.H., Ip J.D., Ng A.C., Poon R.W., Luo C.T., Cheng V.C., Chan J.F., Hung I.F., Chen Z., Chen H., Yuen K.Y. (2020) Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect. Dis. 20, 565‒574. https://doi.org/10.1016/S1473-3099(20)30196-1

  31. Lu L., Manopo I., Leung B.P., Chng H.H., Ling A.E., Chee L.L., Ooi E.E., Chan S.W., Kwang J. (2004) Immunological characterization of the spike protein of the severe acute respiratory syndrome coronavirus. J. Clin. Microbiol. 42, 1570‒1576.

  32. Korber B., Fischer W., Gnanakaran S., Yoon H., Theiler J., Abfalterer W., Foley B., Giorgi E., Bhattacharya T., Parker M., Partridge D., Evans C., de Silva T., LaBranche C., Montefiori D. (2020) Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. bioRxiv. https://doi.org/10.1101/2020.04.29.069054

  33. (2020) Mutation sites in the spike (S) protein. China National Center for Bioinformation. https://bigd.big.ac.cn/ ncov/protein?lang=en&fbclid=IwAR21Gq8ZjlozW1 TCfkXHYv8f4-7uM56GnzVOABYPzvZe3rd0gCDpyJeDPkA.

  34. Adzhubei A.A., Eisenmenger F., Tumanyan V.G., Zinke M., Brodzinski S., Esipova N.G. (1987) Third type of secondary structure: noncooperative mobile conformation. Protein Data Bank analysis. Biochem. Biophys. Res. Commun. 146, 934‒938.

  35. Adzhubei A.A., Sternberg M.J. (1993) Left-handed polyproline II helices commonly occur in globular proteins. J. Mol. Biol. 229, 472‒493.

  36. Нечипуренко Ю.Д., Анашкина А.А., Матвеева О.В. (2020) Изменение антигенных детерминант S-белка вируса SARS-CoV-2 как возможная причина антителозависимого усиления инфекции и цитокинового шторма. Биофизика. 65, 824‒832.

  37. Watanabe Y., Allen J.D., Wrapp D., McLellan J.S., Crispin M. (2020) Site-specific glycan analysis of the SARS-CoV-2 spike. Science. 369(6501), 330–333. https://doi.org/10.1126/science.abb9983

  38. Lu I.N., Muller C.P., He F.Q. (2020) Applying next-generation sequencing to unravel the mutational landscape in viral quasispecies: a mini-review. Virus Res. 283, 197963.

  39. Takada A., Kawaoka Y. (2003) Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications. Rev. Med. Virol. 13, 387‒398.

  40. Perlman S., Dandekar A.A. (2005) Immunopathogenesis of coronavirus infections: implications for SARS. Nat. Rev. Immunol. 5, 917‒927.

  41. Liu L., Wei Q., Lin Q., Fang J., Wang H., Kwok H., Tang H., Nishiura K., Peng J., Tan Z., Wu T., Che-ung K.W., Chan K.H., Alvarez X., Qin C., Lackner A., Perlman S., Yuen K.Y., Chen Z. (2019) Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight. 4, e123158.

  42. Tseng C.T., Sbrana E., Iwata-Yoshikawa N., Newman P.C., Garron T., Atmar R.L., Peters C.J., Couch R.B. (2012) Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS One. 7, e35421.

  43. Agrawal A.S., Tao X., Algaissi A., Garron T., Narayanan K., Peng B.H., Couch R.B., Tseng C.T. (2016) Immunization with inactivated Middle East respiratory syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus. Hum. Vaccin Immunother. 12, 2351‒2356.

  44. Bolles M., Deming D., Long K., Agnihothram S., Whitmore A., Ferris M., Funkhouser W., Gralinski L., Totura A., Heise M., Baric R.S. (2011) A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J. Virol. 85, 12201‒12215.

  45. Roberts A., Lamirande E.W., Vogel L., Baras B., Goossens G., Knott I., Chen J., Ward J.M., Vassilev V., Subbarao K. (2010) Immunogenicity and protective efficacy in mice and hamsters of a beta-propiolactone inactivated whole virus SARS-CoV vaccine. Viral. Immunol. 23, 509‒519.

  46. Quinlan B.D., Mou H., Zhang L., Guo Y., He W., Ojha A., Parcells M.S., Luo G., Li W., Zhong G., Choe H., Farzan M. (2020) The SARS-CoV-2 receptor-binding domain elicits a potent neutralizing response without antibody-dependent enhancement. bioRxiv. https://doi.org/10.1101/2020.04.10.036418

  47. Yuan F.F., Tanner J., Chan P.K., Biffin S., Dyer W.B., Geczy A.F., Tang J.W., Hui D.S., Sung J.J., Sullivan J.S. (2005) Influence of FcγRIIA and MBL polymorphisms on severe acute respiratory syndrome. Tissue Antigens. 66, 291‒296. https://doi.org/10.1111/j.1399-0039.2005.00476.x

  48. Robbiani D.F., Gaebler C., Muecksch F., Lorenzi J.C.C., Wang Z., Cho A., Agudelo M., Barnes C.O., Gazumyan A., Finkin S., Hagglof T., Oliveira T.Y., Viant C., Hurley A., Hoffmann H.H., et al. (2020) Convergent antibody responses to SARS-CoV-2 infection in convalescent individuals. Nature. 584, 437–442. https://doi.org/10.1038/s41586-020-2456-9

  49. Zhang L., Zhang F., Yu W., He T., Yu J., Yi C.E., Ba L., Li W., Farzan M., Chen Z., Yuen K.Y., Ho D. (2006) Antibody responses against SARS coronavirus are correlated with disease outcome of infected individuals. J. Med. Virol. 78(1), 1‒8.

  50. Tetro J.A. (2020) Is COVID-19 receiving ADE from other coronaviruses? Microbes Infect. 22, 72‒73. https://doi.org/10.1016/j.micinf.2020.02.006

  51. Супотницкий М.В. (2014) Феномен антигенного импринтинга в инфекционных, эпидемических и поствакцинальных процессах. БИОпрепараты. Профилактика, диагностика, лечение. 3, 27‒39.

  52. Monto A.S., Malosh R.E., Petrie J.G., Martin E.T. (2017) The doctrine of original antigenic sin: separating good from evil. J. Infect. Dis. 215, 1782‒1788.

  53. Long Q.-X., Tang X.-J., Shi Q.-L., Li Q., Deng H.-J., Yuan J., Hu J.-L., Xu W., Zhang Y., Lv F.-J., Su K., Zhang F., Gong J., Wu B., Liu X.-M., Li J.-J., Qiu J.-F., Chen J., Huang A.-L. (2020) Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat. Med. https://doi.org/10.1038/s41591-020-0965-6

  54. Jiang H.-w., Li Y., Zhang H.-n., Wang W., Men D., Yang X., Qi H., Zhou J., Tao S.-c. (2020) Global profiling of SARS-CoV-2 specific IgG/ IgM responses of convalescents using a proteome microarray. medRxiv. https://doi.org/10.1101/2020.03.20.20039495

  55. Shang J., Wan Y., Liu C., Yount B., Gully K., Yang Y., Auerbach A., Peng G., Baric R., Li F. (2020) Structure of mouse coronavirus spike protein complexed with receptor reveals mechanism for viral entry. PLoS Pathog. 16, e1008392.

  56. Wu F., Wang A., Liu M., Wang Q., Chen J., Xia S., Ling Y., Zhang Y., Xun J., Lu L., Jiang S., Lu H., Wen Y., Huang J. (2020) Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. medRxiv. https://doi.org/10.1101/2020.03.30.20047365

  57. Braun J., Loyal L., Frentsch M., Wendisch D., Georg P., Kurth F., Hippenstiel S., Dingeldey M., Kruse B., Fauchere F., Baysal E., Mangold M., Henze L., Lauster R., Mall M., Beyer K., Roehmel J., Schmitz J., Miltenyi S., Mueller M.A., Witzenrath M., Suttorp N., Kern F., Reimer U., Wenschuh H., Drosten C., Corman V.M., Giesecke-Thiel C., Sander L.-E., Thiel A. (2020) Presence of SARS-CoV-2 reactive T cells in COVID-19 patients and healthy donors. medRxiv. https://doi.org/10.1101/2020.04.17.20061440

  58. Grifoni A., Weiskopf D., Ramirez S.I, Mateus J., Dan J.M., Moderbacher C.R., Rawlings S.A., Sutherland A., Premkumar L., Jadi R.S., Marrama D., de Silva A.M., Frazier A., Carlin A.F., Greenbaum J.A., Peters B., Krammer F., Smith D.M., Crotty S., Sette A. (2020) Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. 181(7), 1489–1501.e15. https://doi.org/10.1016/j.cell.2020.05.015

  59. Ahmed S.F., Quadeer A.A., McKay M.R. (2020) Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses. 12, 254.

  60. Qamar M.T., Rehman A., Ashfaq U.A., Awan M.Q., Fatima I., Shahid F., Chen L.-L. (2020) Designing of a next generation multiepitope based vaccine (MEV) against SARS-COV-2: immunoinformatics and in silico approaches. bioRxiv. https://doi.org/10.1101/2020.02.28.970343

  61. Lukassen S., Chua R.L., Trefzer T., Kahn N.C., Schneider M.A., Muley T., Winter H., Meister M., Veith C., Boots A.W., Hennig B.P., Kreuter M., Conrad C., Eils R. (2020) SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. 39(10), e105114. https://doi.org/10.15252/embj.20105114

  62. Rockx B., Kuiken T., Herfst S., Bestebroer T., Lamers M.M., Oude Munnink B.B., de Meulder D., van Amerongen G., van den Brand J., Okba N.M.A., Schipper D., van Run P., Leijten L., Sikkema R., Verschoor E., Verstrepen B., Bogers W., Langermans J., Drosten C., Fentener van Vlissingen M., Fouchier R., de Swart R., Koopmans M., Haagmans B.L. (2020) Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science. 368, 1012‒1015.

  63. Ziegler C.G.K., Allon S.J., Nyquist S.K., Mbano I., Miao V.N., Cao Y., Yousif A.S., Bals J., Hauser B.M., Feldman J., Muus C., Wadsworth II M.H., Kazer S.W., Hughes T.K., Doran B., Gatter G.J., Vukovic M., Tzouanas C.N., Taliaferro F., Guo Z., Wang J.P., Dwyer D.F., Buchheit K.M., Boyce J.A., Barrett N.A., Laidlaw T.M., Carroll S.L., Colonna L., Tkachev V., Yu A., Zheng H.B., Gideon H.P., Winchell C.G., Lin P.L., Berger B.A., Leslie A., Flynn J.L., Fortune S.M., Finberg R.W., Kean L.S., Garber M., Schmidt A., Lingwood D., Shalek A.K., Ordovas-Montanes J., HCA Lung Biological Network. (2020) SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 181, 1016‒1035.

  64. Xia S., Liu M., Wang C., Xu W., Lan Q., Feng S., Qi F., Bao L., Du L., Liu S., Qin C., Sun F., Shi Z., Zhu Y., Jiang S., Lu L. (2020) Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 30, 343‒355.

  65. Gu J., Han B., Wang J. (2020) COVID-19: gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology. 158, 1518‒1519.

  66. Lamm M.E. (1998) Current concepts in mucosal immunity. IV. How epithelial transport of IgA antibodies relates to host defense. Am. J. Physiol. 274, G614‒G617. https://doi.org/10.1152/ajpgi.1998.274.4.g614

  67. Nyombayire J., Anzala O., Gazzard B., Karita E., Bergin P., Hayes P., Kopycinski J., Omosa-Manyonyi G., Jackson A., Bizimana J., Farah B., Sayeed E., Parks C.L., Inoue M., Hironaka T., Hara H., Shu T., Matano T., Dally L., Barin B., Park H., Gilmour J., Lombardo A., Excler J.L., Fast P., Laufer D.S., Cox J.H., Team S.S. (2017) First-in-human evaluation of the safety and immunogenicity of an intranasally administered replication-competent Sendai virus-vectored HIV type 1 Gag vaccine: induction of potent T-cell or antibody responses in prime-boost regimens. J. Infect. Dis. 215, 95‒104.

  68. Rollier C.S., Reyes-Sandoval A., Cottingham M.G., Ewer K., Hill A.V. (2011) Viral vectors as vaccine platforms: deployment in sight. Curr. Opin. Immunol. 23, 377‒382.

  69. Ewer K.J., Lambe T., Rollier C.S., Spencer A.J., Hill A.V., Dorrell L. (2016) Viral vectors as vaccine platforms: from immunogenicity to impact. Curr. Opin. Immunol. 41, 47‒54.

  70. van Doremalen N., Lambe T., Spencer A., Belij-Rammerstorfer S., Purushotham J.N., Port J.R., Avanzato V., Bushmaker T., Flaxman A., Ulaszewska M., Feldmann F., Allen E.R., Sharpe H., Schulz J., Holbrook M., Okumura A., Meade-White K., Pérez-Pérez L., Bissett C., Gilbride C., Williamson B.N., Rosenke R., Long D., Ishwarbhai A., Kailath R., Rose L., Morris S., Powers C., Lovaglio J., Hanley P.W., Scott D., Saturday G., de Wit E., Gilbert S.C., Munster V.J. (2020) ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques. bioRxiv. https://doi.org/10.1101/2020.05.13.093195

  71. Bradley R.R., Lynch D.M., Iampietro M.J., Borducchi E.N., Barouch D.H. (2012) Adenovirus serotype 5 neutralizing antibodies target both hexon and fiber following vaccination and natural infection. J. Virol. 86, 625‒629.

  72. (2020) DRAFT landscape of COVID-19 candidate vaccines. https://www.who.int/blueprint/priority-diseases/ key-action/novel-coronavirus-landscape-ncov.pdf?ua=1.

  73. (2020) Вакцину от коронавируса в России сделают из вируса кори (The coronavirus vaccine in Russia will be created using measles virus.). https://www.mk.ru/ science/2020/04/13/vakcinu-ot-koronavirusa-v-rossii-delayut-iz-vakciny-ot-kori.html.

  74. Malczyk A.H., Kupke A., Prufer S., Scheuplein V.A., Hutzler S., Kreuz D., Beissert T., Bauer S., Hubich-Rau S., Tondera C., Eldin H.S., Schmidt J., Vergara-Alert J., Suzer Y., Seifried J., Hanschmann K.M., Kalinke U., Herold S., Sahin U., Cichutek K., Waibler Z., Eickmann M., Becker S., Muhlebach M.D. (2015) A highly immunogenic and protective Middle East respiratory syndrome coronavirus vaccine based on a recombinant measles virus vaccine platform. J. Virol. 89, 11654‒11667. https://doi.org/10.1128/JVI.01815-15

  75. Li K., Li Z., Wohlford-Lenane C., Meyerholz D.K., Channappanavar R., An D., Perlman S., McCray P.B., Jr., He B. (2020) Single-dose, intranasal immunization with recombinant parainfluenza virus 5 expressing middle east respiratory syndrome coronavirus (MERS-CoV) spike protein protects mice from fatal MERS-CoV infection. mBio. 11, e00554-20.https://doi.org/10.1128/mBio.00554-20

  76. Lin G.Y., Lamb R.A. (2000) The paramyxovirus simian virus 5 V protein slows progression of the cell cycle. J. Virol. 74, 9152‒9166.

  77. Yoshida A., Kim S.H., Manoharan V.K., Varghese B.P., Paldurai A., Samal S.K. (2019) Novel avian paramyxovirus-based vaccine vectors expressing the Ebola virus glycoprotein elicit mucosal and humoral immune responses in guinea pigs. Sci. Rep. 9, 5520.

  78. Mohamed Amin Z., Che Ani M.A., Tan S.W., Yeap S.K., Alitheen N.B., Syed Najmuddin S.U.F., Kalyanasundram J., Chan S.C., Veerakumarasivam A., Chia S.L., Yusoff K. (2019) Evaluation of a recombinant Newcastle disease virus expressing human IL12 against human breast cancer. Sci. Rep. 9, 13999. https://doi.org/10.1038/s41598-019-50222-z

  79. Vijayakumar G., McCroskery S., Palese P. (2020) Engineering Newcastle disease virus as an oncolytic vector for intratumoral delivery of immune checkpoint inhibitors and immunocytokines. J. Virol. 94, e01677-19.https://doi.org/10.1128/JVI.01677-19

  80. (2020) Immunity and safety of Covid-19 synthetic minigene vaccine. https://clinicaltrials.gov/ct2/show/NCT04276896

  81. Villenave R., Touzelet O., Thavagnanam S., Sarlang S., Parker J., Skibinski G., Heaney L.G., McKaigue J.P., Coyle P.V., Shields M.D., Power U.F. (2010) Cytopathogenesis of Sendai virus in well-differentiated primary pediatric bronchial epithelial cells. J. Virol. 84, 11718‒11728.

  82. Luber C.A., Cox J., Lauterbach H., Fancke B., Selbach M., Tschopp J., Akira S., Wiegand M., Hochrein H., O’Keeffe M., Mann M. (2010) Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. Immunity. 32, 279‒289.

  83. Skiadopoulos M.H., Surman S.R., Riggs J.M., Elkins W.R., St Claire M., Nishio M., Garcin D., Kolakofsky D., Collins P.L., Murphy B.R. (2002) Sendai virus, a murine parainfluenza virus type 1, replicates to a level similar to human PIV1 in the upper and lower respiratory tract of African green monkeys and chimpanzees. Virology. 297, 153‒160.

  84. Матвеева О.В., Кочнева Г.В., Нетесов С.В., Оникиенко С.Б., Чумаков П.М. (2015) Механизмы онколитического действия парамиксовируса Сендай. Acta Naturae. 7(2), 6‒16.

  85. Slobod K.S., Shenep J.L., Lujan-Zilbermann J., Allison K., Brown B., Scroggs R.A., Portner A., Coleclough C., Hurwitz J.L. (2004) Safety and immunogenicity of intranasal murine parainfluenza virus type 1 (Sendai virus) in healthy human adults. Vaccine. 22, 3182‒3186.

  86. Adderson E., Branum K., Sealy R.E., Jones B.G., Surman S.L., Penkert R., Freiden P., Slobod K.S., Gaur A.H., Hayden R.T., Allison K., Howlett N., Utech J., Allay J., Knight J., Sleep S., Meagher M.M., Russell C.J., Portner A., Hurwitz J.L. (2015) Safety and immunogenicity of an intranasal Sendai virus-based human parainfluenza virus type 1 vaccine in 3- to 6-year-old children. Clin. Vaccine Immunol. 22(3), 298‒303. https://doi.org/10.1128/CVI.00618-14

  87. Moriya C., Horiba S., Kurihara K., Kamada T., Takahara Y., Inoue M., Iida A., Hara H., Shu T., Hasegawa M., Matano T. (2011) Intranasal Sendai viral vector vaccination is more immunogenic than intramuscular under pre-existing anti-vector antibodies. Vaccine. 29, 8557‒8563.

  88. Hara H., Hara H., Hironaka T., Inoue M., Iida A., Shu T., Hasegawa M., Nagai Y., Falsey A.R., Kamali A., Anzala O., Sanders E.J., Karita E., Mwananyanda L., Vasan S., Lombardo A., Parks C.L., Sayeed E., Krebs M., Cormier E., Ackland J., Price M.A., Excler J.L. (2011) Prevalence of specific neutralizing antibodies against Sendai virus in populations from different geographic areas: implications for AIDS vaccine development using Sendai virus vectors. Hum. Vaccin. 7, 639‒645.

  89. Moriya C., Horiba S., Inoue M., Iida A., Hara H., Shu T., Hasegawa M., Matano T. (2008) Antigen-specific T-cell induction by vaccination with a recombinant Sendai virus vector even in the presence of vector-specific neutralizing antibodies in rhesus macaques. Biochem. Biophys. Res. Commun. 371, 850‒854.

  90. Seki S., Matano T. (2016) Development of a Sendai virus vector-based AIDS vaccine inducing T cell responses. Expert Rev. Vaccines. 15, 119‒127.

  91. Hu Z., Gu L., Li C.L., Shu T., Lowrie D.B., Fan X.Y. (2018) The profile of T cell responses in Bacille Calmette-Guerin-primed mice boosted by a novel Sendai virus vectored anti-tuberculosis vaccine. Front. Immunol. 9, 1796.

  92. Hu Z., Jiang W., Gu L., Qiao D., Shu T., Lowrie D.B., Lu S.H., Fan X.Y. (2019) Heterologous prime-boost vaccination against tuberculosis with recombinant Sendai virus and DNA vaccines. J. Mol. Med. (Berl.). 97, 1685‒1694.

  93. Russell C.J., Hurwitz J.L. (2016) Sendai virus as a backbone for vaccines against RSV and other human paramyxoviruses. Expert Rev. Vaccines. 15, 189‒200.

  94. Wiegand M.A., Gori-Savellini G., Gandolfo C., Papa G., Kaufmann C., Felder E., Ginori A., Disanto M.G., Spina D., Cusi M.G. (2017) A respiratory syncytial virus vaccine vectored by a stable chimeric and replication-deficient Sendai virus protects mice without inducing enhanced disease. J. Virol. 91, e02298-16.https://doi.org/10.1128/JVI.02298-16

  95. Han G.Z., Worobey M. (2011) Homologous recombination in negative sense RNA viruses. Viruses. 3, 1358‒1373.

  96. Kolakofsky D., Roux L., Garcin D., Ruigrok R.W. (2005) Paramyxovirus mRNA editing, the “rule of six” and error catastrophe: a hypothesis. J. Gen. Virol. 86, 1869‒1877.

  97. Kolakofsky D. (2016) Paramyxovirus RNA synthesis, mRNA editing, and genome hexamer phase: a review. Virology. 498, 94‒98.

  98. Matsumoto Y., Ohta K., Kolakofsky D., Nishio M. (2018) The control of paramyxovirus genome hexamer length and mRNA editing. RNA. 24, 461‒467.

  99. The Nextstrain team. (2020) Genomic epidemiology of novel coronavirus ‒ Global subsampling. 3246 genomes sampled between December 2019 and June 2020. https://nextstrain.org/ncov/global.

  100. Zhao J., Yuan Q., Wang H., Liu W., Liao X., Su Y., Wang X., Yuan J., Li T., Li J., Qian S., Hong C., Wang F., Liu Y., Wang Z., He Q., Li Z., He B., Zhang T., Fu Y., Ge S., Liu L., Zhang J., Xia N., Zhang Z. (2020) Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin. Infect. Dis. ciaa344. https://doi.org/10.1093/cid/ciaa344

  101. Nakanishi M., Otsu M. (2012) Development of Sendai virus vectors and their potential applications in gene therapy and regenerative medicine. Curr. Gene Ther. 12, 410‒416.

  102. Burke C.W., Mason J.N., Surman S.L., Jones B.G., Dalloneau E., Hurwitz J.L., Russell C.J. (2011) Illumination of parainfluenza virus infection and transmission in living animals reveals a tissue-specific dichotomy. PLoS Pathog. 7, e1002134.

  103. Sakai Y., Kiyotani K., Fukumura M., Asakawa M., Kato A., Shioda T., Yoshida T., Tanaka A., Hasegawa M., Nagai Y. (1999) Accommodation of foreign genes into the Sendai virus genome: sizes of inserted genes and viral replication. FEBS Lett. 456, 221‒226.

  104. Faisca P., Desmecht D. (2007) Sendai virus, the mouse parainfluenza type 1: a longstanding pathogen that remains up-to-date. Res. Vet. Sci. 82, 115‒125.

  105. Hasan M.K., Kato A., Shioda T., Sakai Y., Yu D., Nagai Y. (1997) Creation of an infectious recombinant Sendai virus expressing the firefly luciferase gene from the 3' proximal first locus. J. Gen. Virol. 78(Pt 11), 2813‒2820.

  106. Hurwitz J.L., Takimoto T., Russell C.J., Portner A., Slobod K. (2018) Modified Sendai virus vaccine and imaging vector. Patent US9637758B2.

  107. Zhan X., Slobod K.S., Jones B.G., Sealy R.E., Takimoto T., Boyd K., Surman S., Russell C.J., Portner A., Hurwitz J.L. (2015) Sendai virus recombinant vaccine expressing a secreted, unconstrained respiratory syncytial virus fusion protein protects against RSV in cotton rats. Int. Immunol. 27, 229‒236.

  108. Bitzer M., Armeanu S., Lauer U.M., Neubert W.J. (2003) Sendai virus vectors as an emerging negative-strand RNA viral vector system. J. Gene Med. 5, 543‒553.

  109. Tatsumoto N., Arditi M., Yamashita M. (2018) Sendai virus propagation using chicken eggs. Bio Protoc. 8(18), e3009. https://doi.org/10.21769/BioProtoc.3009

  110. Itoh M., Wang X.L., Suzuki Y., Homma M. (1992) Mutation of the HANA protein of Sendai virus by passage in eggs. Virology. 190, 356‒364.

  111. Zainutdinov S.S., Grazhdantseva A.A., Kochetkov D.V., Chumakov P.M., Netesov S.V., Matveeva O.V., Kochneva G.V. (2017) Change in oncolytic activity of Sendai virus during adaptation to cell cultures. Mol. Genet., Mikrobiol. Virusol. 32(4), 156‒160. https://doi.org/10.3103/S0891416817040115

  112. Zainutdinov S.S., Kochneva G.V., Netesov S.V., Chumakov P.M., Matveeva O.V. (2019) Directed evolution as a tool for the selection of oncolytic RNA viruses with desired phenotypes. Oncolytic Virother. 8, 9‒26. https://doi.org/10.2147/OV.S176523

  113. Simon A.Y., Moritoh K., Torigoe D., Asano A., Sasaki N., Agui T. (2009) Multigenic control of resistance to Sendai virus infection in mice. Infect. Genet. Evol. 9, 1253‒1259.

  114. Stone A.E., Giguere S., Castleman W.L. (2003) IL-12 reduces the severity of Sendai virus-induced bronchiolar inflammation and remodeling. Cytokine. 24, 103‒113.

  115. Gretebeck L.M., Subbarao K. (2015) Animal models for SARS and MERS coronaviruses. Curr. Opin. Virol. 13, 123‒129.

  116. Sui J., Li W., Roberts A., Matthews L.J., Murakami A., Vogel L., Wong S.K., Subbarao K., Farzan M., Ma-rasco W.A. (2005) Evaluation of human monoclonal antibody 80R for immunoprophylaxis of severe acute respiratory syndrome by an animal study, epitope mapping, and analysis of spike variants. J. Virol. 79, 5900‒5906.

  117. Carey K. (2020) Increasing number of biopharma drugs target COVID-19 as virus spreads. BioWorld. https://www.bioworld.com/articles/433331-increasing-number-of-biopharma-drugs-target-covid-19-as-virus-spreads

  118. Zainutdinov S.S., Tikunov A.Y., Matveeva O.V., Netesov S.V., Kochneva G.V. (2016) Complete genome sequence of the oncolytic Sendai virus strain Moscow. Genome Announc. 4, e00818-16. https://doi.org/10.1128/genomeA.00818-16

Дополнительные материалы отсутствуют.