Молекулярная биология, 2022, T. 56, № 2, стр. 244-258

Роль ремоделирующего комплекса SWI/SNF в регуляции экспрессии генов воспаления

А. В. Феоктистов ab*, С. Г. Георгиева ac, Н. В. Сошникова ab

a Институт биологии гена Российской академии наук
119334 Москва, Россия

b Центр точного геномного редактирования и генетических технологий для биомедицины Института молекулярной биологии им. В.А. Энгельгардта
119991 Москва, Россия

c Институт молекулярной биологии им. В.А. Энгельгардта Российской академии наук
119991 Москва, Россия

* E-mail: a.feo95@mail.ru

Поступила в редакцию 22.06.2021
После доработки 07.09.2021
Принята к публикации 07.09.2021

Аннотация

Процесс воспаления – естественный защитный ответ организма на проникновение чужеродных веществ и молекул. В активации генов воспаления участвует множество белков, сигнальных каскадов и факторов транскрипции. Их координированная работа приводит к изменению экспрессии провоспалительных генов. Состояние хроматина генов, отвечающих на воспалительные стимулы, считается основным фактором, определяющим связывание активаторов транскрипции с регуляторными элементами, и ключевым механизмом в индукции воспалительных генов. Быстрое изменение состояния хроматина, создание открытой структуры и снятие “нуклеосомного барьера” облегчает связывание транскрипционных факторов и инициацию транскрипции. Этот процесс реализуется путем привлечения на хроматин комплексов, модифицирующих и ремоделирующих хроматин. Один из важнейших комплексов, реструктурирующих структуру хроматина в процессе активации генов, – мультисубъединичный комплекс SWI/SNF. SWI/SNF регулирует экспрессию генов воспаления через взаимодействие с факторами транскрипции, в том числе с компонентами сигнального пути NF-κB. Вариабельность субъединиц этого комплекса определяет специфичность связывания с хроматином и активаторами транскрипции. В данном обзоре рассмотрена роль SWI/SNF в регуляции генов воспаления, описано его взаимодействие с хроматином и молекулярные механизмы рекрутирования комплекса SWI/SNF на промоторы.

Ключевые слова: SWI/SNF, эукариотические факторы транскрипции, воспаление, NF-κB

Список литературы

  1. Akira S., Uematsu S., Takeuchi O. (2006) Pathogen recognition and innate immunity. Cell. 124, 783–801.

  2. Sen R., Baltimore D. (1986) Inducibility of κ immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell. 47, 921–928.

  3. Ghosh S., May M.J., Kopp E.B. (1998) NF-κB and rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260.

  4. Hoffmann A., Baltimore D. (2006) Circuitry of nuclear factor κB signaling. Immunol. Rev. 210, 171–186.

  5. Vallabhapurapu S., Karin M. (2009) Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693–733.

  6. Hayden M.S., Ghosh S. (2008) Shared principles in NF-κB signaling. Cell. 132, 344–362.

  7. Fenouil R., Cauchy P., Koch F., Descostes N., Cabeza J.Z., Innocenti C., Ferrier P., Spicuglia S., Gut M., Gut I., Andrau J.C. (2012) CpG islands and GC content dictate nucleosome depletion in a transcription-independent manner at mammalian promoters. Genome Res. 22, 2399–2408.

  8. Clapier C.R., Iwasa J., Cairns B.R., Peterson C.L. (2017) Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat. Rev. Mol. Cell. Biol. 18, 407–422.

  9. Hargreaves D.C., Crabtree G.R. (2011) ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 21, 396–420.

  10. Mittal P., Roberts C.W.M. (2020) The SWI/SNF complex in cancer – biology, biomarkers and therapy. Nat. Rev. Clin. Oncol. 17, 435–448.

  11. Han L., Madan V., Mayakonda A., Dakle P., Woon T.W., Shyamsunder P., Nordin H.B.M., Cao Z., Sundaresan J., Lei I., Wang Z., Koeffler H.P. (2019) Chromatin remodeling mediated by ARID1A is indispensable for normal hematopoiesis in mice. Leukemia. 33, 2291–2305.

  12. Gao F., Elliott N.J., Ho J., Sharp A., Shokhirev M.N., Hargreaves D.C. (2019) Heterozygous mutations in SMARCA2 reprogram the enhancer landscape by global retargeting of SMARCA4. Mol. Cell. 75, 891–904.

  13. King H.W., Klose R.J. (2017) The pioneer factor OCT4 requires the chromatin remodeller BRG1 to support gene regulatory element function in mouse embryonic stem cells. eLife. 6, e22631.

  14. Kelso T.W.R., Porter D.K., Amaral M.L., Shokhirev M.N., Benner C., Hargreaves D.C. (2017) Chromatin accessibility underlies synthetic lethality of SWI/ SNF subunits in ARID1A-mutant cancers. eLife. 6, e30506.

  15. Miller E.L., Hargreaves D.C., Kadoch C., Chang C.Y., Calarco J.P., Hodges C., Buenrostro J.D., Cui K., Greenleaf W.J., Zhao K., Crabtree G.R. (2017) TOP2 synergizes with BAF chromatin remodeling for both resolution and formation of facultative heterochromatin. Nat. Struct. Mol. Biol. 24, 344–352.

  16. Bao X., Rubin A.J., Qu K., Zhang J., Giresi P.G., Chang H.Y., Khavari P.A. (2015) A novel ATAC-seq approach reveals lineage-specific reinforcement of the open chromatin landscape via cooperation between BAF and p63. Genome Biol. 16, 1–17.

  17. Bossen C., Murre C.S., Chang A.N., Mansson R., Rodewald H.R., Murre C. (2015) The chromatin remodeler Brg1 activates enhancer repertoires to establish B cell identity and modulate cell growth. Nat. Immunol. 16, 775–784.

  18. Euskirchen G., Auerbach R.K., Snyder M. (2012) SWI/SNF chromatin-remodeling factors: multiscale analyses and diverse functions. J. Biol. Chem. 287, 30897–30905.

  19. Kwon H., Imbalzano A.N., Khavari P.A., Kingston R.E., Green M.R. (1994) Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature. 370, 477–481.

  20. Clapier C.R., Cairns B.R. (2009) The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304.

  21. Wang W., Côté J., Xue Y., Zhou S., Khavari P.A., Biggar S.R., Muchardt C., Kalpana G.V., Goff S.P., Yaniv M., Workman J.L., Crabtree G.R. (1996) Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J. 15, 5370–5382.

  22. Lemon B., Inouye C., King D.S., Tjian R. (2001) Selectivity of chromatin-remodelling cofactors for ligand-activated transcription. Nature. 414, 924–928.

  23. Raab J.R., Resnick S., Magnuson T. (2015) Genome-Wide transcriptional regulation mediated by biochemically distinct SWI/SNF complexes. PLoS Genet. 11, 1–26.

  24. Alpsoy A., Dykhuizen E.C. (2018) Glioma tumor suppressor candidate region gene 1 (GLTSCR1) and its paralog GLTSCR1-like form SWI/SNF chromatin remodeling subcomplexes. J. Biol. Chem. 293, 3892–3903.

  25. Michel B.C., D’Avino A.R., Cassel S.H., Mashtalir N., McKenzie Z.M., McBride M.J., Valencia A.M., Zhou Q., Bocker M., Soares L.M.M., Pan J., Remillard D.I., Lareau C.A., Zullow H.J., Fortoul N., Gray N.S., Bradner J.E., Chan H.M., Kadoch C. (2018) A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nat. Cell Biol. 20, 1410–1420.

  26. Wang X., Wang S., Troisi E.C., Howard T.P., Haswell J.R., Wolf B.K., Hawk W.H., Ramos P., Oberlick E.M., Tzvetkov E.P., Ross A., Vazquez F., Hahn W.C., Park P.J., Roberts C. W.M. (2019) BRD9 defines a SWI/SNF sub-complex and constitutes a specific vulnerability in malignant rhabdoid tumors. Nat. Commun. 10, 1–11.

  27. Brien G.L., Remillard D., Shi J., Hemming M.L., Chabon J., Wynne K., Dillon E.T., Cagney G., Van Mierlo G., Baltissen M.P., Vermeulen M., Qi J., Fröhling S., Gray N.S., Bradner J.E., Vakoc C.R., Armstrong S.A. (2018) Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma. eLife. 7, 1–26.

  28. Mashtalir N., D’Avino A.R., Michel B.C., Luo J., Pan J., Otto J.E., Zullow H.J., McKenzie Z.M., Kubiak R.L., St Pierre R., Valencia A.M., Poynter S.J., Cassel S.H., Ranish J.A., Kadoch C. (2018) Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell. 175, 1272–1288.

  29. Lessard J., Wu J.I., Ranish J., Wan M., Winslow M.M., Staahl B.T., Wu H., Aebersold R., Graef I.A., Crabtree G.R. (2007) An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron. 55, 201–215.

  30. Ho L., Ronan J.L., Wu J., Staahl B.T., Chen L., Kuo A., Lessard J., Nesvizhskii A.I., Ranish J., Crabtree G.R. (2009) An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc. Natl. Acad. Sci. USA. 106, 5181–5186.

  31. Priam P., Krasteva V., Rousseau P., D’Angelo G., Gaboury L., Sauvageau G., Lessard J.A. (2017) SMARCD2 subunit of SWI/SNF chromatin-remodeling complexes mediates granulopoiesis through a CEBPϵ dependent mechanism. Nat. Genet. 49, 753–764.

  32. Witzel M., Petersheim D., Fan Y., Bahrami E., Racek T., Rohlfs M., Puchałka J., Mertes C., Gagneur J., Ziegenhain C., Enard W., Stray-Pedersen A., Arkwright P.D., Abboud M.R., Pazhakh V., Lieschke G.J., Krawitz P.M., Dahlhoff M., Schneider M.R., Wolf E., Horny H.P., Schmidt H., Schäffer A.A., Klein C. (2017) Chromatin-remodeling factor SMARCD2 regulates transcriptional networks controlling differentiation of neutrophil granulocytes. Nat. Genet. 49, 742–752.

  33. Forcales S.V., Albini S., Giordani L., Malecova B., Cignolo L., Chernov A., Coutinho P., Saccone V., Consalvi S., Williams R., Wang K., Wu Z., Baranovskaya S., Miller A., Dilworth F.J., Puri P.L. (2012) Signal-dependent incorporation of MyoD-BAF60c into Brg1-based SWI/SNF chromatin-remodelling complex. EMBO J. 31, 301–316.

  34. Lickert H., Takeuchi J.K., Von Both I., Walls J.R., McAuliffe F., Adamson S.L., Henkelman R.M., Wrana J.L., Rossant J., Bruneau B.G. (2004) Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature. 432, 107–112.

  35. Mashtalir N., Suzuki H., Farrell D.P., Sankar A., Luo J., Filipovski M., D’Avino A.R., St Pierre R., Valencia A.M., Onikubo T., Roeder R.G., Han Y., He Y., Ranish J.A., DiMaio F., Walz T., Kadoch C. (2020) A structural model of the endogenous human BAF complex informs disease mechanisms. Cell. 183, 802–817.

  36. Сошникова Н.В., Шейнов А.А., Татарский Е.В., Георгиева С.Г. (2020) DPF-домен как уникальная структурная единица в активации транскрипции, дифференцировке и онкотрансформации. Acta Naturae. 12, 57–65.

  37. Zhao K., Wang W., Rando O.J., Xue Y., Swiderek K., Kuo A., Crabtree G.R. (1998) Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell. 95, 625–636.

  38. Weintraub H., Groudine M. (1976) Chromosomal subunits in active genes have an altered conformation. Science. 193, 848–856.

  39. Wu C., Bingham P.M., Livak K.J., Holmgren R., Elgin S.C.R. (1979) The chromatin structure of specific genes: I. Evidence for higher order domains of defined DNA sequence. Cell. 16, 797–806.

  40. Luger K., Mäder A.W., Richmond R.K., Sargent D.F., Richmond T.J. (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature. 389, 251–260.

  41. Rye R. (1995) Structure of the NF-kappa B p50 homodimer bound to DNA. Nature. 378, 603–605.

  42. Wang V.Y. (2012) NF-κB regulation: lessons from structures. Immunol. Rev. 246, 36–58.

  43. Steger D.J., Workman J.L. (1997) Stable co-occupancy of transcription factors and histones at the HIV-1 enhancer. EMBO J. 16, 2463–2472.

  44. Angelov D., Lenouvel F., Hans F., Müller C.W., Bouvet P., Bednar J., Moudrianakis E.N., Cadet J., Dimitrov S. (2004) The histone octamer is invisible when NF-κB binds to the nucleosome. J. Biol. Chem. 279, 42374–42382.

  45. Lone I.N., Shukla M.S., Charles Richard J.L., Peshev Z.Y., Dimitrov S., Angelov D. (2013) Binding of NF-κB to nucleosomes: effect of translational positioning, nucleosome remodeling and linker histone H1. PLoS Genet. 9(9), e1003830.

  46. Saccani S., Pantano S., Natoli G. (2001) Two waves of nuclear factor κB recruitment to target promoters. J. Exp. Med. 193, 1351–1359.

  47. Plevy S.E., Gemberling J.H., Hsu S., Dorner A.J., Smale S.T. (1997) Multiple control elements mediate activation of the murine and human interleukin 12 p40 promoters: evidence of functional synergy between C/EBP and Rel proteins. Mol. Cell. Biol. 17, 4572–4588.

  48. Zhu C., Gagnidze K., Gemberling J.H.M., Plevy S.E. (2001) Characterization of an activation protein-1-binding site in the murine interleukin-12 p40 promoter: demonstration of novel functional elements by a reductionist approach. J. Biol. Chem. 276, 18519–18528.

  49. Zhu C., Rao K., Xiong H., Gagnidze K., Li F., Horvath C., Plevy S. (2003) Activation of the murine interleukin-12 p40 promoter by functional interactions between NFAT and ICSBP. J. Biol. Chem. 278, 39372–39382.

  50. Weinmann A.S., Plevy S.E., Smale S.T. (1999) Rapid and selective remodeling of a positioned nucleosome during the induction of IL-12 p40 transcription. Immunity. 11, 665–675.

  51. Weinmann A.S., Mitchell D.M., Sanjabi S., Bradley M.N., Hoffmann A., Liou H.C., Smale S.T. (2001) Nucleosome remodeling at the IL-12 p40 promoter is a TLR-dependent, Rel-independent event. Nat. Immunol. 2, 51–57.

  52. Zhou L., Nazarian A.A., Xu J., Tantin D., Corcoran L.M., Smale S.T. (2007) An inducible enhancer required for Il12b promoter activity in an insulated chromatin environment. Mol. Cell. Biol. 27, 2698–2712.

  53. Ramirez-Carrozzi V.R., Nazarian A.A., Li C.C., Gore S.L., Sridharan R., Imbalzano A.N., Smale S.T. (2006) Selective and antagonistic functions of SWI/SNF and Mi-2β nucleosome remodeling complexes during an inflammatory response. Genes Dev. 20, 282–296.

  54. Ramirez-Carrozzi V.R., Braas D., Bhatt D.M., Cheng C.S., Hong C., Doty K.R., Black J.C., Hoffmann A., Carey M., Smale S.T. (2009) A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell. 138, 114–128.

  55. Barnes P.J. (2009) Targeting the epigenome in the treatment of asthma and chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 6, 693–696.

  56. Ito K., Ito M., Elliott W.M., Cosio B., Caramori G., Kon O.M., Barczyk A., Hayashi S., Adcock I.M., Hogg J.C., Barnes P.J. (2005) Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N. Engl. J. Med. 352, 1967–1976.

  57. Yamamoto M., Yamazaki S., Uematsu S., Sato S., Hemmi H., Hoshino K., Kaisho T., Kuwata H., Takeuchi O., Takeshige K., Saitoh T., Yamaoka S., Yamamoto N., Yamamoto S., Muta T., Takeda K., Akira S. (2004) Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IκBζ. Nature. 430, 218–222.

  58. Yamazaki S., Matsuo S., Muta T., Yamamoto M., Akira S., Takeshige K. (2008) Gene-specific requirement of a nuclear protein, IκB-ζ, for promoter association of inflammatory transcription regulators. J. Biol. Chem. 283, 32404–32411.

  59. Tartey S., Matsushita K., Vandenbon A., Ori D., Imamura T., Mino T., Standley D.M., Hoffmann J.A., Reichhart J.M., Akira S., Takeuchi O. (2014) Akirin2 is critical for inducing inflammatory genes by bridging IκB-ζ and the SWI/SNF complex. EMBO J. 33, 2332–2348.

  60. Bonnay F., Nguyen X., Cohen-Berros E., Troxler L., Batsche E., Camonis J., Takeuchi O., Reichhart J., Matt N. (2014) Akirin specifies NF-κB selectivity of Drosophila innate immune response via chromatin remodeling. EMBO J. 33, 2349–2362.

  61. Tando T., Ishizaka A., Watanabe H., Ito T., Iida S., Haraguchi T., Mizutani T., Izumi T., Isobe T., Akiyama T., Inoue J., Iba H. (2010) Requiem protein links RelB/p52 and the Brm-type SWI/SNF complex in a noncanonical NF-κB pathway. J. Biol. Chem. 285, 21951–21960.

  62. Bouwmeester T., Bauch A., Ruffner H., Angrand P.O., Bergamini G., Croughton K., Cruciat C., Eberhard D., Gagneur J., Ghidelli S., Hopf C., Huhse B., Mangano R., Michon A.M., Schirle M., Schlegl J., Schwab M., Stein M.A., Bauer A., Casari G., Drewes G., Gavin A.C., Jackson D.B., Joberty G., Neubauer G., Rick J., Kuster B., Superti-Furga G. (2004) A physical and functional map of the human TNF-α/NF-κB signal transduction pathway. Nat. Cell. Biol. 6, 97–105.

  63. Ishizaka A., Mizutani T., Kobayashi K., Tando T., Sakurai K., Fujiwara T., Iba H. (2012) Double plant homeodomain (PHD) finger proteins DPF3a and -3b are required as transcriptional co-activators in SWI/SNF complex-dependent activation of NF-κB RelA/p50 heterodimer. J. Biol. Chem. 287, 11924–11933.

  64. Hargreaves D.C., Horng T., Medzhitov R. (2009) Control of inducible gene expression by signal-dependent transcriptional elongation. Cell. 138, 129–145.

  65. Bayarsaihan D. (2011) Epigenetic mechanisms in inflammation. J. Dent. Res. 90, 9–17.

  66. Zhong H., Voll R.E., Ghosh S. (1998) Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell. 1, 661–671.

  67. Zhong H., May M.J., Jimi E., Ghosh S. (2002) The phosphorylation status of nuclear NF-κB determines its association with CBP/p300 or HDAC-1. Mol. Cell. 9, 625–636.

  68. Dong J., Jimi E., Zhong H., Hayden M.S., Ghosh S. (2008) Repression of gene expression by unphosphorylated NF-κB p65 through epigenetic mechanisms. Genes Dev. 22, 1159–1173.

  69. Mukherjee S.P., Behar M., Birnbaum H.A., Hoffmann A., Wright P.E., Ghosh G. (2013) Analysis of the RelA:CBP/p300 interaction reveals its involvement in NF-κB-driven transcription. PLoS Biol. 11(9), e1001647.

  70. Garbati M.R., Alço G., Gilmore T.D. (2010) Histone acetyltransferase p300 is a coactivator for transcription factor REL and is C-terminally truncated in the human diffuse large B-cell lymphoma cell line RC-K8. Cancer Lett. 291, 237–245.

  71. Haery L., Lugo-Picó J.G., Henry R.A., Andrews A.J., Gilmore T.D. (2014) Histone acetyltransferase-deficient p300 mutants in diffuse large B cell lymphoma have altered transcriptional regulatory activities and are required for optimal cell growth. Mol. Cancer. 13, 1–13.

  72. Agalioti T., Lomvardas S., Parekh B., Yie J., Maniatis T., Thanos D. (2000) Ordered recruitment of chromatin modifying and general transcription factors to the IFN-β promoter. Cell. 103, 667–678.

  73. Lomvardas S., Thanos D. (2002) Modifying gene expression programs by altering core promoter chromatin architecture. Cell. 110, 261–271.

  74. Thanos D., Maniatis T. (1995). Virus induction of human IFN-β gene expression requires the assembly of an enhanceosome. Cell. 83, 1091–1100.

  75. Ford E., Thanos D. (2010) The transcriptional code of human IFN-β gene expression. Biochim. Biophys. ActaGene Regul. Mech. 1799, 328–336.

  76. Park J., Wood M.A., Cole M.D. (2002) BAF53 forms distinct nuclear complexes and functions as a critical c-Myc-interacting nuclear cofactor for oncogenic transformation. Mol. Cell. Biol. 22, 1307–1316.

  77. Raisner R., Kharbanda S., Jin L., Jeng E., Chan E., Merchant M., Haverty P.M., Bainer R., Cheung T., Arnott D., Flynn E.M., Romero F.A., Magnuson S., Gascoigne K.E. (2018) Enhancer activity requires CBP/P300 bromodomain-dependent histone H3K27 Acetylation. Cell Rep. 24, 1722–1729.

  78. Soutourina J. (2018) Transcription regulation by the Mediator complex. Nat. Rev. Mol. Cell Biol. 19, 262–274.

  79. Malik S., Roeder R.G. (2005) Dynamic regulation of pol II transcription by the mammalian Mediator complex. Trends Biochem. Sci. 30, 256–263.

  80. van Essen D., Engist B., Natoli G., Saccani S. (2009) Two modes of transcriptional activation at native promoters by NF-κB p65. PLoS Biol. 7, 0549–0562.

  81. Fukasawa R., Tsutsui T., Hirose Y., Tanaka A., Ohkuma Y. (2012) Mediator CDK subunits are platforms for interactions with various chromatin regulatory complexes. J. Biochem. (Tokyo). 152, 241–249.

  82. Cho H., Orphanides G., Sun X., Yang X.-J., Ogryzko V., Lees E., Nakatani Y., Reinberg D. (1998) A human RNA polymerase II complex containing factors that modify chromatin structure. Mol. Cell. Biol. 18, 5355–5563.

  83. Yao R.W., Wang Y., Chen L.L. (2019) Cellular functions of long noncoding RNAs. Nat. Cell Biol. 21, 542–551.

  84. Moran V.A., Perera R.J., Khalil A.M. (2012) Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucl. Acids Res. 40, 6391–6400.

  85. Kawaguchi T., Tanigawa A., Naganuma T., Ohkawa Y., Souquere S., Pierron G., Hirose T., Steitz J.A. (2015) SWI/SNF chromatin-remodeling complexes function in noncoding RNA-dependent assembly of nuclear bodies. Proc. Natl. Acad. Sci. USA. 112, 4304–4309.

  86. Zhu Y., Rowley M.J., Böhmdorfer G., Wierzbicki A.T. (2013) A SWI/SNF chromatin-remodeling complex acts in noncoding RNA-mediated transcriptional silencing. Mol. Cell. 49, 298–309.

  87. Peng X., Gralinski L, Armour C.D., Ferris M.T., Thomas M.J., Proll S., Bradel-Tretheway B.G., Korth M.J., Castle J.C., Biery M.C., Bouzek H.K., Haynor D.R., Frieman M.B., Heise M., Raymond C.K., Baric R.S., Katze M.G. (2010) Unique signatures of long noncoding RNA expression in response to virus infection and altered innate immune signaling. mBio. 1, 206–210.

  88. Rapicavoli N.A., Qu K., Zhang J., Mikhail M., Laberge R.M., Chang H.Y. (2013) A mammalian pseudogene lncRNA at the interface of inflammation and antiinflammatory therapeutics. eLife. 2013, 1–16.

  89. Carpenter S., Aiello D., Atianand M.K., Ricci E.P., Gandhi P., Hall L.L., Byron M., Monks B., Henry-Bezy M., Lawrence J.B., O’Neill L.A., Moore M.J., Caffrey D.R., Fitzgerald K.A. (2013) A long noncoding RNA mediates both activation and repression of immune response genes. Science. 341, 789–792.

  90. Hu G., Gong A.Y., Wang Y., Ma S., Chen X., Chen J., Su C.J., Shibata A., Strauss-Soukup J.K., Drescher K.M., Chen X.M. (2016) LincRNA-Cox2 promotes late inflammatory gene transcription in macrophages through modulating SWI/SNF-mediated chromatin remodeling. J. Immunol. 196, 2799–2808.

  91. Tafessu A., Banaszynski L.A. (2020) Establishment and function of chromatin modification at enhancers: chromatin landscape at enhancers. Open Biol. 10, 200255.

  92. Andersson R., Sandelin A. (2020) Determinants of enhancer and promoter activities of regulatory elements. Nat. Rev. Genet. 21, 71–87.

  93. Weiterer S.S., Meier-Soelch J., Georgomanolis T., Mizi A., Beyerlein A., Weiser H., Brant L., Mayr-Buro C., Jurida L., Beuerlein K., Müller H., Weber A., Tenekeci U., Dittrich-Breiholz O., Bartkuhn M., Nist A., Stiewe T., van IJcken W.F., Riedlinger T., Schmitz M.L., Papantonis A., Kracht M. (2020) Distinct IL-1α-responsive enhancers promote acute and coordinated changes in chromatin topology in a hierarchical manner. EMBO J. 39, 1–22.

  94. Teferedegne B., Green M.R., Guo Z., Boss J.M. (2006) Mechanism of action of a distal NF-κB-dependent enhancer. Mol. Cell. Biol. 26, 5759–5770.

  95. Gatchalian J., Malik S., Ho J., Lee D.S., Kelso T.W.R., Shokhirev M.N., Dixon J.R., Hargreaves D.C. (2018) A non-canonical BRD9-containing BAF chromatin remodeling complex regulates naive pluripotency in mouse embryonic stem cells. Nat. Commun. 9, 5139.

  96. Pan J., McKenzie Z.M., D’Avino A.R., Mashtalir N., Lareau C.A., St. Pierre R., Wang L., Shilatifard A., Kadoch C. (2019) The ATPase module of mammalian SWI/SNF family complexes mediates subcomplex identity and catalytic activity–independent genomic targeting. Nat. Genet. 51, 618–626.

  97. Wang X., Lee R.S., Alver B.H., Haswell J.R., Wang S., Mieczkowski J., Drier Y., Gillespie S.M., Archer T.C., Wu J.N., Tzvetkov E.P., Troisi E.C., Pomeroy S.L., Biegel J.A., Tolstorukov M.Y., Bernstein B.E., Park P.J., Roberts C.W.M. (2017) SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. Nat. Genet. 49, 289–295.

  98. Alexander J.M., Hota S.K., He D., Thomas S., Ho L., Pennacchio L.A., Bruneau B.G. (2015) Brg1 modulates enhancer activation in mesoderm lineage commitment. Dev. Camb. 142, 1418–1430.

  99. Mathur R., Alver B.H., San Roman A.K., Wilson B.G., Wang X., Agoston A.T., Park P.J., Shivdasani R.A., Roberts C.W.M. (2017) ARID1A loss impairs enhancer-mediated gene regulation and drives colon cancer in mice. Nat. Genet. 49, 296–302.

  100. Nakayama R.T., Pulice J.L. Valencia A.M., McBride M.J., McKenzie Z.M., Gillespie M.A., Ku W.L., Teng M., Cui K., Williams R.T., Cassel S.H., Qing H., Widmer C.J., Demetri G.D., Irizarry R.A., Zhao K., Ranish J.A., Kadoch C. (2017) SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters. Nat. Genet. 49, 1613–1623.

  101. Alver B.H., Kim K.H., Lu P., Wang X., Manchester H.E., Wang W., Haswell J.R., Park P.J., Roberts C.W.M. (2017) The SWI/SNF chromatin remodelling complex is required for maintenance of lineage specific enhancers. Nat. Commun. 8, 1–10.

  102. Fujioka S., Niu J., Schmidt C., Sclabas G.M., Peng B., Uwagawa T., Li Z., Evans D.B., Abbruzzese J.L., Chiao P.J. (2004) NF-κB and AP-1 connection: mechanism of NF-κB-dependent regulation of AP-1 activity. Mol. Cell. Biol. 24, 7806–7819.

  103. Vierbuchen T., Ling E., Cowley C.J., Couch C.H., Wang X., Harmin D.A., Roberts C.W.M., Greenberg M.E. (2017) AP-1 transcription factors and the BAF complex mediate signal-dependent enhancer selection. Mol. Cell. 68, 1067–1082.e12.

  104. Heinz S., Benner C., Spann N., Bertolino E., Lin Y.C., Laslo P., Cheng J.X., Murre C., Singh H., Glass C.K. (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell. 38, 576–589.

  105. Mancino A., Termanini A., Barozzi I., Ghisletti S., Ostuni R., Prosperini E., Ozato K., Natoli G. (2015) A dual cis-regulatory code links IRF8 to constitutive and inducible gene expression in macrophages. Genes Dev. 29, 394–408.

  106. Fonseca G.J., Tao J., Westin E.M., Duttke S.H., Spann N.J., Strid T., Shen Z., Stender J.D., Sakai M., Link V.M., Benner C., Glass C.K. (2019) Diverse motif ensembles specify non-redundant DNA binding activities of AP-1 family members in macrophages. Nat. Commun. 10, 414–430.

  107. Ghisletti S., Barozzi I., Mietton F., Polletti S., De Santa F., Venturini E., Gregory L., Lonie L., Chew A., Wei C.L., Ragoussis J., Natoli G. (2010) Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity. 32, 317–328.

  108. Chandler R.L., Damrauer J.S., Raab J.R., Schisler J.C., Wilkerson M.D., Didion J.P., Starmer J., Serber D., Yee D., Xiong J., Darr D.B., Pardo-Manuel de Villena F., Kim W.Y., Magnuson T. (2015) Coexistent ARID1A-PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling. Nat. Commun. 6, 1–14.

  109. Kim M., Lu F., Zhang Y. (2016) Loss of HDAC-mediated repression and gain of NF-κB activation underlie cytokine induction in ARID1A- and PIK3CA-mutation-driven ovarian cancer. Cell Rep. 17, 275–288.

  110. Ogawa S., Lozach J., Jepsen K., Sawka-Verhelle D., Perissi V., Sasik R., Rose D.W., Johnson R.S., Rosenfeld M.G., Glass C.K. (2004) A nuclear receptor corepressor transcriptional checkpoint controlling activator protein 1-dependent gene networks required for macrophage activation. Proc. Natl. Acad. Sci. USA. 101, 14461–14466.

  111. Underhill C., Qutob M.S., Yee S.P., Torchia J. (2000) A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1. J. Biol. Chem. 275, 40463–40470.

  112. Ong C.T., Corces V.G. (2014) CTCF: an architectural protein bridging genome topology and function. Nat. Rev. Genet. 15, 234–246.

  113. Cuartero S., Weiss F.D., Dharmalingam G., Guo Y., Ing-Simmons E., Masella S., Robles-Rebollo I., Xiao X., Wang Y.F., Barozzi I., Djeghloul D., Amano M.T., Niskanen H., Petretto E., Dowell R.D., Tachibana K., Kaikkonen M.U., Nasmyth K.A., Lenhard B., Natoli G., Fisher A.G., Merkenschlager M. (2018) Control of inducible gene expression links cohesin to hematopoietic progenitor self-renewal and differentiation. Nat. Immunol. 19, 932–941.

  114. Lu C., Allis C.D. (2017) SWI/SNF complex in cancer. Nat. Genet. 49, 178–179.

  115. Kadoch C., Crabtree G.R. (2015) Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci. Adv. 1, 1–18.

  116. Wanior M., Krämer A., Knapp S., Joerger A.C. (2021) Exploiting vulnerabilities of SWI/SNF chromatin remodelling complexes for cancer therapy. Oncogene. 40, 3637–3654.

  117. Furman D., Campisi J., Verdin E., Carrera-Bastos P., Targ S., Franceschi C., Ferrucci L., Gilroy D.W., Fasano A., Miller G.W., Miller A.H., Mantovani A., Weyand C.M., Barzilai N., Goronzy J.J., Rando T.A., Effros R.B., Lucia A., Kleinstreuer N., Slavich G.M. (2019) Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832.

Дополнительные материалы отсутствуют.