Молекулярная биология, 2022, T. 56, № 2, стр. 227-243

Регулом микроРНК при различных фенотипах атеросклероза

М. С. Назаренко ab*, Ю. А. Королёва a, А. А. Зарубин a, А. А. Слепцов a

a Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук
634050 Томск, Россия

b Сибирский государственный медицинский университет
634050 Томск, Россия

* E-mail: maria.nazarenko@medgenetics.ru

Поступила в редакцию 29.07.2021
После доработки 25.08.2021
Принята к публикации 26.08.2021

Аннотация

Нарушение регуляции экспрессии микроРНК связано с предрасположенностью ко многим заболеваниям, в том числе к атеросклеротическому поражению коронарных и сонных артерий и развитию таких осложнений, как ишемическая болезнь сердца, инфаркт миокарда, хроническая ишемия головного мозга, ишемический инсульт. В последнее время появляется все больше работ, в которых анализируется регулом микроРНК, включающий сеть регуляторных элементов экспрессии собственно микроРНК и мишеней, находящихся под их контролем. В обзоре рассмотрена экспрессия микроРНК и изменения метилирования ДНК в области генов микроРНК в артериях человека при их атеросклеротическом поражении, а также проанализирована связь однонуклеотидных полиморфизмов и вариаций числа копий участков ДНК в области генов микроРНК с клиническими осложнениями атеросклероза.

Ключевые слова: регулом микроРНК, экспрессия, метилирование ДНК, однонуклеотидные варианты, вариации числа копий участков ДНК, атеросклероз, ишемическая болезнь сердца, инфаркт миокарда, ишемический инсульт

Список литературы

  1. Libby P., Buring J.E., Badimon L., Hansson G.K., Deanfield J., Bittencourt M.S., Tokgözoğlu L., Le-wis E.F. (2019) Atherosclerosis. Nat. Rev. Dis. Primers. 5(1), 56. https://doi.org/10.1038/s41572-019-0106-z

  2. Basatemur G.L., Jørgensen H.F., Clarke M., Ben-nett M.R., Mallat Z. (2019) Vascular smooth muscle cells in atherosclerosis. Nat. Rev. Cardiol. 16(12), 727–744. https://doi.org/10.1038/s41569-019-0227-9

  3. Chinetti-Gbaguidi G., Colin S., Staels B. (2015) Macrophage subsets in atherosclerosis. Nat. Rev. Cardiol. 12(1), 10–17. https://doi.org/10.1038/nrcardio.2014.173

  4. Raitoharju E., Oksala N., Lehtimäki T. (2013) MicroRNAs in the atherosclerotic plaque. Clin. Chem. 59(12), 1708–1721. https://doi.org/10.1373/clinchem.2013.204917

  5. Andreou I., Sun X., Stone P.H., Edelman E.R., Fein-berg M.W. (2015) miRNAs in atherosclerotic plaque initiation, progression, and rupture. Trends. Mol. Med. 21(5), 307–318. https://doi.org/10.1016/j.molmed.2015.02.003

  6. Feinberg M.W., Moore K.J. (2016) MicroRNA regulation of atherosclerosis. Circ. Res. 118(4), 703–720. https://doi.org/10.1161/CIRCRESAHA.115.306300

  7. Кучер А.Н., Назаренко М.С. (2017) Роль микро-РНК при атерогенезе. Кардиология. 57(9), 65–76.

  8. Fasolo F., Di Gregoli K., Maegdefessel L., John-son J.L. (2019) Non-coding RNAs in cardiovascular cell biology and atherosclerosis. Cardiovasc. Res. 115(12), 1732–1756. https://doi.org/10.1093/cvr/cvz203

  9. Friedman R.C., Farh K.K.-H., Burge C.B., Bartel D.P. (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19(1), 92–105. https://doi.org/10.1101/gr.082701.108

  10. Catalanotto C., Cogoni C., Zardo G. (2016) MicroRNA in control of gene expression: an overview of nuclear functions. Int. J. Mol. Sci. 17(10), 1712. https://doi.org/10.3390/ijms17101712

  11. Lu Y., Thavarajah T., Gu W., Cai J., Xu Q. (2018) Impact of miRNA in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 38(9), e159–e170. https://doi.org/10.1161/ATVBAHA.118.310227

  12. Kozomara A., Birgaoanu M., Griffiths-Jones S. (2019) miRBase: from microRNA sequences to function. Nucl. Acids Res. 47(D1), D155–D162. https://doi.org/10.1093/nar/gky1141

  13. Laffont B., Rayner K.J. (2017) MicroRNAs in the pathobiology and therapy of atherosclerosis. Can. J. Cardiol. 33(3), 313–324. https://doi.org/10.1016/j.cjca.2017.01.001

  14. Olena A.F., Patton J.G. (2010) Genomic organization of microRNAs. J. Cell. Physiol. 222(3), 540–545. https://doi.org/10.1002/jcp.21993

  15. Morales S., Monzo M., Navarro A. (2017) Epigenetic regulation mechanisms of microRNA expression. Biomol. Concepts. 8(5-6), 203–212. https://doi.org/10.1515/bmc-2017-0024

  16. Marsico A., Huska M.R., Lasserre J., Hu H., Vuci-cevic D., Musahl A., Orom U., Vingron M. (2013) PROmiRNA: a new miRNA promoter recognition method uncovers the complex regulation of intronic miRNAs. Genome Biol. 14(8), R84. https://doi.org/10.1186/gb-2013-14-8-r84

  17. Chakraborty C., Das S. (2016) Profiling cell-free and circulating miRNA: a clinical diagnostic tool for different cancers. Tumour Biol. 37(5), 5705–5714. https://doi.org/10.1007/s13277-016-4907-3

  18. Wong L.L., Wang J., Liew O.W., Richards A.M., Chen Y.T. (2016) MicroRNA and heart failure. Int. J. Mol. Sci. 17(4), 502. https://doi.org/10.3390/ijms17040502

  19. Hinske L.C., França G.S., Torres H.A., Ohara D.T., Lopes-Ramos C.M., Heyn J., Reis L.F., Ohno-Machado L., Kreth S., Galante P.A. (2014) miRIAD-integrating microRNA inter- and intragenic data. Database (Oxford). 2014, bau099. https://doi.org/10.1093/database/bau099

  20. Huang Z., Shi J., Gao Y., Cui C., Zhang S., Li J., Zhou Y., Cui Q. (2019) HMDD v3.0: a database for experimentally supported human microRNA-disease associations. Nucl. Acids Res. 47 (D1), D1013–D1017.

  21. Sharma H., Estep M., Birerdinc A., Afendy A., Mo-azzez A., Elariny H., Goodman Z., Chandhoke V., Baranova A., Younossi Z.M. (2013) Expression of genes for microRNA-processing enzymes is altered in advanced non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 28(8), 1410–1415. https://doi.org/10.1111/jgh.12268

  22. Cipollone F., Felicioni L., Sarzani R., Ucchino S., Spigonardo F., Mandolini C., Malatesta S., Bucci M., Mammarella C., Santovito D., de Lutiis F., Marchetti A., Mezzetti A., Buttitta F. (2011) A unique microRNA signature associated with plaque instability in humans. Stroke. 42(9), 2556–2563. https://doi.org/10.1161/STROKEAHA.110.597575

  23. Lovren F., Pan Y., Quan A., Singh K.K., Shukla P.C., Gupta N., Steer B.M., Ingram A.J., Gupta M., Al-Omran M., Teoh H., Marsden P.A., Verma S. (2012) MicroRNA-145 targeted therapy reduces atherosclerosis. Circulation. 126(11 Suppl. 1), S81–S90. https://doi.org/10.1161/CIRCULATIONAHA.111.084186

  24. Nazari-Jahantigh M., Wei Y., Noels H., Akhtar S., Zhou Z., Koenen R.R., Heyll K., Gremse F., Kiess-ling F., Grommes J., Weber C., Schober A. (2012) MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J. Clin. Invest. 122(11), 4190–4202. https://doi.org/10.1172/JCI61716

  25. Santovito D., Mandolini C., Marcantonio P., De Nardis V., Bucci M., Paganelli C., Magnacca F., Ucchino S., Mastroiacovo D., Desideri G., Mezzetti A., Cipollone F. (2013) Overexpression of microRNA-145 in atherosclerotic plaques from hypertensive patients. Expert. Opin. Ther. Targets. 17(3), 217–223. https://doi.org/10.1517/14728222.2013.745512

  26. Di Gregoli K., Jenkins N., Salter R., White S., Newby A.C., Johnson J.L. (2014) MicroRNA-24 regulates macrophage behavior and retards atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 34(9), 1990–2000. https://doi.org/10.1161/ATVBAHA.114.304088

  27. Bazan H.A., Hatfield S.A., O’Malley C.B., Brooks A.J., Lightell D. Jr., Woods T.C. (2015) Acute loss of miR-221 and miR-222 in the atherosclerotic plaque shoulder accompanies plaque rupture. Stroke. 46(11), 3285–3287. https://doi.org/10.1161/STROKEAHA.115.010567

  28. Cao J., Zhang K., Zheng J., Dong R. (2015) MicroRNA-146a and -21 cooperate to regulate vascular smooth muscle cell proliferation via modulation of the Notch signaling pathway. Mol. Med. Rep. 11(4), 2889–2895. https://doi.org/10.3892/mmr.2014.3107

  29. Maitrias P., Metzinger-Le Meuth V., Massy Z.A., M’Baya-Moutoula E., Reix T., Caus T., Metzinger L. (2015) MicroRNA deregulation in symptomatic carotid plaque. J. Vasc. Surg. 62(5), 1245–1250.e1. https://doi.org/10.1016/j.jvs.2015.06.136

  30. Di Gregoli K., Mohamad Anuar N.N., Bianco R., White S.J., Newby A.C., George S.J., Johnson J.L. (2017) MicroRNA-181b controls atherosclerosis and aneurysms through regulation of TIMP-3 and elastin. Circ. Res. 120(1), 49–65. https://doi.org/10.1161/CIRCRESAHA.116.309321

  31. Bildirici A.E., Arslan S., Özbilüm Şahin N., Berkan Ö., Beton O., Yilmaz M.B. (2018) MicroRNA-221/222 expression in atherosclerotic coronary artery plaque versus internal mammarian artery and in peripheral blood samples. Biomarkers. 23(7), 670–675. https://doi.org/10.1080/1354750X.2018.1474260

  32. Gong F.H., Cheng W.L., Wang H., Gao M., Qin J.J., Zhang Y., Li X., Zhu X., Xia H., She Z.G. (2018) Reduced atherosclerosis lesion size, inflammatory response in miR-150 knockout mice via macrophage effects. J. Lipid. Res. 59(4), 658–669. https://doi.org/10.1194/jlr.M082651

  33. Jin H., Li D.Y., Chernogubova E., Sun C., Busch A., Eken S.M., Saliba-Gustafsson P., Winter H., Winski G., Raaz U., Schellinger I.N., Simon N., Hegenloh R., Matic L.P., Jagodic M., Ehrenborg E., Pelisek J., Eckstein H.H., Hedin U., Backlund A., Maegdefessel L. (2018) Local delivery of miR-21 stabilizes fibrous caps in vulnerable atherosclerotic lesions. Mol. Ther. 26(4), 1040–1055. https://doi.org/10.1016/j.ymthe.2018.01.011

  34. Raitoharju E., Lyytikäinen L.P., Levula M., Oksala N., Mennander A., Tarkka M., Klopp N., Illig T., Kähönen M., Karhunen P.J., Laaksonen R., Lehtimäki T. (2011) miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis. 219(1), 211–217. https://doi.org/10.1016/j.atherosclerosis.2011.07.020

  35. Miller C.L., Haas U., Diaz R., Leeper N.J., Kundu R.K., Patlolla B., Assimes T.L., Kaiser F.J., Perisic L., Hedin U., Maegdefessel L., Schunkert H., Erdmann J., Quertermous T., Sczakiel G. (2014) Coronary heart disease-associated variation in TCF21 disrupts a miR-224 binding site and miRNA-mediated regulation. PLoS Genet. 10(3), e1004263. https://doi.org/10.1371/journal.pgen.1004263

  36. Wang R., Dong L.D., Meng X.B., Shi Q., Sun W.Y. (2015) Unique microRNA signatures associated with early coronary atherosclerotic plaques. Biochem. Biophys. Res. Commun. 464(2), 574–579. https://doi.org/10.1016/j.bbrc.2015.07.010

  37. Xue Y., Wei Z., Ding H., Wang Q., Zhou Z., Zheng S., Zhang Y., Hou D., Liu Y., Zen K., Zhang C.Y., Li J., Wang D., Jiang X. (2015) MicroRNA-19b/221/222 induces endothelial cell dysfunction via suppression of PGC-1α in the progression of atherosclerosis. Atherosclerosis. 241(2), 671–681. https://doi.org/10.1016/j.atherosclerosis.2015.06.031

  38. Markus B., Grote K., Worsch M., Parviz B., Boening A., Schieffer B., Parahuleva M.S. (2016) Differential expression of microRNAs in endarterectomy specimens taken from patients with asymptomatic and symptomatic carotid plaques. PLoS One. 11(9), e0161632. https://doi.org/10.1371/journal.pone.0161632

  39. Parahuleva M.S., Lipps C., Parviz B., Hölschermann H., Schieffer B., Schulz R., Euler G. (2018) MicroRNA expression profile of human advanced coronary atherosclerotic plaques. Sci. Rep. 8(1), 7823. https://doi.org/10.1038/s41598-018-25690-4

  40. Berkan Ö., Arslan S., Lalem T., Zhang L., Şahin N.Ö., Aydemir E.I., Korkmaz Ö., Eğilmez H.R., Çekin N., Devaux Y. (2019) Regulation of microRNAs in coronary atherosclerotic plaque. Epigenomics. 11(12), 1387–1397. https://doi.org/10.2217/epi-2019-0036

  41. Hao L., Wang X.G., Cheng J.D., You S.Z., Ma S.H., Zhong X., Quan L., Luo B. (2014) The up-regulation of endothelin-1 and down-regulation of miRNA-125a-5p, -155, and -199a/b-3p in human atherosclerotic coronary artery. Cardiovasc. Pathol. 23(4), 217–223. https://doi.org/10.1016/j.carpath.2014.03.009

  42. Katano H., Nishikawa Y., Yamada H., Yamada K., Mase M. (2018) Differential expression of microRNAs in severely calcified carotid plaques. J. Stroke Cerebrovasc. Dis. 27(1), 108–117. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.08.009

  43. Brennan E., Wang B., McClelland A., Mohan M., Marai M., Beuscart O., Derouiche S., Gray S., Pickering R., Tikellis C., de Gaetano M., Barry M., Belton O., Ali-Shah S.T., Guiry P., Jandeleit-Dahm K., Cooper M.E., Godson C., Kantharidis P. (2017) Protective effect of let-7 miRNA family in regulating inflammation in diabetes-associated atherosclerosis. Diabetes. 66(8), 2266–2277. https://doi.org/10.2337/db16-1405

  44. Kern F., Aparicio-Puerta E., Li Y., Fehlmann T., Kehl T., Wagner V., Ray K., Ludwig N., Lenhof H.P., Meese E., Keller A. (2021) miRTargetLink 2.0 – interactive miRNA target gene and target pathway networks. Nucl. Acids Res. 49(W1), W409–W416. https://doi.org/10.1093/nar/gkab297

  45. Chang L., Zhou G., Soufan O., Xia J. (2020) miRNet 2.0: network-based visual analytics for miRNA functional analysis and systems biology. Nucl. Acids Res. 48(W1), W244–W251. https://doi.org/10.1093/nar/gkaa467

  46. Kern F., Fehlmann T., Solomon J., Schwed L., Grammes N., Backes C., Van Keuren-Jensen K., Craig D.W., Meese E., Keller A. (2020) miEAA 2.0: integrating multi-species microRNA enrichment analysis and workflow management systems. Nucl. Acids Res. 48(W1), W521–W528. https://doi.org/10.1093/nar/gkaa309

  47. Huang H.Y., Lin Y.C., Li J., Huang K.Y., Shrestha S., Hong H.C., Tang Y., Chen Y.G., Jin C.N., Yu Y., Xu J.T., Li Y.M., Cai X.X., Zhou Z.Y., Chen X.H., Pei Y.Y., Hu L., Su J.J., Cui S.D., Wang F., Xie Y.Y., Ding S.Y., Luo M.F., Chou C.H., Chang N.W., Chen K.W., Cheng Y.H., Wan X.H., Hsu W.L., Lee T.Y., Wei F.X., Huang H.D. (2020) miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database. Nucl. Acids Res. 48(D1), D148–D154. https://doi.org/10.1093/nar/gkz896

  48. (2021) STRING: protein-protein interaction networks functional enrichment analysis https://string-db.org/

  49. Kanuri S.H., Ipe J., Kassab K., Gao H., Liu Y., Skaar T.C., Kreutz R.P. (2018) Next generation microRNA sequencing to identify coronary artery disease patients at risk of recurrent myocardial infarction. Atherosclerosis. 278, 232–239. https://doi.org/10.1016/j.atherosclerosis.2018.09.021

  50. Логинов В.И., Рыков С.В., Фридман М.В., Брага Э.А. (2015) Метилирование генов микроРНК и онкогенез. Биохимия. 80(2), 184–203.

  51. Chhabra R. (2015) miRNA and methylation: a multifaceted liaison. Chembiochem. 16(2), 195–203. https://doi.org/10.1002/cbic.201402449

  52. Ma J., Hong L., Chen Z., Nie Y., Fan D. (2014) Epigenetic regulation of microRNAs in gastric cancer. Dig. Dis. Sci. 59(4), 716–723. https://doi.org/10.1007/s10620-013-2939-8

  53. Piletič K., Kunej T. (2016) MicroRNA epigenetic signatures in human disease. Arch. Toxicol. 90(10), 2405–2419. https://doi.org/10.1007/s00204-016-1815-7

  54. Kunej T., Godnic I., Ferdin J., Horvat S., Dovc P., Calin G.A. (2011) Epigenetic regulation of microRNAs in cancer: an integrated review of literature. Mutat. Res. 717(1–2), 77–84. https://doi.org/10.1016/j.mrfmmm.2011.03.008

  55. Baer C., Claus R., Plass C. (2013) Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res. 73(2), 473–477. https://doi.org/10.1158/0008-5472.CAN-12-3731

  56. Wang Z., Yao H., Lin S., Zhu X., Shen Z., Lu G., Poon W.S., Xie D., Lin M.C., Kung H.F. (2013) Transcriptional and epigenetic regulation of human microRNAs. Cancer Lett. 331(1), 1–10. https://doi.org/10.1016/j.canlet.2012.12.006

  57. Bell R.E., Golan T., Sheinboim D., Malcov H., Amar D., Salamon A., Liron T., Gelfman S., Gabet Y., Shamir R., Levy C. (2016) Enhancer methylation dynamics contribute to cancer plasticity and patient mortality. Genome Res. 26(5), 601–611. https://doi.org/10.1101/gr.197194.115

  58. Марков А.В., Назаренко М.С., Королёва Ю.А., Лебедев И.Н., Слепцов А.А., Фролов А.В., Попов В.А., Барбараш О.Л., Барбараш Л.С., Пузырев В.П. (2014) Уровень метилирования промоторного региона гена HOXD4 у больных атеросклерозом. Медицинская генетика. 13(1), 39–42.

  59. Wang Z., Guo D., Yang B., Wang J., Wang R., Wang X., Zhang Q. (2014) Integrated analysis of microarray data of atherosclerotic plaques: modulation of the ubiquitin-proteasome system. PLoS One. 9(10), e110288. https://doi.org/10.1371/journal.pone.0110288

  60. Zaina S., Heyn H., Carmona F.J., Varol N., Sayols S., Condom E., Ramírez-Ruz J., Gomez A., Gonçalves I., Moran S., Esteller M. (2014) DNA methylation map of human atherosclerosis. Circ. Cardiovasc. Genet. 7(5), 692–700. https://doi.org/10.1161/CIRCGENETICS.113.000441

  61. Aavik E., Lumivuori H., Leppänen O., Wirth T., Häkkinen S.K., Bräsen J.H., Beschorner U., Zeller T., Braspenning M., van Criekinge W., Mäkinen K., Ylä-Herttuala S. (2015) Global DNA methylation analysis of human atherosclerotic plaques reveals extensive genomic hypomethylation and reactivation at imprinted locus 14q32 involving induction of a miRNA cluster. Eur. Heart. J. 36(16), 993–1000. https://doi.org/10.1093/eurheartj/ehu437

  62. Nazarenko M.S., Markov A.V., Lebedev I.N., Freidin M.B., Sleptcov A.A., Koroleva I.A., Frolov A.V., Popov V.A., Barbarash O.L., Puzyrev V.P. (2015) A comparison of genome-wide DNA methylation patterns between different vascular tissues from patients with coronary heart disease. PLoS One. 10(4), e0122601. https://doi.org/10.1371/journal.pone.0122601

  63. Ehrlich K.C., Lacey M., Ehrlich M. (2019) Tissue-specific epigenetics of atherosclerosis-related ANGPT and ANGPTL genes. Epigenomics. 11(2), 169–186. https://doi.org/10.2217/epi-2018-0150

  64. Nakahara M., Kobayashi N., Oka M., Nakano K., Okamura T., Yuo A., Saeki K. (2018) miR-10b deficiency affords atherosclerosis resistance. bioRxiv. 248641.

  65. Shen X., Fang J., Lv X., Pei Z., Wang Y., Jiang S., Ding K. (2011) Heparin impairs angiogenesis through inhibition of microRNA-10b. J. Biol. Chem. 286(30), 26616–26627. https://doi.org/10.1074/jbc.M111.224212

  66. Wang D., Xia M., Yan X., Li D., Wang L., Xu Y., Jin T., Ling W. (2012) Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b. Circ. Res. 111(8), 967–981. https://doi.org/10.1161/CIRCRESAHA.112.266502

  67. Yu X., Li Z., Chen G., Wu W.K. (2015) MicroRNA-10b induces vascular muscle cell proliferation through Akt pathway by targeting TIP30. Curr. Vasc. Pharmacol. 13(5), 679–686. https://doi.org/10.2174/1570161113666150123112751

  68. Goossens E.A.C., de Vries M.R., Simons K.H., Putter H., Quax P.H.A, Nossent A.Y. (2019) miRMap: profiling 14q32 microRNA expression and DNA methylation throughout the human vasculature. Front Cardiovasc. Med. 6, 113. https://doi.org/10.3389/fcvm.2019.00113

  69. Huan T., Mendelson M., Joehanes R., Yao C., Liu C., Song C., Bhattacharya A., Rong J., Tanriverdi K., Keefe J., Murabito J.M., Courchesne P., Larson M.G., Freedman J.E., Levy D. (2020) Epigenome-wide association study of DNA methylation and microRNA expression highlights novel pathways for human complex traits. Epigenetics. 15(1–2), 183–198. https://doi.org/10.1080/15592294.2019.1640547

  70. Edwards S.L., Beesley J., French J.D., Dunning A.M. (2013) Beyond GWASs: illuminating the dark road from association to function. Am. J. Hum. Genet. 93(5), 779–797. https://doi.org/10.1016/j.ajhg.2013.10.012

  71. Borghini A., Andreassi M.G. (2018) Genetic polymorphisms offer insight into the causal role of microRNA in coronary artery disease. Atherosclerosis. 269, 63–70. https://doi.org/10.1016/j.atherosclerosis.2017.12.022

  72. Miao Y.R., Liu W., Zhang Q., Guo A.Y. (2018) lncRNASNP2: an updated database of functional SNPs and mutations in human and mouse lncRNAs. Nucl. Acids Res. 46(D1), D276–D280. https://doi.org/10.1093/nar/gkx1004

  73. Moszyńska A., Gebert M., Collawn J.F., Bartoszewski R. (2017) SNPs in microRNA target miRNA sites and their potential role in human disease. Open Biol. 7(4), 170019. https://doi.org/10.1098/rsob.170019

  74. Zhang L., Yang J., Xue Q., Yang D., Lu Y., Guang X., Zhang W., Ba R., Zhu H., Ma X. (2016) An rs13293512 polymorphism in the promoter of let-7 is associated with a reduced risk of ischemic stroke. J. Thromb. Thrombolysis. 42(4), 610–615. https://doi.org/10.1007/s11239-016-1400-1

  75. Cai M.Y., Cheng J., Zhou M.Y., Liang L.L., Lian S.M., Xie X.S., Xu S., Liu X., Xiong X.D. (2018) The association between pre-miR-27a rs895819 polymorphism and myocardial infarction risk in a Chinese han population. Lipids Health Dis. 17(1), 7. https://doi.org/10.1186/s12944-017-0652-x

  76. Oner T., Arslan C., Yenmis G., Arapi B., Tel C., Ayde-mir B., Sultuybek G.K. (2017) Association of NFKB1A and microRNAs variations and the susceptibility to atherosclerosis. J. Genet. 96(2), 251–259. https://doi.org/10.1007/s12041-017-0768-9

  77. He Y., Yang J., Kong D., Lin J., Xu C., Ren H., Ouyang P., Ding Y., Wang K. (2015) Association of miR-146a rs2910164 polymorphism with cardio-cerebrovascular diseases: a systematic review and meta-analysis. Gene. 565(2), 171–179. https://doi.org/10.1016/j.gene.2015.04.020

  78. Xiong X.D., Cho M., Cai X.P., Cheng J., Jing X., Cen J.M., Liu X., Yang X.L., Suh Y. (2014) A common variant in pre-miR-146 is associated with coronary artery disease risk and its mature miRNA expression. Mutat. Res. 761, 15–20. https://doi.org/10.1016/j.mrfmmm.2014.01.001

  79. Bastami M., Choupani J., Saadatian Z., Zununi Vahed S., Mansoori Y., Daraei A., Samadi Kafil H., Masotti A., Nariman-Saleh-Fam Z. (2019) Polymorphisms and risk of cardio-cerebrovascular diseases: a systematic review and meta-analysis. Int. J. Mol. Sci. 20(2), 293. https://doi.org/10.3390/ijms20020293

  80. Bao M.H., Xiao Y., Zhang Q.S., Luo H.Q., Luo J., Zhao J., Li G.Y., Zeng J., Li J.M. (2015) Meta-analysis of miR-146a polymorphisms association with coronary artery diseases and ischemic stroke. Int. J. Mol. Sci. 16(7), 14305–14317. https://doi.org/10.3390/ijms160714305

  81. Hamann L., Glaeser C., Schulz S., Gross M., Franke A., Nöthlings U., Schumann R.R. (2014) A micro RNA-146a polymorphism is associated with coronary restenosis. Int. Immunogenet. 41(5), 393–396. https://doi.org/10.1111/iji.12136

  82. Shen J., Zhang M., Sun M., Tang K., Zhou B. (2015) The relationship of miR-146a gene polymorphism with carotid atherosclerosis in Chinese patients with type 2 diabetes mellitus. Thromb. Res. 136(6), 1149–1155. https://doi.org/10.1016/j.thromres.2015.10.013

  83. Zhu R., Liu X., He Z., Li Q. (2014) miR-146a and miR-196a2 polymorphisms in patients with ischemic stroke in the northern Chinese han population. Neurochem. Res. 39(9), 1709–1716. https://doi.org/10.1007/s11064-014-1364-5

  84. Zhong H., Cai Y., Cheng J., Cai D., Chen L., Su C., Li K., Chen P., Xu J., Cui L. (2016) Apolipoprotein E epsilon 4 enhances the association between the rs2910164 polymorphism of miR-146a and risk of atherosclerotic cerebral infarction. J. Atheroscler. Thromb. 23(7), 819–829. https://doi.org/10.5551/jat.32904

  85. Jeon Y.J., Kim O.J., Kim S.Y., Oh S.H., Oh D., Kim O.J., Shin B.S., Kim N.K. (2013). Association of the miR-146a, miR-149, miR-196a2, and miR-499 polymorphisms with ischemic stroke and silent brain infarction risk. Arterioscler. Thromb. Vasc. Biol. 33(2), 420–430. https://doi.org/10.1161/ATVBAHA.112.300251

  86. Zhu J., Yue H., Qiao C., Li Y. (2015) Association between single-nucleotide polymorphism (SNP) in miR-146a, miR-196a2, and miR-499 and risk of ischemic stroke: a meta-analysis. Med. Sci. Monit. 21, 3658–3663. https://doi.org/10.12659/msm.895233

  87. Qu J.Y., Xi J., Zhang Y.H., Zhang C.N., Song L., Song Y., Hui R.T., Chen J.Z. (2016) Association of the microRNA-146a SNP rs2910164 with ischemic stroke incidence and prognosis in a Chinese population. Int. J. Mol. Sci. 17(5), 660. https://doi.org/10.3390/ijms17050660

  88. Sung J.H., Kim S.H., Yang W.I., Kim W.J., Moon J.Y., Kim I.J., Cha D.H., Cho S.Y., Kim J.O., Kim K.A., Kim O.J., Lim S.W., Kim N.K. (2016) miRNA polymorphisms (miR‑146a, miR‑149, miR‑196a2 and miR‑499) are associated with the risk of coronary artery disease. Mol. Med. Rep. 14(3), 2328–2342. https://doi.org/10.3892/mmr.2016.5495

  89. Zhi H., Wang L., Ma G., Ye X., Yu X., Zhu Y., Zhang Y., Zhang J., Wang B. (2012) Polymorphisms of miRNAs genes are associated with the risk and prognosis of coronary artery disease. Clin. Res. Cardiol. 101(4), 289–296.https://doi.org/10.1007/s00392-011-0391-3

  90. Осьмак Г.Ж., Матвеева Н.А., Титов Б.В., Фаворова О.О. (2018) Связь полиморфизма гена MIR196A2 с инфарктом миокарда и возможное вовлечение микроРНК miR-196a2 в сигнальные пути, участвующие в формировании патологического фенотипа. Молекуляр. биология. 52(6), 1006–1013.

  91. Kim J., Choi G.H., Ko K.H., Kim J.O., Oh S.H., Park Y.S., Kim O.J., Kim N.K. (2016) Association of the single nucleotide polymorphisms in microRNAs 130b, 200b, and 495 with ischemic stroke susceptibility and post-stroke mortality. PLoS One. 11(9), e0162519. https://doi.org/10.1371/journal.pone.0162519

  92. Jha C.K., Mir R., Elfaki I., Khullar N., Rehman S., Javid J., Banu S., Chahal S. (2019) Potential impact of microRNA-423 gene variability in coronary artery disease. Endocr. Metab. Immune Disord. Drug Targets. 19(1), 67–74. https://doi.org/10.2174/1871530318666181005095724

  93. Chen C., Hong H., Chen L., Shi X., Chen Y., Weng Q. (2014) Association of microRNA polymorphisms with the risk of myocardial infarction in a Chinese population. Tohoku J. Exp. Med. 233(2), 89–94. https://doi.org/10.1620/tjem.233.89

  94. Darabi H., Salmaninejad A., Jaripour M.E., Azarpaz-hooh M.R., Mojarrad M., Sadr-Nabavi A. (2019) Association of the genetic polymorphisms in immunoinflammatory microRNAs with risk of ischemic stroke and subtypes in an Iranian population. J. Cell. Physiol. 234(4), 3874–3886. https://doi.org/10.1002/jcp.27159

  95. Liu Y., Ma Y., Zhang B., Wang S.X., Wang X.M., Yu J.M. (2014) Genetic polymorphisms in pre-microRNAs and risk of ischemic stroke in a Chinese population. J. Mol. Neurosci. 52(4), 473–480. https://doi.org/10.1007/s12031-013-0152-z

  96. Zhang Z., Xu G., Cai B., Zhang H., Zhu W., Liu X. (2017) Genetic variants in microRNAs predict recurrence of ischemic stroke. Mol. Neurobiol. 54(4), 2776–2780. https://doi.org/10.1007/s12035-016-9865-7

  97. Ghanbari M., de Vries P.S., de Looper H., Peters M.J., Schurmann C., Yaghootkar H., Dörr M., Frayling T.M., Uitterlinden A.G., Hofman A., van Meurs J.B., Erke-land S.J., Franco O.H., Dehghan A. (2014) A genetic variant in the seed region of miR-4513 shows pleiotropic effects on lipid and glucose homeostasis, blood pressure, and coronary artery disease. Hum. Mutat. 35(12), 1524–1531. https://doi.org/10.1002/humu.22706

  98. (2021) Reference SNP (rs) Report: rs2910164. https://www.ncbi.nlm.nih.gov/snp/rs2910164

  99. Li Q., Chen L., Chen D., Wu X., Chen M. (2015) Influence of microRNA-related polymorphisms on clinical outcomes in coronary artery disease. Am. J. Transl. Res. 7(2), 393–400.

  100. (2021) Ensembl rs4225 SNP Allele: frequency (count) https://www.ensembl.org/Homo_sapiens/Variation/Population?db=core;r=11:116832455-116833455;v=rs4225;vdb=variation;vf=164407333

  101. Hu S.L., Cui G.L., Huang J., Jiang J.G., Wang D.W. (2016) An APOC3 3'UTR variant associated with plasma triglycerides levels and coronary heart disease by creating a functional miR-4271 binding site. Sci. Rep. 6, 32700. https://doi.org/10.1038/srep32700

  102. Wagschal A., Najafi-Shoushtari S.H., Wang L., Goedeke L., Sinha S., deLemos A.S., Black J.C., Ra-mírez C.M., Li Y., Tewhey R., Hatoum I., Shah N., Lu Y., Kristo F., Psychogios N., Vrbanac V., Lu Y.C., Hla T., de Cabo R., Tsang J.S., Schadt E., Sabeti P.C., Kathiresan S., Cohen D.E., Whetstine J., Chung R.T., Fernández-Hernando C., Kaplan L.M., Bernards A., Gerszten R.E., Näär A.M. (2015) Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis. Nat. Med. 21(11), 1290–1297. https://doi.org/10.1038/nm.3980

  103. Jazdzewski K., Murray E.L., Franssila K., Jarzab B., Schoenberg D.R., de la Chapelle A. (2008) Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc. Natl. Acad. Sci. USA. 105(20), 7269–7274. https://doi.org/10.1073/pnas.0802682105

  104. Wang D., Atanasov A.G. (2019) The microRNAs regulating vascular smooth muscle cell proliferation: a minireview. Int. J. Mol. Sci. 20(2), 324. https://doi.org/10.3390/ijms20020324

  105. Sun X., Icli B., Wara A.K., Belkin N., He S., Kobzik L., Hunninghake G.M., Vera M.P., MICU Registry, Blackwell T.S., Baron R.M., Feinberg M.W. (2012) MicroRNA-181b regulates NF-κB-mediated vascular inflammation. J. Clin. Invest. 122(6), 1973–1990. https://doi.org/10.1172/JCI61495

  106. Dweep H., Georgiou G.D., Gretz N., Deltas C., Voska-rides K., Felekkis K. (2013) CNVs-microRNAs interactions demonstrate unique characteristics in the human genome. An interspecies in silico analysis. PLoS One. 8(12), e81204. https://doi.org/10.1371/journal.pone.0081204

  107. Marcinkowska M., Szymanski M., Krzyzosiak W.J., Kozlowski P. (2011) Copy number variation of microRNA genes in the human genome. BMC Genomics. 12, 183. https://doi.org/10.1186/1471-2164-12-183

  108. Sohrabifar N., Ghaderian S., Vakili H., Ghaedi H., Rouhani B., Jafari H., Heidari L. (2021) MicroRNA-copy number variations in coronary artery disease patients with or without type 2 diabetes mellitus. Arch. Physiol. Biochem. 127(6), 497–503. https://doi.org/10.1080/13813455.2019.1651340

  109. Nazarenko M.S., Sleptcov A.A., Lebedev I.N., Skrya-bin N.A., Markov A.V., Golubenko M.V., Koroleva I.A., Kazancev A.N., Barbarash O.L., Puzyrev V.P. (2017) Genomic structural variations for cardiovascular and metabolic comorbidity. Sci. Rep. 7, 41268. https://doi.org/10.1038/srep41268

  110. Lins T.C. de L. (2014) Variação estrutural no número de cópias e sua implicação na expressão de microRNA em humanos. https://repositorio.unb.br/handle/10482/16506

  111. Xing H.J., Li Y.J., Ma Q.M., Wang A.M., Wang J.L., Sun M., Jian Q., Hu J.H., Li D., Wang L. (2013) Identification of microRNAs present in congenital heart disease associated copy number variants. Eur. Rev. Med. Pharmacol Sci. 17(15), 2114–2120.

  112. Chen L.J., Lim S.H., Yeh Y.T., Lien S.C., Chiu J.J. (2012) Roles of microRNAs in atherosclerosis and restenosis. J. Biomed. Sci. 19(1), 79. https://doi.org/10.1186/1423-0127-19-79

  113. Schober A., Weber C. (2016) Mechanisms of microRNAs in atherosclerosis. Annu. Rev. Pathol. 11, 583–616. https://doi.org/10.1146/annurev-pathol-012615-044135

  114. Johnson J.L. (2019) Elucidating the contributory role of microRNA to cardiovascular diseases (a review). Vascul. Pharmacol. 114, 31–48. https://doi.org/10.1016/j.vph.2018.10.010

  115. Tao J., Xia L., Cai Z., Liang L., Chen Y., Meng J., Wang Z. (2021) Interaction between microRNA and DNA methylation in atherosclerosis. DNA Cell Biol. 40(1), 101–115. https://doi.org/10.1089/dna.2020.6138

  116. Mens M., Maas S., Klap J., Weverling G.J., Klat-ser P., Brakenhoff J., van Meurs J., Uitterlinden A.G., Ikram M.A., Kavousi M., Ghanbari M. (2020) Multi-omics analysis reveals microRNAs associated with cardiometabolic traits. Front Genet. 11, 110. https://doi.org/10.3389/fgene.2020.00110

  117. Vohra M., Sharma A.R., Prabhu B.N., Rai P.S. (2020) SNPs in sites for DNA methylation, transcription factor binding, and miRNA targets leading to allele-specific gene expression and contributing to complex disease risk: a systematic review. Public Health Genomics. 23(5–6), 155–170. https://doi.org/10.1159/000510253

Дополнительные материалы отсутствуют.