Молекулярная биология, 2022, T. 56, № 2, стр. 275-295

РНК-хроматиновый интерактом. Что? Где? Когда?

Г. К. Рябых ab*, Д. Е. Мыларщиков a, С. В. Кузнецов c, А. И. Сигорских a, Т. Ю. Пономарёва a, А. А. Жарикова abd, А. А. Миронов ab

a Факультет биоинженерии и биоинформатики Московского государственного университета им. М.В. Ломоносова
119234 Москва, Россия

b Институт проблем передачи информации им. А.А. Харкевича
127051 Москва, Россия

c ООО Бостонджин
115114 Москва, Россия

d Научно-исследовательский институт физико-химической биологии им. А.Н. Белозерского Московского государственного университета им. М.В. Ломоносова
119992 Москва, Россия

* E-mail: ryabykhgrigory@gmail.com

Поступила в редакцию 20.08.2021
После доработки 13.10.2021
Принята к публикации 14.10.2021

Аннотация

Еще в начале 60-х годов прошлого века заметили, что с хроматином ассоциировано большое количество различных РНК. Что это за РНК и где на хроматине они локализованы? Когда и в каких процессах эти РНК выполняют свою нормальную или патогенную функцию? В данном обзоре мы описываем современные подходы, позволяющие в какой-то мере ответить на эти вопросы. Мы разбираем экспериментальные методы, позволяющие получить полный РНК-хроматиновый интерактом клетки или полногеномные карты взаимодействий отдельных РНК с хроматином, а также методы обработки экспериментальных данных. Мы акцентируем внимание на некодирующих РНК, которые функционируют в тесном контакте с хроматином и ассоциированными с хроматином белковыми комплексами. Разнообразие биологических примеров, полученных с помощью этих методов, не оставляет сомнений в том, что за счет тонкой настройки архитектуры хроматина, приводящей к изменению уровня экспрессии генов, взаимодействующие с хроматином РНК играют важную роль в работе клеточных систем.

Ключевые слова: некодирующие РНК, РНК-хроматиновый интерактом, хроматин, эпигенетика, транскрипция

Список литературы

  1. Djebali S., Davis C.A., Merkel A., Dobin A., Lassmann T., Mortazavi A., Tanzer A., Lagarde J., Lin W., Schlesinger F., Xue C., Marinov G.K., Khatun J., Williams B.A., Zaleski C., Rozowsky J., Röder M., Kokocinski F., Abdelhamid R.F., Alioto T., Antoshechkin I., Baer M.T., Bar N.S., Batut P., Bell K., Bell I., Chakrabortty S., Chen X., Chrast J., Curado J., Derrien T., Drenkow J., Dumais E., Dumais J., Duttagupta R., Falconnet E., Fastuca M., Fejes-Toth K., Ferreira P., Foissac S., Fullwood M.J., Gao H., Gonzalez D., Gordon A., Gunawardena H., Howald C., Jha S., Johnson R., Kapranov P., King B., Kingswood C., Luo O.J., Park E., Persaud K., Preall J.B., Ribeca P., Risk B., Robyr D., Sammeth M., Schaffer L., See L.-H., Shahab A., Skancke J., Suzuki A.M., Takahashi H., Tilgner H., Trout D., Walters N., Wang H., Wrobel J., Yu Y., Ruan X., Hayashizaki Y., Harrow J., Gerstein M., Hubbard T., Reymond A., Antona-rakis S.E., Hannon G., Giddings M.C., Ruan Y., Wold B., Carninci P., Guigó R., Gingeras T.R. (2012) Landscape of transcription in human cells. Nature. 489(7414), 101–108.

  2. Engreitz J.M., Ollikainen N., Guttman M. (2016) Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression. Nat. Rev. Mol. Cell. Biol. 17, 756–770.

  3. Mishra K., Kanduri C. (2019) Understanding long noncoding RNA and chromatin interactions: what we know so far. Non-Coding RNA. 5(4), 1–28.

  4. Engreitz J.M., Pandya-Jones A., McDonel P., Shishkin A., Sirokman K., Surka C., Kadri S., Xing J., Goren A., Lander E.S., Plath K., Guttman M. (2013) The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science. 341(6147), 1–8.

  5. Simon M.D., Wang C.I., Kharchenko P.V., West J.A., Chapman B.A., Alekseyenko A.A., Borowsky M.L., Kuroda M.I., Kingston R.E. (2011) The genomic binding sites of a noncoding RNA. Proc. Natl. Acad. Sci. USA. 108(51), 20497–20502.

  6. Chu C., Qu K., Zhong F.L., Artandi S.E., Chang H.Y. (2011) Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol. Cell. 44, 667–678.

  7. Quinn J.J., Ilik I.A., Qu K., Georgiev P., Chu C., Akhtar A., Chang H.Y. (2014) Revealing long noncoding RNA architecture and functions using domain-specific chromatin isolation by RNA purification. Nat. Biotechnol. 32, 933–940.

  8. Mondal T., Subhash S., Vaid R., Enroth S., Uday S., Reinius B., Mitra S., Mohammed A., James A.R., Hoberg E., Moustakas A., Gyllensten U., Jones S.J.M., Gustafsson C.M., Sims A.H., Westerlund F., Gorab E., Kanduri C. (2015) MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA-DNA triplex structures. Nat. Commun. 6(7743), 1–17.

  9. Chu H.P., Cifuentes-Rojas C., Kesner B., Aeby E., Lee H., Wei C., Oh H.J., Boukhali M., Haas W., Lee J.T. (2017) TERRA RNA antagonizes ATRX and protects telomeres. Cell. 170, 86–101.

  10. Sridhar B., Rivas-Astroza M., Nguyen T.C., Chen W., Yan Z., Cao X., Hebert L., Zhong S. (2017) Systematic mapping of RNA-chromatin interactions in vivo. Curr. Biol. 27, 602–609.

  11. Li X., Zhou B., Chen L., Gou L.T., Li H., Fu X.D. (2017) GRID-seq reveals the global RNA-chromatin interactome. Nat. Biotechnol. 35, 940–950.

  12. Bell J.C., Jukam D., Teran N.A., Risca V.I., Smith O.K., Johnson W.L., Skotheim J.M., Greenleaf W.J., Stra-ight A.F. (2018) Chromatin-associated RNA sequencing (ChAR-seq) maps genome-wide RNA-to-DNA contacts. Elife. 7, 1–28.

  13. Yan Z., Huang N., Wu W., Chen W., Jiang Y., Chen J., Huang X., Wen X., Xu J., Jin Q., Zhang K., Chen Z., Chien S., Zhong S. (2019) Genome-wide colocalization of RNA–DNA interactions and fusion RNA pairs. Proc. Natl. Acad. Sci. USA. 116, 3328–3337.

  14. Calandrelli R., Xu L., Luo Y., Wu W., Fan X., Nguyen T., Chen C.-J., Sriram K., Tang X., Burns A.B., Natarajan R., Chen Z.B., Zhong S. (2020) Stress-induced RNA–chromatin interactions promote endothelial dysfunction. Nat. Commun. 11, 1–13.

  15. Bonetti A., Agostini F., Suzuki A.M., Hashimoto K., Pascarella G., Gimenez J., Roos L., Nash A.J., Ghilotti M., Cameron C.J.F., Valentine M., Medvedeva Y.A., Noguchi S., Agirre E., Kashi K., Samudyata, Luginbühl J., Cazzoli R., Agrawal S., Luscombe N.M., Blanchette M., Kasukawa T., Hoon M., Arner E., Lenhard B., Plessy C., Castelo-Branco G., Orlando V., Carninci P. (2020) RADICL-seq identifies general and cell type–specific principles of genome-wide RNA-chromatin interactions. Nat. Commun. 11, 1–14.

  16. Gavrilov A.A., Zharikova A.A., Galitsyna A.A., Luzhin A.V., Rubanova N.M., Golov A.K., Petrova N.V., Logacheva M.D., Kantidze O.L., Ulianov S.V., Magnitov M.D., Mironov A.A., Razin S.V. (2020) Studying RNA-DNA interactome by Red-C identifies noncoding RNAs associated with various chromatin types and reveals transcription dynamics. Nucl. Acids Res. 48(12), 6699–6714.

  17. Alfeghaly C., Sanchez A., Rouget R., Thuillier Q., Igel-Bourguignon V., Marchand V., Branlant C., Motorin Y., Behm-Ansmant I., Maenner S. (2021) Implication of repeat insertion domains in the trans-activity of the long non-coding RNA ANRIL. Nucl. Acids Res. 49(9), 4954–4970.

  18. Zovoilis A., Cifuentes-Rojas C., Chu H.P., Hernandez A.J., Lee J.T. (2016) Destabilization of B2 RNA by EZH2 activates the stress response. Cell. 167(7), 1788–1802.

  19. Alvarez-Dominguez J.R., Knoll M., Gromatzky A.A., Lodish H.F. (2017) The super-enhancer-derived alncRNA-EC7/bloodlinc potentiates red blood cell development in trans. Cell. Rep. 19(12), 2503–2514.

  20. Ballarino M., Cipriano A., Tita R., Santini T., Desideri F., Morlando M., Colantoni A., Carrieri C., Nicoletti C., Musarò A., O’Carroll D., Bozzoni I. (2018) Deficiency in the nuclear long noncoding RNA Charme causes myogenic defects and heart remodeling in mice. EMBO J. 37, 1–16.

  21. Merry C.R., Forrest M.E., Sabers J.N., Beard L., Gao X.-H., Hatzoglou M., Jackson M.W., Wang Z., Markowitz S.D., Khalil A.M. (2015) DNMT1-associated long non-coding RNAs regulate global gene expression and DNA methylation in colon cancer. Hum. Mol Genet. 24(21), 6240–6253.

  22. Chalei V., Sansom S.N., Kong L., Lee S., Montiel J.F., Vance K.W., Ponting C.P. (2014) The long non-coding RNA Dali is an epigenetic regulator of neural differentiation. Elife. 3, 1–24.

  23. Schmitt A.M., Garcia J.T., Hung T., Flynn R.A., Shen Y., Qu K., Payumo A.Y., Peres-da-Silva A., Broz D.K., Baum R., Guo S., Chen J.K., Attardi L.D., Chang H.Y. (2016) An inducible long noncoding RNA amplifies DNA damage signaling. Nat. Genet. 48(11), 1370–1376.

  24. Zapparoli E., Briata P., Rossi M., Brondolo L., Bucci G., Gherzi R. (2020) Comprehensive multi-omics analysis uncovers a group of TGF-β-regulated genes among lncRNA EPR direct transcriptional targets. Nucl. Acids Res. 48(16), 9053–9066.

  25. Li M.A., Amaral P.P., Cheung P., Bergmann J.H., Kinoshita M., Kalkan T., Ralser M., Robson S., Meyenn F., Paramor M., Yang F., Chen C., Nichols J., Spector D.L., Kouzarides T., He L., Smith A. (2017) A lncRNA fine tunes the dynamics of a cell state transition involving lin28, let-7 and de novo DNA methylation. Elife. 6, 1–24.

  26. Hu T., Pi W., Zhu X., Yu M., Ha H., Shi H., Choi J.-H., Tuan D. (2017) Long non-coding RNAs transcribed by ERV-9 LTR retrotransposon act in cis to modulate long-range LTR enhancer function. Nucl. Acids Res. 45(8), 4479–4492.

  27. Luo S., Lu J.Y., Liu L., Yin Y., Chen C., Han X., Wu B., Xu R., Liu W., Yan P., Shao W., Lu Z., Li H., Na J., Tang F., Wang J., Zhang Y.E., Shen X. (2016) Divergent lncRNAs regulate gene expression and lineage differentiation in pluripotent cells. Cell Stem Cell. 18(5), 637–652.

  28. Hacisuleyman E., Goff L.A., Trapnell C., Williams A., Henao-Mejia J., Sun L., McClanahan P., Hendrickson D.G., Sauvageau M., Kelley D.R., Morse M., Engreitz J., Lander E.S., Guttman M., Lodish H.F., Flavell R., Raj A., Rinn J.L. (2019) Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat. Struct. Mol. Biol. 21(2), 198–206.

  29. Wang Y., Zhu P., Luo J., Wang J., Liu Z., Wu W., Du Y., Ye B., Wang D., He L., Ren W., Wang J., Sun X., Chen R., Tian Y., Fan Z. (2019) LncRNA HAND2-AS1 promotes liver cancer stem cell self-renewal via BMP signaling. EMBO J. 38, 1–17.

  30. Yin Y., Yan P., Lu J., Song G., Zhu Y., Li Z., Zhao Y., Shen B., Huang X., Zhu H., Orkin S.H., Shen X. (2015) Opposing roles for the lncRNA haunt and its genomic locus in regulating HOXA gene activation during embryonic stem cell differentiation. Cell Stem Cell. 16, 504–516.

  31. Carlson H.L., Quinn J.J., Yang Y.W., Thornburg C.K., Chang H.Y., Stadler H.S. (2015) LncRNA-HIT functions as an epigenetic regulator of chondrogenesis through its recruitment of p100/CBP complexes. PLoS Genet. 11(12), 1–30.

  32. Luo H., Zhu G., Xu J., Lai Q., Yan B., Guo Y., Fung T.K., Zeisig B.B., Cui Y., Zha J., Cogle C., Wang F., Xu B., Yang F.-C., Li W., So C.W.E., Qiu Y., Xu M., Huang S. (2019) HOTTIP lncRNA promotes hematopoietic stem cell self-renewal leading to AML-like disease in mice. Cancer Cell. 36, 645–659.

  33. Liu J., Gao M., He J., Wu K., Lin S., Jin L., Chen Y., Liu H., Shi J., Wang X., Chang L., Lin Y., Zhao Y.-L., Zhang X., Zhang M., Luo G.-Z., Wu G., Pei D., Wang J., Bao X., Chen J. (2021) The RNA m6A reader YTHDC1 silences retrotransposons and guards ES cell identity. Nature. 591(7849), 322–326.

  34. Leveille N., Melo C.A., Rooijers K., Dıaz-Lagares A., Melo S.A., Korkmaz G., Lopes R., Moqadam F.A., Maia A.R., Wijchers P.J., Geeven G., den Boer M.L., Kalluri R., de Laat W., Esteller M., Agami R. (2015) Genome-wide profiling of p53-regulated enhancer RNAs uncovers a subset of enhancers controlled by a lncRNA. Nat. Commun. 6(6520), 1–12.

  35. Lee H.C., Kang D., Han N., Lee Y., Hwang H.J., Lee S.-B., You J.S., Min B.S., Park H.J., Ko Y.-G., Gorospe M., Lee J.-S. (2020) A novel long noncoding RNA Linc-ASEN represses cellular senescence through multileveled reduction of p21 expression. Cell Death Differentiation. 27(6), 1844–1861.

  36. Forrest M.E., Saiakhova A., Beard L., Buchner D.A., Scacheri P.C., LaFramboise T., Markowitz S., Kha-lil A.M. (2018) Colon cancer-upregulated long non-coding RNA lincDUSP regulates cell cycle genes and potentiates resistance to apoptosis. Sci. Rep. 8(7324), 1–12.

  37. Ang C.E., Ma Q., Wapinski O.L., Fan S., Flynn R.A., Lee Q.Y., Coe B., Onoguchi M., Olmos V.H., Do B.T., Dukes-Rimsky L., Xu J., Tanabe K., Wang L., Elling U., Penninger J.M., Zhao Y., Qu K., Eichler E.E., Srivastava A., Wernig M., Chang H.Y. (2019) The novel lncRNA lnc-NR2F1 is pro-neurogenic and mutated in human neurodevelopmental disorders. Elife. 8, 1–29.

  38. Luo M., Jeong M., Sun D., Park H.J., Rodriguez B.A.T., Xia Z., Yang L., Zhang X., Sheng K., Darlington G.J., Li W., Goodell M.A. (2015) Long non-coding RNAs control hematopoietic stem cell function. Cell Stem Cell. 16, 426–438.

  39. West J.A., Davis C.P., Sunwoo H., Simon M.D., Sadreyev R.I., Wang P.I., Tolstorukov M.Y., Kingston R.E. (2014) The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol. Cell. 55, 791–802.

  40. Engreitz J.M., Sirokman K., McDonel P., Shishkin A.A., Surka C., Russell P., Grossman S.R., Chow A.Y., Guttman M., Lander E.S. (2014) RNA-RNA interactions enable specific targeting of noncoding RNAs to nascent pre-mRNAs and chromatin sites. Cell. 159, 188–199.

  41. Yin Y., Lu J.Y., Zhang X., Shao W., Xu Y., Li P., Hong Y., Cui L., Shan G., Tian B., Zhang Q.C., Shen X. (2020) U1 snRNP regulates chromatin retention of noncoding RNAs. Nature. 580(7801), 147–150.

  42. Iyer S., Modali S.D., Agarwal S.K. (2017) Long noncoding RNA MEG3 is an epigenetic determinant of oncogenic signaling in functional pancreatic neuroendocrine tumor cells. Mol. Cell. Biol. 37(22), 1–17.

  43. Chakraborty D., Paszkowski-Rogacz M., Berger N., Ding L., Mircetic J., Fu J., Iesmantavicius V., Choudhary C., Anastassiadis K., Stewart A.F., Buchholz F. (2017) lncRNA Panct1 maintains mouse embryonic stem cell identity by regulating TOBF1 recruitment to Oct-Sox sequences in early G1. Cell Rep. 21, 3012–3021.

  44. Chu H.-P., Froberg J.E., Kesner B., Oh H.J., Ji F., Sadreyev R., Pinter S.F., Lee J.T. (2017) PAR-TERRA directs homologous sex chromosome pairing. Nat. Struct. Mol. Biol. 24(8), 620–631.

  45. Vance K.W., Sansom S.N., Lee S., Chalei V., Kong L., Cooper S.E., Oliver P.L., Ponting C.P. (2014) The long non-coding RNA Paupar regulates the expression of both local and distal genes. EMBO J. 33(4), 296–311.

  46. Yang L., Lin C., Jin C., Yang J.C., Tanasa B., Li W., Merkurjev D., Ohgi K.A., Meng D., Zhang J., Evans C.P., Rosenfeld M.G. (2013) LncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature. 500(7464), 598–602.

  47. Quinn J.J., Zhang Q.C., Georgiev P., Ilik I.A., Akhtar A., Chang H.Y. (2016) Rapid evolutionary turnover underlies conserved lncRNA–genome interactions. Genes Develop. 30, 191–207.

  48. Fan Z., Chen X., Liu L., Zhu C., Xu J., Yin X., Sheng Y., Zhu Z., Wen L., Zuo X., Zheng X., Zhang Y., Xu J., Huang H., Zhou F., Sun L., Luo J., Zhang D., Chen X., Cui Y., Hao Y., Cui Y., Zhang X., Chen R. (2020) Association of the polymorphism rs13259960 in SLEAR with predisposition to systemic lupus erythematosus. Arthritis Rheumatol. 72(6), 985–996.

  49. Wongtrakoongate P., Riddick G., Fucharoen S., Felsenfeld G. (2015) Association of the long non-coding RNA steroid receptor RNA activator (SRA) with TrxG and PRC2 complexes. PLoS Genet. 11(10), 1–20.

  50. Sawaengdee W., Cui K., Zhao K., Hongeng S., Fucharoen S., Wongtrakoongate P. (2020) Genome-wide transcriptional regulation of the long non-coding RNA steroid receptor RNA activator in human erythroblasts. Front. Genet. 11(850), 1–15.

  51. Marion R.M., Montero J.J., de Silanes I.L., Grana-Castro O., Martınez P., Schoeftner S., Palacios-Fabrega J.A., Blasco M.A. (2019) TERRA regulate the transcriptional landscape of pluripotent cells through TRF1-dependent recruitment of PRC2. Elife. 8, 1–32.

  52. Long J., Badal S.S., Ye Z., Wang Y., Ayanga B.A., Galvan D.L., Green N.H., Chang B.H., Overbeek P.A., Danesh F.R. (2016) Long noncoding RNA Tug1 regulates mitochondrial bioenergetics in diabetic nephropathy. J. Clin. Invest. 126(11), 4205–4218.

  53. Simon M.D., Pinter S.F., Fang R., Sarma K., Rutenberg-Schoenberg M., Bowman S.K., Kesner B.A., Maier V.K., Kingston R.E., Lee J.T. (2013) High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature. 504(7480), 465–469.

  54. Chen C.-K., Blanco M., Jackson C., Aznauryan E., Ollikainen N., Surka C., Chow A., Cerase A., McDonel P., Guttman M. (2016) Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing. Science. 354(6311), 468–472.

  55. Wang C.Y., Jégu T., Chu H.P., Oh H.J., Lee L.T. (2018) SMCHD1 merges chromosome compartments and assists formation of super-structures on the inactive X. Cell. 174, 406–421.

  56. Colognori D., Sunwoo H., Kriz A.J., Wang C.Y., Lee J.T. (2019) Xist deletional analysis reveals an interdependency between Xist RNA and polycomb complexes for spreading along the inactive X. Mol. Cell. 74, 101–117.

  57. Wang C.Y., Colognori D., Sunwoo H., Wang D., Lee J.T. (2019) PRC1 collaborates with SMCHD1 to fold the X-chromosome and spread Xist RNA between chromosome compartments. Nat. Commun. 10(2950), 1–18.

  58. Pandya-Jones A., Markaki Y., Serizay J., Chitiashvili T., Leon W.R.M., Damianov A., Chronis C., Papp B., Chen C.-K., McKee R., Wang X.-J., Chau A., Sabri S., Leonhardt H., Zheng S., Guttman M., Black D.L., Plath K. (2020) A protein assembly mediates Xist localization and gene silencing. Nature. 587(7832), 145–151.

  59. Powell W.T., Coulson R.L., Crary F.K., Wong S.S., Ach R.A., Tsang P., Yamada N.A., Yasui D.H., LaSalle J.M. (2013) A Prader-Willi locus lncRNA cloud modulates diurnal genes and energy expenditure. Hum. Mol. Genetics. 22(21), 4318–4328.

  60. Liu W., Ma Q., Wong K., Li W., Ohgi K., Zhang J., Aggarwal A.K., Rosenfeld M.G. (2013) Brd4 and JMJD6-associated anti-pause enhancers in regulation of transcriptional pause release. Cell. 155, 1581–1595.

  61. Flynn R.A., Do B.T., Rubin A.J., Calo E., Lee B., Kuchelmeister H., Rale M., Chu C., Kool E.T., Wysocka J., Khavari P.A., Chang H.Y. (2016) 7SK-BAF axis controls pervasive transcription at enhancers. Nat. Struct. Mol. Biol. 23(3), 231–238.

  62. Studniarek C., Tellier M., Martin P.G.P., Murphy S., Kiss T., Egloff S. (2021) The 7SK/P-TEFb snRNP controls ultraviolet radiation-induced transcriptional reprogramming. Cell Rep. 35(2), 1–14.

  63. Pandey R.R., Mondal T., Mohammad F., Enroth S., Redrup L., Komorowski J., Nagano T., Mancini-DiNardo D., Kanduri C. (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell. 32, 232–246.

  64. Man H.S.J., Sukumar A.N., Lam G.C., Turgeon P.J., Yan M.S., Ku K.H., Dubinsky M.K., Ho J.J.D., Wang J.J., Das S., Mitchell N., Oettgen P., Sefton M.V., Marsden P.A. (2018) Angiogenic patterning by STEEL, an endothelial-enriched long noncoding RNA. Proc. Natl. Acad. Sci. USA. 115(10), 2401–2406.

  65. Colak D., Zaninovic N., Cohen M.S., Rosenwaks Z., Yang W.-Y., Gerhardt J., Disney M.D., Jaffrey S.R. (2014) Promoter-bound trinucleotide repeat mRNA drives epigenetic silencing in fragile X syndrome. Science. 343(6174), 1002–1005.

  66. Zhang Y., Liu T., Meyer C.A., Eeckhoute J., Johnson D.S., Bernstein B.E., Nusbaum C., Myers R.M., Brown M., Li W., Liu X.S. (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9(9), 1–9.

  67. Xu S., Grullon S., Ge K., Peng W. (2014) Spatial clustering for identification of ChIP-enriched regions (SICER) to map regions of histone methylation patterns in embryonic stem cells. Methods in Molecular Biology (Methods and Protocols). 1150, 97–111.

  68. Heinz S., Benner C., Spann N., Bertolino E., Lin Y.C., Laslo P., Cheng J.X., Murre C., Singh H., Glass C.K. (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell. 38, 576–589.

  69. Kharchenko P.V., Tolstorukov M.Y., Park P.J. (2008) Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat. Biotechnol. 26(12), 1351–1359.

  70. Rice P., Longden L., Bleasby A. (2000) EMBOSS: ehe European molecular biology open software suite. Trends Genet. 16(6), 276–277.

  71. Buske F.A., Bauer D.C., Mattick J.S., Bailey T.L. (2012) Triplexator: detecting nucleic acid triple helices in genomic and transcriptomic data. Genome Res. 22, 1372–1381.

  72. Kuo C.-C., Hanzelmann S., Cetin N.S., Frank S., Zajzon B., Derks J.-P., Akhade V.S., Ahuja G., Kanduri C., Grummt I., Kurian L., Costa I.G. (2019) Detection of RNA–DNA binding sites in long noncoding RNAs. Nucl. Acids Res. 47(6), 1–12.

  73. Matveishina E., Antonov I., Medvedeva Y.A. (2020) Practical guidance in genome-wide RNA:DNA triple helix prediction. Int. J. Mol. Sci. 21(830), 1–12.

  74. Bailey T.L., Johnson J., Grant C.E., Noble W.S. (2015) The MEME suite. Nucl. Acids Res. 43, 39–49.

  75. Gupta S., Stamatoyannopoulos J.A., Bailey T.L., Noble W.S. (2007) Quantifying similarity between motifs. Genome Biol. 8, 1–9.

  76. Martianov I., Ramadass A., Barros A.S., Chow N., Akoulitchev A. (2007) Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature. 445(7128), 666–670.

  77. Khomyakova E.B., Gousset H., Liquier J., Huynh-Dinh T., Gouyette C., Takahashi M., Florentiev V.L., Taillandier E. (2000) Parallel intramolecular DNA triple helix with G and T bases in the third strand stabilized by Zn2+ ions. Nucl. Acids Res. 28(18), 3511–3516.

  78. Besch R., Giovannangeli C., Kammerbauer C., Degitz K. (2002) Specific inhibition of ICAM-1 expression mediated by gene targeting with triplex-forming oligonucleotides. J. Biol. Chem. 277(36), 32473–32479.

  79. McLean C.Y., Bristor D., Hiller M., Clarke S.L., Schaar B.T., Lowe C.B., Wenger A.M., Bejerano G. (2010) GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28(5), 495–501.

  80. Shin H., Liu T., Manrai A.K., Liu S.X. (2009) CEAS: cis-regulatory element annotation system. Bioinformatics. 25(19), 2605–2606.

  81. Mi H., Muruganujan A., Ebert D., Huang X., Tho-mas P.D. (2019) PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucl. Acids Res. 47, 419–426.

  82. Huang D.W., Sherman B.T., Lempicki R.A. (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protocols. 4(1), 44–57.

  83. Binns D., Dimmer E., Huntley R., Barrell D., O’Donovan C., Apweiler R. (2009) QuickGO: a web-based tool for Gene Ontology searching. Proteomics. 25(22), 3045–3046.

  84. Kuleshov M.V., Jones M.R., Rouillard A.D., Fernandez N.F., Duan Q., Wang Z., Koplev S., Jenkins S.L., Jagodnik K.M., Lachmann A., McDermott M.G., Monteiro C.D., Gundersen G.W., Ma’ayan A. (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucl. Acids Res. 44, 90–97.

  85. Chodroff R.A., Goodstadt L., Sirey T.M., Oliver P.L., Davies K.E., Green E.D., Molnár Z., Ponting C.P. (2010) Long noncoding RNA genes: caaonservation of sequence and brain expression among diverse amniotes. Genome Biol. 11(7), 1–16.

  86. Ulitsky I., Shkumatava A., Jan C.H., Sive H., Bartel D.P. (2011) Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell. 147(7), 1537–1550.

  87. Gelbart M.E., Kuroda M.I. (2009) Drosophila dosage compensation: A complex voyage to the X chromosome. Development, 136(9), 1399–1410.

  88. Larschan E., Bishop E.P., Kharchenko P.V., Core L.J., Lis J.T., Park P.J., Kuroda M.I. (2011) X chromosome dosage compensation via enhanced transcriptional elongation in Drosophila. Nature. 471(7336), 115–118.

  89. Meller V.H., Rattner B.P. (2002) The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex. EMBO J. 21(5), 1084–1091.

  90. Disteche C.M. (2012) Dosage compensation of the sex chromosomes. Annu. Rev. Genet. 46, 537–560.

  91. Lee J.T. (2012) Epigenetic regulation by long noncoding RNAs. Science. 338(6113), 1435–1439.

  92. Wutz A. (2011) Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nat. Rev. Genetics. 12(8), 542–553.

  93. Giorgetti L., Lajoie B.R., Carter A.C., Attia M., Zhan Y., Xu J., Chen C.J., Kaplan N., Chang H.Y., Heard E., Dekker J. (2016) Structural organization of the inactive X chromosome in the mouse. Nature. 535(7613), 575–579.

  94. Splinter E., de Wit E., Nora E.P., Klous P., van de Werken H.J.G., Zhu Y., Kaaij L.J.T., van IJcken W., Gribnau J., Heard E., de Laat W. (2011) The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Development. 25(13), 1371–1383.

  95. Minajigi A., Froberg J.E., Wei C., Sunwoo H., Kesner B., Colognori D., Lessing D., Payer B., Boukhali M., Haas W., Lee J.T. (2015) A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science. 349(6245), 1–10.

  96. Schoeftner S., Sengupta A.K., Kubicek S., Mechtler K., Spahn L., Koseki H., Jenuwein T., Wutz A. (2006) Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J. 25(13), 3110–3122.

  97. Zhao J., Sun B.K., Erwin J.A., Song J.J., Lee J.T. (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science. 322(5902), 750–756.

  98. Chu C., Zhang Q.C., da Rocha S.T., Flynn R.A., Bharadwaj M., Calabrese J.M., Magnuson T., Heard E., Chang H.Y. (2015) Systematic discovery of Xist RNA binding proteins. Cell. 161(2), 404–416.

  99. Brockdorff N. (2018) Local tandem repeat expansion in Xist RNA as a model for the functionalisation of ncRNA. Non-Coding RNA. 4(4), 1–11.

  100. McHugh C.A., Chen C.-K., Chow A., Surka C.F., Tran C., McDonel P., Pandya-Jones A., Blanco M., Burghard C., Moradian A., Sweredoski M.J., Shishkin A.A., Su J., Lander E.S., Hess S., Plath K., Guttman M. (2015) The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature. 521(7551), 232–236.

  101. Hutchinson J.H., Ensminger A.W., Clemson C.M., Lynch C.R., Lawrence J.B., Chess A. (2007) A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics. 8(39), 1–16.

  102. Zhang X., Hamblin M.H., Yin K.J. (2017) The long noncoding RNA Malat1: its physiological and pathophysiological functions. RNA Biol. 14(12), 1705–1714.

  103. Clemson C.M., Hutchinson J.N., Sara S.A., Ensminger A.W., Fox A.H., Chess A., Lawrence J.B. (2009) An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol. Cell. 33(6), 717–726.

  104. Imamura K., Imamachi N., Akizuki G., Kumakura M., Kawaguchi A., Nagata K., Kato A., Kawaguchi Y., Sato H., Yoneda M., Kai C., Yada T., Suzuki Y., Yamada T., Ozawa T., Kaneki K., Inoue T., Kobayashi M., Kodama T., Wada Y., Sekimizu K., Akimitsu N. (2014) Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol. Cell. 53(3), 393–406.

  105. Hirose T., Virnicchi G., Tanigawa A., Naganuma T., Li R., Kimura H., Yokoi T., Nakagawa S., Bénard M., Fox A.H., Pierron G. (2014) NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Mol. Biol. Cell. 25, 169–183.

  106. Kaida D., Berg M.G., Younis I., Kasim M., Singh L.N., Wan L., Dreyfuss G. (2010) U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature. 468(7324), 664–668.

  107. Gupta R.A., Shah N., Wang K.C., Kim J., Horlings H.M., Wong D.J., Tsai M.-C., Hung T., Argani P., Rinn J.L., Wang Y., Brzoska P., Kong B., Li R., West R.B., van de Vijver M.J., Sukumar S., Chang H.Y. (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 464(7291), 1071–1076.

  108. Rinn J.L., Kertesz M., Wang J.K., Squazzo S.L., Xu X., Brugmann S.A., Goodnough H., Helms J.A., Farnham P.J., Segal E., Chang H.Y. (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 129(7), 1311–1323.

  109. Tsai M.-C., Manor O., Wan Y., Mosammaparast N., Wang J.K., Lan F., Shi Y., Segal E., Chang H.Y. (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science. 329(5992), 689–693.

  110. Ernst J., Kheradpour P., Mikkelsen T.S., Shoresh N., Ward L.D., Epstein C.B., Zhang X., Wang L., Issner R., Coyne M., Ku M., Durham T., Kellis M., Bernstein B.E. (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature. 473(7345), 43–49.

  111. Laurent G.S., Shtokalo D., Dong B., Tackett M.R., Fan X., Lazorthes S., Nicolas E., Sang N., Triche T.J., McCaffrey T.A., Xiao W., Kapranov P. (2013) VlincRNAs controlled by retroviral elements are a hallmark of pluripotency and cancer. Genome Biol. 14, 1–20.

  112. Wang Y., Hu S.-B., Wang M.-R., Yao R.-W., Wu D., Yang L., Chen L.-L. (2018) Genome-wide screening of NEAT1 regulators reveals cross-regulation between paraspeckles and mitochondria. Nat. Cell Biol. 20(10), 1145–1158.

  113. Binder S., Hösler N., Riedel D., Zipfel I., Buschmann T., Kämpf C., Reiche K., Burger R., Gramatzki M., Hackermüller J., Stadler P.F., Horn F. (2017) STAT3-induced long noncoding RNAs in multiple myeloma cells display different properties in cancer. Sci. Rep. 7(7976), 1–13.

  114. Guh C.Y., Hsieh Y.H., Chu H.P. (2020) Functions and properties of nuclear lncRNAs – from systematically mapping the interactomes of lncRNAs. J. Biomed. Sci. 27(44), 1–14.

  115. Cetin N.S., Kuo C.C., Ribarska T., Li R., Costa I.G., Grummt I. (2019) Isolation and genome-wide characterization of cellular DNA:RNA triplex structures. Nucl. Acids Res. 47(5), 2306–2321

  116. Rom A., Melamed L., Gil N., Goldrich M.J., Kadir R., Golan M., Biton I., Perry R.B.-T., Ulitsky I. (2019) Regulation of CHD2 expression by the Chaserr long noncoding RNA gene is essential for viability. Nat. Commun. 10(5092), 1–15.

  117. Zhang G., Lan Y., Xie A., Shi J., Zhao H., Xu L., Zhu S., Luo T., Zhao T., Xiao Y., Li X. (2019) Comprehensive analysis of long noncoding RNA (lncRNA) – chromatin interactions reveals lncRNA functions dependent on binding diverse regulatory elements. J. Biol. Chem. 294(43), 15613–15622.

Дополнительные материалы отсутствуют.