Молекулярная биология, 2022, T. 56, № 4, стр. 546-556

Фактор рестрикции ВИЧ APOBEC3G и перспективы его использования в генной терапии ВИЧ-инфекции

А. С. Тихонов a*, Р. Р. Минтаев ab, Д. В. Глазкова a, Е. В. Богословская a, Г. А. Шипулин a

a Центр стратегического планирования и управления медико-биологическими рисками здоровью Федерального медико-биологического агентства
119833 Москва, Россия

b Научно-исследовательский институт вакцин и сывороток им. И.И. Мечникова
105064 Москва, Россия

* E-mail: andrey.tikhonov97@gmail.com

Поступила в редакцию 27.11.2021
После доработки 11.02.2022
Принята к публикации 17.02.2022

Аннотация

Механизмы защиты организма человека от вирусных или бактериальных агентов чрезвычайно разнообразны. В одном из таких механизмов важная роль принадлежит семейству цитидиндезаминаз APOBEC3, которые являются факторами врожденного иммунитета и защищают организм от многочисленных вирусных агентов. Один из белков этого семейства ‒ APOBEC3G ‒ способен защищать от вируса иммунодефицита человека типа 1 в отсутствие вирусного белка Vif. В свою очередь, Vif противостоит действию APOBEC3G, вызывая его полиубиквитинирование и деградацию в протеасоме. В обзоре описаны возможные пути увеличения анти-ВИЧ-активности APOBEC3G, придания ему устойчивости к вирусному белку Vif, а также потенциальные подходы к использованию модифицированного APOBEC3G в генотерапии ВИЧ-инфекции.

Ключевые слова: APOBEC3G, APOBEC3G-D128K, генная терапия, ВИЧ-инфекция, Vif

Список литературы

  1. Antiretroviral Therapy Cohort Collaboration. (2008) Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies. Lancet. 372, 293‒299.

  2. Wang J., Holmes M.C. (2016) Engineering hematopoietic stem cells toward a functional cure of human immunodeficiency virus infection. Cytotherapy. 18(11), 1370–1381.

  3. Arias J.F., Heyer L.N., von Bredow B., Weisgrau K.L., Moldt B., Burton D.R., Rakasz E.G., Evans D.T. (2014) Tetherin antagonism by Vpu protects HIV-infected cells from antibody-dependent cell-mediated cytotoxicity. Proc. Natl. Acad. Sci. USA. 111(17), 6425–6430.

  4. Ayinde D., Bruel T., Cardinaud S., Porrot F., Prado J.G., Moris A., Schwartz O. (2015) SAMHD1 Limits HIV-1 antigen presentation by monocyte-derived dendritic cells. J. Virol. 89(14), 6994–7006.

  5. Jimenez-Moyano E., Ruiz A., Kløverpris H.N., Rodriguez-Plata M.T., Peña R., Blondeau C., Selwood D.L., Izquierdo-Useros N., Moris A., Clotet B., Goulder P., Towers G.J., Prado J.G. (2016) Nonhuman TRIM5 variants enhance recognition of HIV-1-infected cells by CD8+ T cells. J. Virol. 90(19), 8552–8562.

  6. Stopak K.S., Chiu Y.L., Kropp J., Grant R.M., Greene W.C. (2006) Distinct patterns of cytokine regulation of APOBEC3G expression and activity in primary lymphocytes, macrophages, and dendritic cells. J. Biol. Chem. 282(6), 3539–3546.

  7. Lu J., Pan Q., Rong L., Liu S.L., Liang C., Liang C. (2011) The IFITM proteins inhibit HIV-1 infection. J. Virol. 85(5), 2126–2137.

  8. Tada T., Zhang Y., Koyama T., Tobiume M., Tsunetsugu-Yokota Y., Yamaoka S., Fujita H., Tokunaga K. (2015) MARCH8 inhibits HIV-1 infection by reducing virion incorporation of envelope glycoproteins. Nat. Med. 21(12), 1502–1507.

  9. Dufour C., Claudel A., Joubarne N., Merindol N., Maisonnet T., Masroori N., Plourde M. B., Berthoux, L. (2018) Editing of the human TRIM5 gene to introduce mutations with the potential to inhibit HIV-1. PLoS One. 13(1), e0191709.

  10. Омельченко Д.О., Глазкова Д.В., Богословская Е.В., Урусов Ф.А., Жогина Ю.А., Цыганова Г.М., Шипулин Г.А. (2018) Защита лимфоцитов от ВИЧ c помощью лентивирусного вектора, несущего комбинацию генов TRIM5A-HRH и микроРНК против CCR5. Молекуляр. биология. 52(2), 294–305.

  11. Jimenez-Guardeño J.M., Apolonia L., Betancor G., Malim M.H. (2019) Immunoproteasome activation enables human TRIM5α restriction of HIV-1. Nat. Microbiol. 4(6), 933‒940.

  12. Uchida N., Hsieh M.M., Washington K.N., Tisdale J.F. (2013) Efficient transduction of human hematopoietic repopulating cells with a chimeric HIV1-based vector including SIV capsid. Exp. Hematol. 41(9), 779‒788.

  13. Harris R.S., Liddament M.T. (2004) Retroviral restriction by APOBEC proteins. Nat. Rev. Immunol. 4(11), 868–877.

  14. Conticello S.G. (2008) The AID/APOBEC family of nucleic acid mutators. Genome Biol. 9(6), 229.

  15. Sheehy A.M., Gaddis N.C., Choi J.D., Malim M.H. (2002) Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral vif protein. Nature. 418(6898), 646‒650.

  16. LaRue R.S., Jonsson S.R., Silverstein K.A., Lajoie M., Bertrand D., El Mabrouk N., Hotzel I., Andresdottir V., Smith T.P., Harris R.S. (2008) The artiodactyl APOBEC3 innate immune repertoire shows evidence for a multi-functional domain organization that existed in the ancestor of placental mammals. BMC Mol. Biol. 9, 104.

  17. Vieira V.C., Soares M.A. (2013) The role of cytidine deaminases on innate immune responses against human viral infections. Biomed. Res. Int. 2013, 683095

  18. Stavrou S., Ross S.R. (2015) APOBEC3 proteins in viral immunity. J. Immunol. 195(10), 4565‒4570.

  19. Chaipan C., Smith J.L., Hu W.S., Pathak V.K. (2013) APOBEC3G restricts HIV-1 to a greater extent than APOBEC3F and APOBEC3DE in human primary CD4+ T cells and macrophages. J. Virol. 87(1), 444‒453.

  20. Zennou V., Bieniasz P.D. (2006) Comparative analysis of the antiretroviral activity of APOBEC3G and APOBEC3F from primates. Virology. 349(1), 31‒40.

  21. Mbisa J.L., Bu W., Pathak V.K. (2010) APOBEC3F and APOBEC3G inhibit HIV-1 DNA integration by different mechanisms. J. Virol. 84(10), 5250‒5259.

  22. Chan D.C., Kim P.S. (1998) HIV entry and its inhibition. Cell. 93(5), 681‒684.

  23. Li C., Burdick R.C., Nagashima K., Hu W.S., Pathak V.K. (2021) HIV-1 cores retain their integrity until minutes before uncoating in the nucleus. Proc. Natl. Acad. Sci. USA. 118(10), e2019467118.

  24. Harris R.S., Dudley J.P. (2015) APOBECs and virus restriction. Virology. 479480, 131‒145.

  25. Khan M.A., Kao S., Miyagi E., Takeuchi H., Goila-Gaur R., Opi S., Gipson C.L., Parslow T.G., Ly H., Strebel K. (2005) Viral RNA is required for the association of APOBEC3G with human immunodeficiency virus type 1 nucleoprotein complexes. J. Virol. 79(9), 5870‒5874.

  26. Yang H., Ito F., Wolfe A.D., Li S., Mohammadzadeh N., Love R.P., Yan M., Zirkle B., Gaba A., Chelico L., Chen X.S. (2020) Understanding the structural basis of HIV-1 restriction by the full length double-domain APOBEC3G. Nat. Commun. 11(1), 632.

  27. Schäfer A., Bogerd H.P., Cullen B.R. (2004) Specific packaging of APOBEC3G into HIV-1 virions is mediated by the nucleocapsid domain of the Gag polyprotein precursor. Virology. 328(2), 163‒168.

  28. Cen S., Guo F., Niu M., Saadatmand J., Deflassieux J., Kleiman L. (2004) The interaction between HIV-1 Gag and APOBEC3G. J. Biol. Chem. 279(32), 33177–33184.

  29. Salter J.D., Polevoda B., Bennett R.P., Smith H.C. (2019) Regulation of antiviral innate immunity through APOBEC ribonucleoprotein complexes. Subcell. Biochem. 93, 193‒219.

  30. Morse M., Naufer M.N., Feng Y., Chelico L., Rouzina I., Williams M.C. (2019) HIV restriction factor APOBEC3G  binds in multiple steps and conformations to search and deaminate single-stranded DNA. Elife. 8, e52649.

  31. Browne E.P., Allers C., Landau N.R. (2009) Restriction of HIV-1 by APOBEC3G is cytidine deaminase-dependent. Virology. 387(2), 313‒321.

  32. Yu Q., König R., Pillai S., Chiles K., Kearney M., Palmer S., Richman D., Coffin J.M., Landau N.R. (2004) Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat. Struct. Mol. Biol. 11(5), 435‒442.

  33. Feng Y., Baig T.T., Love R.P., Chelico L. (2014) Suppression of APOBEC3-mediated restriction of HIV-1 by vif. Front. Microbiol. 5, 450.

  34. Soliman M., Srikrishna G., Balagopal A. (2017) Mechanisms of HIV-1 control. Curr. HIV/AIDS Rep. 14(3), 101‒109.

  35. Yu X., Yu Y., Liu B., Luo K., Kong W., Mao P., Yu X.F. (2003) Induction of APOBEC3G ubiquitination and degradation by an HIV-1 vif-Cul5-SCF complex. Science. 302(5647), 1056‒1060.

  36. Guo Y., Dong L., Qiu X., Wang Y., Zhang B., Liu H., Yu Y., Zang Y., Yang M., Huang Z. (2014) Structural basis for hijacking CBF-β and CUL5 E3 ligase complex by HIV-1 vif. Nature. 505(7482), 229‒233.

  37. Went M., Kinnersley B., Sud A., Johnson D.C., Weinhold N., Försti A., van Duin M., Orlando G., Mit-chell J.S., Kuiper R., Walker B.A., Gregory W.M., Hoffmann P., Jackson G.H., Nöthen M.M., da Silva Filho M.I., Thomsen H., Broyl A., Davies F.E., Thorsteinsdottir U., Hansson M., Kaiser M., Sonneveld P., Goldschmidt H., Stefansson K., Hemminki K., Nilsson B., Morgan G.J., Houlston R.S. (2019) Transcriptome-wide association study of multiple myeloma identifies candidate susceptibility genes. Hum. Genomics. 13(1), 37.

  38. Kim E.Y., Lorenzo-Redondo R., Little S.J., Chung Y.S., Phalora P.K., Maljkovic Berry I., Archer J., Penugonda S., Fischer W., Richman D.D., Bhattacharya T., Malim M.H., Wolinsky S.M. (2014) Human APOBEC3 induced mutation of human immunodeficiency virus type-1 contributes to adaptation and evolution in natural infection. PLoS Pathol. 10(7), e1004281.

  39. Kim E.Y., Bhattacharya T., Kunstman K., Swantek P., Koning F.A., Malim M.H., Wolinsky S.M. (2010) Human APOBEC3G-mediated editing can promote HIV-1 sequence diversification and accelerate adaptation to selective pressure. J. Virol. 84(19), 10402‒10405.

  40. Venkatesan S., Rosenthal R., Kanu N., McGranahan N., Bartek J., Quezada S.A., Hare J., Harris R.S., Swanton C. (2018) Perspective: APOBEC mutagenesis in drug resistance and immune escape in HIV and cancer evolution. Ann. Oncol. 29(3), 563‒572.

  41. Ikeda T., Yue Y., Shimizu R., Nasser H. (2021) Potential utilization of APOBEC3-mediated mutagenesis for an HIV-1 functional cure. Front. Microbiol. 12, 686357.

  42. Nowarski R., Wilner O.I., Cheshin O., Shahar O.D., Kenig E., Baraz L., Britan-Rosich E., Nagler A., Harris R.S., Goldberg M., Willner I., Kotler M. (2012) APOBEC3G enhances lymphoma cell radioresistance by promoting cytidine deaminase-dependent DNA repair. Blood. 120(2), 366‒375.

  43. Botvinnik A., Shivam P., Smith Y., Sharma G., Olshevsky U., Moshel O., Manevitch Z., Climent N., Oliva H., Britan-Rosich E., Kotler M. (2021) APOBEC3G rescues cells from the deleterious effects of DNA damage. FEBS J. 288(20), 6063‒6077.

  44. Talluri S., Samur M.K., Buon L., Kumar S., Potluri L.B., Shi J., Prabhala R.H., Shammas M.A., Munshi N.C. (2021) Dysregulated APOBEC3G causes DNA damage and promotes genomic instability in multiple myeloma. Blood Cancer J. 11(10), 166.

  45. Ding Q., Chang C.J., Xie X., Xia W., Yang J.Y., Wang S.C., Wang Y., Xia J., Chen L., Cai C., Li H., Yen C.J., Kuo H.P., Lee D.F., Lang J., Huo L., Cheng X., Chen Y.J., Li C.W., Jeng L.B., Hsu J.L., Li L.Y., Tan A., Curley S.A., Ellis L.M., Dubois R.N., Hung M.C. (2011) APOBEC3G promotes liver metastasis in an orthotopic mouse model of colorectal cancer and predicts human hepatic metastasis. J. Clin. Invest. 121(11), 4526‒4536.

  46. Desimmie B.A., Delviks-Frankenberrry K.A., Burdick R.C., Qi D., Izumi T., Pathak V.K. (2014) Multiple APOBEC3 restriction factors for HIV-1 and one vif to rule them all. J. Mol. Biol. 426(6), 1220‒1245.

  47. Garg A., Kaul D., Chauhan N. (2015) APOBEC3G governs to ensure cellular oncogenic transformation. Blood Cells Mol. Dis. 55(3), 248‒254.

  48. Sharma S., Garg A., Dhanda R.S., Kaul D. (2016) APOBEC3G governs the generation of truncated AATF protein to ensure oncogenic transformation. Cell Biol. Int. 40(12), 1366‒1371.

  49. Lackey L., Law E.K., Brown W.L., Harris R.S. (2013) Subcellular localization of the APOBEC3 proteins during mitosis and implications for genomic DNA deamination. Cell Cycle. 12, 762–772.

  50. Oliva H., Pacheco R., Martinez-Navio J.M., Rodríguez-García M., Naranjo-Gómez M., Climent N., Prado C., Gil C., Plana M., García F., Miró J.M., Franco R., Borras F.E., Navaratnam N., Gatell J.M., Gallart T. (2016) Increased expression with differential subcellular location of cytidine deaminase APOBEC3G in human CD4(+) T-cell activation and dendritic cell maturation. Immunol. Cell Biol. 94(7), 689‒700.

  51. Arias J.F., Koyama T., Kinomoto M., Tokunaga K. (2012) Retroelements versus APOBEC3 family members: no great escape from the magnificent seven. Front. Microbiol. 3, 275.

  52. Chiang A.C., Massagué J. (2008) Molecular basis of metastasis. N. Engl. J. Med. 359(26), 2814‒2823.

  53. Nathans R., Cao H., Sharova N., Ali A., Sharkey M., Stranska R., Stevenson M., Rana T.M. (2008) Small-molecule inhibition of HIV-1 Vif. Nat. Biotechnol. 26(10), 1187‒1192.

  54. Mohammed I., Kummetha I.R., Singh G., Sharova N., Lichinchi G., Dang J., Stevenson M., Rana T.M. (2016) 1,2,3-Triazoles as amide bioisosteres: discovery of a new class of potent HIV-1 Vif antagonists. J. Med. Chem. 59(16), 7677‒7682.

  55. Zhou M., Luo R.H., Hou X.Y., Wang R.R., Yan G.Y., Chen H., Zhang R.H., Shi J.Y., Zheng Y.T., Li R., Wei Y.Q. (2017) Synthesis, biological evaluation and molecular docking study of N-(2-methoxyphenyl)-6-((4-nitrophenyl)sulfonyl)benzamide derivatives as potent HIV-1 Vif antagonists. Eur. J. Med. Chem. 129, 310‒324.

  56. Sharkey M., Sharova N., Mohammed I., Huff S.E., Kummetha I.R., Singh G., Rana T.M., Stevenson M. (2019) HIV-1 escape from small-molecule antagonism of Vif. mBio. 10(1), e00144-19.

  57. Letko M., Booiman T., Kootstra N., Simon V., Ooms M. (2015) Identification of the HIV-1 vif and human APOBEC3G protein interface. Cell Rep. 13(9), 1789–1799.

  58. Delviks-Frankenberry K.A., Ackerman D., Timberlake N.D., Hamscher M., Nikolaitchik O.A., Hu W.S., Torbett B.E., Pathak V.K. (2019) Development of lentiviral vectors for HIV-1 gene therapy with vif-resistant APOBEC3G. Mol. Ther. Nucl. Acids. 18, 1023–1038.

  59. Wang X., Ao Z., Jayappa K.D., Shi B., Kobinger G., Yao X. (2014) R88-APOBEC3Gm inhibits the replication of both drug-resistant strains of HIV-1 and viruses produced from latently infected cells. Mol. Ther. Nucl. Acids. 3(3), e151.

  60. Voit R.A., McMahon M.A., Sawyer S.L., Porteus M.H. (2013) Generation of an HIV resistant T-cell line by targeted “stacking” of restriction factors. Mol. Ther. 21(4), 786‒795.

  61. Ao Z., Wang X., Bello A., Jayappa K.D., Yu Z., Fowke K., He X., Chen X., Li J., Kobinger G., Yao X. (2011) Characterization of anti-HIV activity mediated by R88-APOBEC3G mutant fusion proteins in CD4+ T cells, peripheral blood mononuclear cells, and macrophages. Hum. Gene. Ther. 22(10), 1225‒1237.

  62. Зайкова Е.К., Левчук К.A., Поздняков Д.Ю., Дакс А.А., Зарицкий А.Ю., Петухов А.В. (2020) Эффективная трансдукция Т-лимфоцитов лентивирусными частицами в онкоиммунологических исследованиях. Клиническая онкогематология. 13(3), 295–306.

  63. Delviks-Frankenberry K.A., Desimmie B.A., Pathak V.K. (2020) Structural insights into APOBEC3-mediated lentiviral restriction. Viruses. 12(6), 587.

  64. Hu W.S., Pathak V.K. (2000) Design of retroviral vectors and helper cells for gene therapy. Pharmacol. Rev. 52(4), 493‒511.

  65. Sandoval-Villegas N., Nurieva W., Amberger M., Ivics Z. (2021) Contemporary transposon tools: a review and guide through mechanisms and applications of sleeping beauty, piggyBac and Tol2 for genome engineering. Int. J. Mol. Sci. 22(10), 5084.

  66. Jillette N., Du M., Zhu J.J., Cardoz P., Cheng A.W. (2019) Split selectable markers. Nat. Commun. 10(1), 4968.

  67. Chen H., Lilley C.E., Yu Q., Lee D.V., Chou J., Narvaiza I., Landau N.R., Weitzman M.D. (2006) APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons. Curr. Biol. 16(5), 480‒485.

  68. Narvaiza I., Linfesty D.C., Greener B.N., Hakata Y., Pintel D.J., Logue E., Landau N.R., Weitzman M.D. (2009) Deaminase-independent inhibition of parvoviruses by the APOBEC3A cytidine deaminase. PLoS Pathog. 5(5), e1000439.

  69. Ao Z., Yu Z., Wang L., Zheng Y., Yao X. (2008) Vpr14-88-APOBEC3G fusion protein is efficiently incorporated into vif-positive HIV-1 particles and inhibits viral infection. PLoS One. 3(4), e1995.

  70. Miyagi E., Welbourn S., Sukegawa S., Fabryova H., Kao S., Strebel K. (2020) Inhibition of vif-mediated degradation of APOBEC3G through competitive binding of core-binding factor beta. J. Virol. 94(7), e01708-19.

  71. Wang H., Liu B., Liu X., Li Z., Yu X.F., Zhang W. (2014) Identification of HIV-1 vif regions required for CBF-β interaction and APOBEC3 suppression. PLoS One. 9(5), e95738.

  72. Miyagi E., Kao S., Yedavalli V., Strebel K. (2014) CBFβ enhances de novo protein biosynthesis of its binding partners HIV-1 Vif and RUNX1 and potentiates the Vif-induced degradation of APOBEC3G. J. Virol. 88(9), 4839–4852.

  73. Blyth K., Cameron E.R., Neil J.C. (2005) The RUNX genes: gain or loss of function in cancer. Nat. Rev. Cancer. 5(5), 376‒387.

  74. Asou N. (2003) The role of a Runt domain transcription factor AML1/RUNX1 in leukemogenesis and its clinical implications. Crit. Rev. Oncol. Hematol. 45(2), 129‒150.

  75. Iwatani Y., Chan D.S., Liu L., Yoshii H., Shibata J., Yamamoto N., Levin J.G., Gronenborn A.M., Sugiura W. (2009) HIV-1 vif-mediated ubiquitination/degradation of APOBEC3G involves four critical lysine residues in its C-terminal domain. Proc. Natl. Acad. Sci. USA. 106(46), 19539‒19544.

  76. Turner T., Shao Q., Wang W., Wang Y., Wang C., Kinlock B., Liu B. (2016) Differential contributions of ubiquitin-modified APOBEC3G lysine residues to HIV-1 vif-induced degradation. J. Mol. Biol. 428(17), 3529‒3539.

  77. Pan T., Song Z., Wu L., Liu G., Ma X., Peng Z., Zhou M., Liang L., Liu B., Liu J., Zhang J., Zhang X., Huang R., Zhao J., Li Y., Ling X., Luo Y., Tang X., Cai W., Deng K., Li L., Zhang H. (2019) USP49 potently stabilizes APOBEC3G  protein by removing ubiquitin and inhibits HIV-1 replication. Elife. 8, e48318.

  78. Li L., Liang D., Li J.Y., Zhao R.Y. (2008) APOBEC3G-UBA2 fusion as a potential strategy for stable expression of APOBEC3G and inhibition of HIV-1 replication. Retrovirology. 5, 72. 1.

Дополнительные материалы отсутствуют.