Молекулярная биология, 2022, T. 56, № 5, стр. 808-831

Дормантность: туда и обратно

Е. С. Пшенникова a*, А. С. Воронина a

a Институт биохимии им. А.Н. Баха Федерального исследовательского центра “Фундаментальные основы биотехнологии” Российской академии наук
119071 Москва, Россия

* E-mail: pshennikova57@mail.ru

Поступила в редакцию 11.02.2022
После доработки 27.03.2022
Принята к публикации 27.03.2022

Аннотация

Сохранять жизнеспособность в неделящемся состоянии при минимальном метаболизме в неблагоприятных условиях способны многие клетки, например, зародышевые клетки, стволовые клетки взрослых организмов, клетки микроорганизмов. К сожалению, в состоянии покоя, или дормантности, могут находиться и микобактерии туберкулеза (при латентной форме болезни), и опухолевые клетки, способные сформировать вторичные опухоли – метастазы – в разных частях тела. Эти клетки устойчивы к терапии, уничтожающей активно делящиеся клетки, и к действию иммунной системы хозяина. Каскад реакций, обеспечивающих вход и выход из состояния дормантности, запускается активностью регуляторных факторов из ближайшего окружения в нишах, где скрываются такие клетки. Именно соотношение запрещающих и разрешающих сигналов диктует, стать ли клеткам дормантными или начать пролиферацию. Отличие процессов регуляции дормантности клеток в норме и при патологии состоит лишь в том, что патогены, микобактерии и опухолевые клетки, способны влиять на собственную судьбу, активно изменяя свое микроокружение. Некоторые механизмы этих процессов рассмотрены в нашем обзоре.

Ключевые слова: опухолевые клетки, Mycobacterium tuberculosis, дормантность, метастазы, мезенхимальные стволовые клетки, метастатические ниши

Список литературы

  1. Dillekås H., Rogers M.S., Straume O. (2019) Are 90% of deaths from cancer caused by metastases? Cancer Med. 8, 5574–5576.

  2. Global tuberculosis report 2021. Geneva: World Health Organization; 2021. Licence: CC BY-NC-SA 3.0 IGO.

  3. Peterson E.J.R., Abidi A.A., Arrieta-Ortiz M.L., Aguilar B., Yurkovich J.T., Kaur A., Pan M., Srinivas V., Shmulevich I., Baliga N.S. (2020) Intricate genetic programs controlling dormancy in Mycobacterium tuberculosis. Cell Rep. 31, 107577.

  4. Khan A., Hunter R.L., Jagannath C. (2016) Emerging role of mesenchymal stem cells during tuberculosis: the fifth element in cell mediated immunity. 101, 45–52.

  5. Batyrshina Y.R., Schwartz Y.S. (2019) Modeling of Mycobacterium tuberculosis dormancy in bacterial cultures. Tuberculosis (Edinb.). 117, 7–17.

  6. Jindani A., Aber V.R., Edwards E.A., Mitchison D.A. (1980) The early bactericidal activity of drugs in patients with pulmonary tuberculosis. Am. Rev. Respiratory Dis. 121, 939–949.

  7. Wayne LG. (1994) Dormancy of Mycobacterium tuberculosis and latency of disease. Eur. J. Clin. Microbiol. Infect. Dis. 13, 908–914.

  8. Schubert O.T., Ludwig C., Kogadeeva M., Zimmermann M., Rosenberger G., Gengenbacher M., Gillet L.C., Collins B.C., Röst H.L., Kaufmann S.H., Sauer U., Aebersold R. (2015) Absolute proteome composition and dynamics during dormancy and resuscitation of Mycobacterium tuberculosis. Cell Host Microbe. 18, 96–108.

  9. Gengenbacher M., Kaufmann S.H.E. (2012) Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol. Rev. 36, 514–532.

  10. Davis J.M., Ramakrishnan L. (2009) The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell. 136, 37–49.

  11. Kundu M., Basu J. (2021) Applications of transcriptomics and proteomics for understanding dormancy and resuscitation in Mycobacterium tuberculosis. Front Microbiol. 12, 642487.

  12. Mayito J., Andia I., Belay M., Jolliffe D.A., Kateete D.P., Reece S.T., Martineau A.R. (2019) Anatomic and cellular niches for Mycobacterium tuberculosis in latent tuberculosis infection. J. Infect. Dis. 219, 685–694.

  13. Paige C., Bishai W.R. (2010) Penitentiary or penthouse condo: the Tuberculous granuloma from the microbe׳s point of view. Cell. Microbiol. 12, 301–309.

  14. Volkman H.E., Pozos T.C., Zheng J., Davis J.M., Rawls J.F., Ramakrishnan L. (2010) Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium. Science. 327, 466–469.

  15. Cumming B.M., Rahman M.A., Lamprecht D.A., Rohde K.H., Saini V., Adamson J.H., Russell D.G., Steyn A.J.C. (2017) Mycobacterium tuberculosis arrests host cycle at the G1/S transition to establish long term infection. PLoS Pathog. 13, e1006389.

  16. Dutta N.K., Mehra S., Martinez A.N., Alvarez X., Renner N.A., Morici L.A., Pahar B., Maclean A.G., Lackner A.A., Kaushal D. (2012) The stress-response factor SigH modulates the interaction between Mycobacterium tuberculosis and host phagocytes. PLoS One. 7, e28958.

  17. Raghuvanshi S., Sharma P., Singh S., Van Kaer L., Das G. (2010) Mycobacterium tuberculosis evades host immunity by recruiting mesenchymal stem cells. Proc. Natl. Acad. Sci. USA. 107, 21653–21658.

  18. Das B., Kashino S.S., Pulu I., Kalita D., Swami V., Yeger H., Felsher D.W., Campos-Neto A. (2013) CD271+ bone marrow mesenchymal stem cells may provide a niche for dormant Mycobacterium tuberculosis. Sci. Transl. Med. 5, 170ra13.

  19. Khan A., Mann L., Papanna R., Lyu M., Singh C.R., Olson S., Eissa N.T., Cirillo J., Das G., Hunter R.L., Jagannath C. (2017) Mesenchymal stem cells internalize Mycobacterium tuberculosis through scavenger receptors and restrict bacterial growth through autophagy. Sci. Rep. 7, 15010.

  20. Fatima S., Kamble S.S., Dwivedi V.P., Bhattacharya D., Kumar S., Ranganathan A., Van Kaer L., Mohanty S., Das G. (2020) Mycobacterium tuberculosis programs mesenchymal stem cells to establish dormancy and persistence. J. Clin. Invest. 130, 655–661.

  21. Garhyan J., Bhuyan S., Pulu I., Kalita D., Das B., Bhatnagar R. (2015) Preclinical and clinical evidence of Mycobacterium tuberculosis persistence in the hypoxic niche of bone marrow mesenchymal stem cells after therapy. Am. J. Pathol. 185, 1924–1934.

  22. Tornack J., Reece S.T., Bauer W.M., Vogelzang A., Bandermann S., Zedler U., Stingl G., Kaufmann S.H., Melchers F. (2017) Human and mouse hematopoietic stem cells are a depot for dormant Mycobacterium tuberculosis. PLoS One. 12, e0169119.

  23. Singh V.K., Mishra A., Bark S., Mani A., Subbian S., Hunter R.L., Jagannath C., Khan A. (2020) Human mesenchymal stem cell based intracellular dormancy model of Mycobacterium tuberculosis. Microbes Infect. 22, 423–431.

  24. Kim S., Kim T.M. (2019) Generation of mesenchymal stem-like cells for producing extracellular vesicles. World J. Stem Cells. 11, 270–280.

  25. Wang L.T., Ting C.H., Yen M.L., Liu K.J., Sytwu H.K., Wu K.K., Yen B.L. (2016) Human mesenchymal stem cells (MSCs) for treatment towards immune- and inflammation-mediated diseases: review of current clinical trials. J. Biomed. Sci. 23, 76.

  26. Chow L., Johnson V., Impastato R., Coy J., Strumpf A., Dow S. (2020) Antibacterial activity of human mesenchymal stem cells mediated directly by constitutively secreted factors and indirectly by activation of innate immune effector cells. Stem Cells Transl. Med. 9, 235–249.

  27. Khan A., Jagannath C. (2019) Interactions of Mycobacterium tuberculosis with human mesenchymal stem cells. in: Tuberculosis Host-Pathogen Interactions. Eds Cirillo J., Kong Y. Springer, Cham. 95–111.

  28. Wortzel I., Dror S., Kenific C.M., Lyden D. (2019) Exosome-mediated metastasis: communication from a distance. Dev. Cell. 49, 347–360.

  29. Mathieu M., Martin-Jaular L., Lavieu G., Théry C. (2019) Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication Nat. Cell Biol. 21, 9–17.

  30. Liu M., Wang Z., Ren S., Zhao H. (2021) Exosomes derived from Mycobacterium tuberculosis-infected MSCs induce a pro-inflammatory response of macrophages. Aging (Albany NY). 13, 11595–11609.

  31. Tyagi P., Pal V. K., Agrawal R., Singh S., Srinivasan S., Singh A. (2020) Mycobacterium tuberculosis reactivates HIV-1 via exosome-mediated resetting of cellular redox potential and bioenergetics. mBio. 11, e03293-19.

  32. Li L., Mendis N., Trigui H., Oliver J.D., Faucher S.P. (2014) The importance of the viable but non-culturable state in human bacterial pathogens. Front. Microbiol. 5, 258.

  33. Salina E.G., Mollenkopf H.J., Kaufmann S.H.E., Kaprelyants A.S. (2009) M. tuberculosis gene 749 expression during transition to the “non-culturable” state. Acta Naturae. 1, 73–77.

  34. Gopinath V., Raghunandanan S., Gomez R.L., Jose L., Surendran A., Ramachandran R., Pushparajan A.R., Mundayoor S., Jaleel A., Kumar R.A. (2015) Profiling the proteome of Mycobacterium tuberculosis during dormancy and reactivation. Mol. Cell. Proteomics. 14, 2160–2176.

  35. Joshi H., Kandari D., Bhatnagar R. (2021) Insights into the molecular determinants involved in Mycobacterium tuberculosis persistence and their therapeutic implications. Virulence. 12, 2721–2749.

  36. Trutneva K.A., Shleeva M.O., Demina G.R., Vostroknutova G.N., Kaprelyans A.S. (2020) One-year old dormant, “non-culturable” Mycobacterium tuberculosis preserves significantly diverse protein profile. Front. Cell Infect. Microbiol. 10, 26.

  37. Chang D.P.S., Guan X.L. (2021) Metabolic versatility of Mycobacterium tuberculosis during infection and dormancy. Metabolites. 11, 88.

  38. Rittershaus E.S.C., Baek S.H., Sassetti C.M. (2013) The normalcy of dormancy: common themes in microbial quiescence. Cell Host Microbe. 13, 643–651.

  39. Shleeva M.O., Kudykina Y.K., Vostroknutova G.N., Suzina N.E., Mulyukin A.L., Kaprelyants A.S. (2011) Dormant ovoid cells of Mycobacterium tuberculosis are formed in response to gradual external acidification. Tuberculosis. 91, 146–154.

  40. Anuchin A.M., Mulyukin A.L., Suzina N.E., Duda V.I., El-Registan G.I., Kaprelyants A.S. (2009) Dormant forms of Mycobacterium smegmatis with distinct morphology. Microbiology. 155, 1071–1079.

  41. Raghunandanan S., Jose L., Gopinath V., Kumar R.A. (2019) Comparative label-free lipidomic analysis of Mycobacterium tuberculosis during dormancy and reactivation. Sci. Rep. 9, 3660.

  42. Karakousis P.C., Williams E.P., Bishai W.R. (2008) Altered expression of isoniazid-regulated genes in drug-treated dormant Mycobacterium tuberculosis. J. Antimicrob. Chemother. 61, 323–331.

  43. Du P., Sohaskey C.D., Shi L. (2016) Transcriptional and physiological changes during Mycobacterium tuberculosis reactivation from non-replicating persistence. Front. Microbiol. 7, 1346.

  44. Ai J.-W., Ruan Q.-L., Liu Q.-H., Zhang W.-H. (2016) Updates on the risk factors for latent tuberculosis reactivation and their managements. Emerg. Microbes Infect. 5, e10.

  45. Endo H., Inoue M. (2019) Dormancy in cancer. Cancer Sci. 110, 474–480.

  46. Sistigu A., Musella M., Galassi C., Vitale I., De Maria R. (2020) Tuning cancer fate: tumor microenvironment’s role in cancer stem cell quiescence and reawakening. Front. Immunol. 11, 2166.

  47. Aguirre-Ghiso J.A. (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat. Rev. Cancer. 7, 834–846.

  48. Risson E., Nobre A.R., Maguer-Satta V., Aguirre-Ghiso J.A. (2020) The current paradigm and challenges ahead for the dormancy of disseminated tumor cells. Nat. Cancer. 1, 672–680.

  49. Boire A., Coffelt S.B., Quezada S.A., Vander Heiden M.G., Weeraratna A.T. (2019) Tumour dormancy and reawakening: opportunities and challenges. Trends Cancer. 5, 762–765.

  50. Phan T.G., Croucher P.I. (2020) The dormant cancer cell life cycle. Nat. Rev. Cancer. 20, 398–411.

  51. Khoo W.H., Ledergor G., Weiner A., Roden D.L., Terry R.L., McDonald M.M., Chai R.C., De Veirman K., Owen K.L., Opperman K.S., Vandyke K., Clark J.R., Seckinger A., Kovacic N., Nguyen A., Mohanty S.T., Pettitt J.A., Xiao Y., Corr A.P., Seeliger C., Novotny M., Lasken R.S., Nguyen T.V., Oyajobi B.O., Aftab D., Swarbrick A., Parker B., Hewett D.R., Hose D., Vanderkerken K., Zannettino A.C.W., Amit I., Phan T.G., Croucher P.I. (2019) A niche-dependent myeloid transcriptome signature defines dormant myeloma cells. Blood. 134, 30–43.

  52. Loh E., Couch F.J., Hendricksen C., Farid L., Kelly P.F., Acker M.A., Tomaszewski J.E., Malkowicz S.B., Weber B.L. (1997) Development of donor-derived prostate cancer in a recipient following orthotopic heart transplantation. JAMA. 277, 133–137.

  53. Sauer S., Reed D.R., Ihnat M., Hurst R.E., Warshawsky D., Barkan D. (2021) Innovative approaches in the battle against cancer recurrence: novel strategies to combat dormant disseminated tumor cells. Front. Oncol. 11, 659963.

  54. Aguirre-Ghiso J.A., Sosa M.S. (2018) Emerging topics on disseminated cancer cell dormancy and the paradigm of metastasis. Ann. Rev. Cancer Biol. 2, 377–393.

  55. Sano N., Marion-Poll A. (2021) ABA metabolism and homeostasis in seed dormancy and germination. Int. J. Mol. Sci. 22, 5069.

  56. Воронина А.С., Пшенникова Е.С. (2020) Стволовые клетки растений. Молекуляр. биология. 54, 187–203.

  57. Fukuyama M., Rougvie A.E., Rothman J.H. (2006) C. elegans DAF-18/PTEN mediates nutrient-dependent arrest of cell cycle and growth in the germline. Curr. Biol. 16, 773–779.

  58. Hamatani T., Daikoku T., Wang H., Matsumoto H., Carter M.G., Ko M.S., Dey S.K. (2004) Global gene expression analysis identifies molecular pathways distinguishing blastocyst dormancy and activation. Proc. Natl. Acad. Sci. USA. 101, 10326–10331.

  59. Scognamiglio R., Cabezas-Wallscheid N., Thier M.C., Altamura S., Reyes A., Prendergast Á.M., Baumgärtner D., Carnevalli L.S., Atzberger A., Haas S., von Paleske L., Boroviak T., Wörsdörfer P., Essers M.A., Kloz U., Eisenman R.N., Edenhofer F., Bertone P., Huber W., van der Hoeven F., Smith A., Trumpp A. (2016) Myc depletion induces a pluripotent dormant state mimicking diapause. Cell. 164, 668–680.

  60. Meller C.L., Meller R., Simon R.P., Culpepper K.M., Podrabsky J.E. (2012) Cell cycle arrest associated with anoxia-induced quiescence, anoxic preconditioning, and embryonic diapause in embryos of the annual killifish Austrofundulus limnaeus. J. Comp. Physiol. B. 182, 909–920.

  61. Ptak G.E., Tacconi E., Czernik M., Toschi P., Modlinski J.A., Loi P. (2012) Embryonic diapause is conserved across mammals. PLoS One. 7, e33027.

  62. Yoshida G.J. (2018) Emerging roles of Myc in stem cell biology and novel tumor therapies. J. Exp. Clin. Cancer Res. 37, 173.

  63. Adam A.P., George A., Schewe D., Bragado P., Iglesias B.V., Ranganathan A.C., Kourtidis A., Conklin D.S., Aguirre-Ghiso J.A. (2009) Computational identification of a p38SAPK regulated transcription factor network required for tumor cell quiescence. Cancer Res. 69, 5664–5672.

  64. Dhimolea E., de Matos Simoes R., Kansara D., Al’Khafaji A., Bouyssou J, Weng X., Sharma S., Raja J., Awate P., Shirasaki R., Tang H., Glassner B.J. Liu Z., Gao D., Bryan J., Bender S., Roth J., Scheffer M., Jeselsohn R., Gray N.S., Georgakoudi I., Vazquez F., Tsherniak A., Chen Y., Welm A., Duy C., Melnick A., Bartholdy B., Brown M., Culhane A.C., Mitsiades C.S. (2021) An embryonic diapause-like adaptation with suppressed myc activity enables tumor treatment persistence. Cancer Cell. 39, 240–256.

  65. Rehman S.K., Haynes J., Collignon E., Brown K.R., Wang Y., Nixon A.M.L., Bruce J.P., Wintersinger J.A., Singh Mer A., Lo E.B.L., Leung C., Lima-Fernandes E., Pedley N.M., Soares F., McGibbon S., He H.H., Pollet A., Pugh T.J., Haibe-Kains B., Morris Q., Ramalho-Santos M., Goyal S., Moffat J., O’Brien C.A. (2021) Colorectal cancer cells enter a diapause-like dtp state to survive chemotherapy. Cell. 184, 226–242.

  66. Santos-de-Frutos K., Djouder N. (2021) When dormancy fuels tumour relapse. Commun Biol 4, 747.

  67. Orford K.W., Scadden D.T. (2008) Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat. Rev. Genet. 9, 115–128.

  68. Nieto M.A. (2013) Epithelial plasticity: a common theme in embryonic and cancer cells. Science. 342, 1234850.

  69. Lamouille S., Xu J., Derynck R. (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell. Biol. 15, 178–196.

  70. Taneyhill L.A., Schiffmacher A.T. (2017) Should I stay or should I go? Cadherin function and regulation in the neural crest. Genesis. 55, e23028.

  71. Yu M., Bardia A., Wittner B.S., Stott S.L., Smas M.E., Ting D.T., Isakoff S.J., Ciciliano J.C., Wells M.N., Shah A.M., Concannon K.F., Donaldson M.C., Sequist L.V., Brachtel E., Sgroi D., Baselga J., Ramaswamy S., Toner M., Haber D.A., Maheswaran S. (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 339, 580–584.

  72. Raimondi C., Gradilone A., Naso G., Vincenzi B., Petracca A., Nicolazzo C., Palazzo A., Saltarelli R., Spremberg F., Cortesi E., Gazzaniga P. (2011) Epithelial-mesenchymal transition and stemness features in circulating tumor cells from breast cancer patients. Breast Cancer Res. Treat. 130, 449–455.

  73. Jie X.X., Zhang X.Y., Xu C.J. (2017) Epithelial-to-mesenchymal transition, circulating tumor cells and cancer metastasis: mechanisms and clinical applications. Oncotarget. 8, 81558–81571.

  74. Ryser M.D., Mallo D., Hall A., Hardman T., King L.M., Tatishchev S., Sorribes I.C., Maley C.C., Marks J.R., Hwang E.S., Shibata D. (2020). Minimal barriers to invasion during human colorectal tumor growth. Nat. Commun. 11, 1280.

  75. Brabletz T., Jung A., Reu S., Porzner M., Hlubek F., Kunz-Schughart L.A., Knuechel R., Kirchner T. (2001) Variable b-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc. Natl. Acad. Sci. USA. 98, 10356–10361.

  76. Hay E.D. (1991) Collagen and other matrix proteins in embryogenesis. In: Cell Biology of the Extracellular Matrix. Ed. Hay E.D. New York: Plenum Press.

  77. Ksiazkiewicz M., Markiewicz A., Zaczek A.J. (2012) Epithelial-mesenchymal transition, A hallmark in metastasis formation linking circulating tumor cells and cancer stem cells. Pathobiology. 79, 195–208.

  78. Dasgupta A., Lim A.R., Ghajar C.M. (2017) Circulating and disseminated tumor cells: harbingers or initiators of metastasis? Mol. Oncol. 11, 40–61.

  79. Tinganelli W., Durante M. (2020) Tumor hypoxia and circulating tumor cells. Int. J. Mol. Sci. 21, 9592.

  80. Barrak N.H., Khajah A., Luqmani Y.A. (2020) Hypoxic environment may enhance migration/penetration of endocrine resistant MCF7- derived breast cancer cells through monolayers of other non-invasive cancer cells in vitro. Sci. Rep. 10, 1127.

  81. Micalizzi D.S., Haber D.A., Maheswaran S. (2017) Cancer metastasis through the prism of epithelial-to-mesenchymal transition in circulating tumor cells. Mol. Oncol. 11, 770–780.

  82. Fitzgerald D.M., Hastings P.J., Rosenberg S.M. (2017) Stress-induced mutagenesis: implications in cancer and drug resistance. Annu. Rev. Cancer Biol. 1, 119–140.

  83. Sun H., Lu Z., Singh A., Zhou Y., Zheng E., Zhou M., Wang J., Wu X., Hu Z., Gu Z., Campbell J.L., Zheng L., Shen B. (2021) Error-prone, stress-induced 3' flap-based Okazaki fragment maturation supports cell survival. Science. 374, 1252–1258.

  84. Vera-Ramirez L., Hunter K.W. (2017) Tumor cell dormancy as an adaptive cell stress response mechanism. F1000Res. 6, 2134.

  85. Lambert A.W., Pattabiraman D.R., Weinberg R.A. (2017) Emerging biological principles of metastases. Cell. 168, 670–691.

  86. Paoli P., Giannoni E., Chiarugi P. (2013) Anoikis molecular pathways and its role in cancer progression. Biochim. Biophys. Acta. 1833, 3481–3498.

  87. Meulemans D., Bronner-Fraser M. (2004) Gene-regulatory interactions in neural crest evolution and development. Dev. Cell. 7, 291–299.

  88. Пшенникова Е.С., Воронина А.С. (2019) Нервный гребень – своеобразная популяция эмбриональных клеток. Молекуляр. биология. 53, 256–267.

  89. Aceto N., Toner M., Maheswaran S., Haber D.A. (2015) En route to metastasis: circulating tumor cell clusters and epithelial-to-mesenchymal transition. Trends Cancer. 1, 44–52.

  90. Al-Mehdi A.B., Tozawa K., Fisher A.B., Shientag L., Lee A., Muschel R.J. (2000) Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat. Med. 6, 100–102.

  91. Goto W., Kashiwagi S., Asano Y., Takada K., Takahashi K., Hatano T., Takashima T., Tomita S., Motomura H., Ohsawa M., Hirakawa K., Ohira M. (2017) Circulating tumor cell clusters-associated gene plakoglobin is a significant prognostic predictor in patients with breast cancer. Biomark. Res. 5, 19.

  92. Gkountela S., Castro-Giner F., Szczerba B.M., Vetter M., Landin J., Scherrer R., Krol I., Scheidmann M.C., Beisel C., Stirnimann C.U., Kurzeder C., Heinzelmann-Schwarz V., Rochlitz C., Weber W.P., Aceto N. (2019) Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell. 176, 98–112.

  93. Au S.H., Storey B.D., Moore J.C., Tang Q., Chen Y.L., Javaid S., Sarioglu A.F., Sullivan R., Madden M.W., O’Keefe R., Haber D.A., Maheswaran S., Langenau D.M., Stott S.L., Toner M. (2016) Clusters of circulating tumor cells traverse capillary-sized vessels. Proc. Natl. Acad. Sci. USA. 113, 4947–4952.

  94. Yang M.H., Imrali A., Heeschen C. (2015) Circulating cancer stem cells: the importance to select. Chin. J. Cancer Res. 27, 437–449.

  95. Aceto N., Bardia A., Miyamoto D.T., Donaldson M.C., Wittner B.S., Spencer J.A., Yu M., Pely A., Engstrom A., Zhu H., Brannigan B.W., Kapur R., Stott S.L., Shioda T., Ramaswamy S., Ting D.T., Lin C.P., Toner M., Haber D.A., Maheswaran S. (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 158, 1110–1122.

  96. Hamidi H., Ivaska J. (2018) Every step of the way: Integrins in cancer progression and metastasis. Nat. Rev. Cancer. 18, 533–548.

  97. Hoshino A., Costa-Silva B., Shen T.L., Rodrigues G., Hashimoto A., Tesic Mark M., Molina H., Kohsaka S., Di Giannatale A., Ceder S., Singh S., Williams C., Soplop N., Uryu K., Pharmer L., King T., Bojmar L., Davies A.E., Ararso Y., Zhang T., Zhang H., Hernandez J., Weiss J.M., Dumont-Cole V.D., Kramer K., Wexler L.H., Narendran A., Schwartz G.K., Healey J.H., Sandstrom P., Labori K.J., Kure E.H., Grandgenett P.M., Hollingsworth M.A., de Sousa M., Kaur S., Jain M., Mallya K., Batra S.K., Jarnagin W.R., Brady M.S., Fodstad O., Muller V., Pantel K., Minn A.J., Bissell M.J., Garcia B.A., Kang Y., Rajasekhar V.K., Ghajar C.M, Matei I., Peinado H., Bromberg J., Lyden D. (2015) Tumour exosome integrins determine organotropic metastasis. Nature. 527, 329–335.

  98. Nguyen D.X., Bos P.D., Massague J. (2009) Metastasis: from dissemination to organ-specific colonization. Nat. Rev. Cancer. 9, 274–284.

  99. Gao Y., Bado I., Wang H., Zhang W., Rosen J.M., Zhang X.H. (2019) Metastasis organotropism: redefining the congenial soil. Dev. Cell. 49, 375–391.

  100. Hen O., Barkan D. (2019) Dormant disseminated tumor cells and cancer stem/progenitor-like cells, similarities and opportunities. Semin. Oncol. 60, 157–165.

  101. Ghajar C.M. (2015) Metastasis prevention by targeting the dormant niche. Nat. Rev. Cancer. 15, 238–247.

  102. Guitart A.V., Hammoud M., Dello Sbarba P., Ivanovic Z., Praloran V. (2010) Slowcycling/quiescence balance of hematopoietic stem cells is related to physiological gradient of oxygen. Exp. Hematol. 38, 847–851.

  103. Liberti M.V., Locasale J.W. (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 41, 211–218.

  104. Pierce G.B., Speers W.C. (1988) Tumors as caricatures of the process of tissue renewal: prospects for therapy by directing differentiation. Cancer Res. 48, 1996–2004.

  105. Weissman I.L. (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell. 100, 157–168.

  106. Hannen R., Bartsch J.W. (2018) Essential roles of telomerase reverse transcriptase hTERT in cancer stemness and metastasis. FEBS Lett. 592, 2023–2031.

  107. Young H.E., Black A.C. (2004) Adult stem cells. J. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 276, 75–102.

  108. Takahashi K., Yamanaka S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126, 663–676.

  109. Senga S.S., Grose R.P. (2021) Hallmarks of cancer-the new testament. Open Biol. 11, 200358.

  110. Stevanovic M., Kovacevic-Grujicic N., Mojsin M., Milivojevic M., Drakulic D. (2021) SOX transcription factors and glioma stem cells: choosing between stemness and differentiation. World J. Stem Cells. 13, 1417–1445.

  111. Bonnet D., Dick J.E. (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730–737.

  112. Carvalho J. (2020) Cell reversal from a differentiated to a stem-like state at cancer initiation. Front. Oncol. 10, 541.

  113. Milanovic M., Fan D.N.Y., Belenki D., Däbritz J.H.M., Zhao Z., Yu Y., Dörr J.R., Dimitrova L., Lenze D., Monteiro Barbosa I.A., Mendoza-Parra M.A., Kanashova T., Metzner M., Pardon K., Reimann M., Trumpp A., Dörken B., Zuber J., Gronemeyer H., Hummel M., Dittmar G., Lee S., Schmitt C.A. (2018) Senescence-associated reprogramming promotes cancer stemness. Nature. 553, 96–100.

  114. Zon L.I. (2008) Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature. 453, 306–313.

  115. Sturmlechner I., Zhang C., Sine C.C., van Deursen E.J., Jeganathan K.B., Hamada N., Grasic J., Friedman D., Stutchman J.T., Can I., Hamada M., Lim D.Y., Lee J.H., Ordog T., Laberge R.M., Shapiro V., Baker D.J., Li H., van Deursen J.M. (2021) p21 produces a bioactive secretome that places stressed cells under immunosurveillance. Science. 374, eabb3420.

  116. Walcher L., Kistenmacher A.K., Suo H., Kitte R., Dluczek S., Strauß A., Blaudszun A.R., Yevsa T., Fricke S., Kossatz-Boehlert U. (2020) Cancer stem cells-origins and biomarkers: perspectives for targeted personalized therapies. Front. Immunol. 11, 1280.

  117. Crea F., Nur Saidy N.R., Collins C.C., Wang Y. (2015) The epigenetic/noncoding origin of tumor dormancy. Trends Molec.Med. 21, 206–211.

  118. Barney L.E., Hall C.L., Schwartz A.D., Parks A.N., Sparages C., Galarza S., Platt M.O., Mercurio A.M., Peyton S.R. (2020) Tumor cell-organized fibronectin maintenance of a dormant breast cancer population. Sci. Adv. 6, eaaz4157.

  119. Shiozawa Y., Berry J.E., Eber M.R., Jung Y., Yumoto K., Cackowski F.C., Yoon H.J., Parsana P., Mehra R., Wang J., McGee S., Lee E., Nagrath S., Pienta K.J., Taichman R.S. (2016) The marrow niche controls the cancer stem cell phenotype of disseminated prostate cancer. Oncotarget. 7, 41217–41232.

  120. Sosa M.S., Bragado P., Aguirre-Ghiso J.A. (2014) Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat. Rev. Cancer. 14, 611–622.

  121. Kobayashi A., Okuda H., Xing F., Pandey P.R., Watabe M., Hirota S., Pai S.K., Liu W., Fukuda K., Chambers C., Wilber A., Watabe K. (2011) Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J. Exp. Med. 208, 2641–2655.

  122. Yang A., Qin S., Schulte B.A., Ethier S.P., Tew K.D., Wang G.Y. (2017) MYC inhibition depletes cancer stem-like cells in triple-negative breast cancer. Cancer Res. 77, 6641–6650.

  123. Wei S.C., Yang J. (2016) Forcing through tumor metastasis: the interplay between tissue rigidity and epithelial-mesenchymal transition. Trends Cell Biol. 26, 111–120.

  124. De Cock J.M., Shibue T., Dongre A., Keckesova Z., Reinhardt F., Weinberg RA. (2016) Inflammation triggers Zeb1-dependent escape from tumor latency. Cancer Res. 76, 6778–6784.

  125. Paget S. (1889) The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev. 8, 98–101.

  126. Schofield R. (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cell. 4, 7–25.

  127. Ossowski L., Reich E. (1983) Changes in malignant phenotype of a human carcinoma conditioned by growth environment. Cell. 33, 323–333.

  128. Fu T., Dai L.J., Wu S.Y., Xiao Y., Ma D., Jiang Y.Z., Shao Z.M. (2021) Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response. J. Hematol. Oncol. 14, 98.

  129. Korneva Yu.S., Ukrainets R.V. (2019) Principles of premetastatic niche formation. J. Mod. Oncol. 21, 6–9.

  130. Peinado H., Zhang H., Matei I.R., Costa-Silva B., Hoshino A., Rodrigues G., Psaila B., Kaplan R.N., Bromberg J.F., Kang Y., Bissell M.J., Cox T.R., Giaccia A.J., Erler J.T, Hiratsuka S., Ghajar C.M., Lyden D. (2017) Pre-metastatic niches: organ-specific homes for metastases. Nat. Rev. Cancer. 17, 302–317.

  131. Ingangi V., Minopoli M., Ragone C., Motti M.L., Carriero M.V. (2019) Role of microenvironment on the fate of disseminating cancer stem cells. Front. Oncol. 9, 82.

  132. Giles A.J., Reid C.M., Evans J.D., Murgai M., Vicioso Y., Highfill S.L., Kasai M., Vahdat L., Mackall C.L., Lyden D., Wexler L., Kaplan R.N. (2016) Activation of hematopoietic stem/progenitor cells promotes immunosuppression within the pre-metastatic niche. Cancer Res. 76, 1335–1347.

  133. Liu Y., Cao X. (2016) Immunosuppressive cells in tumor immune escape and metastasis. J. Mol. Med. 94, 509–522.

  134. Peinado H., Aleckovic M., Lavotshkin S., Matei I., Costa-Silva B., Moreno-Bueno G., Hergueta-Redondo M., Williams C., Garcia-Santos G., Ghajar C., Nitadori-Hoshino A., Hoffman C., Badal K., Garcia B.A., Callahan M.K., Yuan J., Martins V.R., Skog J., Kaplan R.N., Brady M.S., Wolchok J.D., Chapman P.B., Kang Y., Bromberg J., Lyden D. (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891.

  135. Kaplan R.N., Riba R.D., Zacharoulis S., Bramley A.H., Vincent L., Costa C., MacDonald D.D., Jin D.K., Shido K., Kerns S.A., Zhu Z., Hicklin D., Wu Y., Port J.L., Altorki N., Port E.R., Ruggero D., Shmelkov S.V., Jensen K.K., Rafii S., Lyden D. (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 438, 820–827.

  136. Hoshino A., Costa-Silva B., Shen T.L., Rodrigues G., Hashimoto A., Tesic Mark M., Molina H., Kohsaka S., Di Giannatale A., Ceder S., Singh S., Williams C., Soplop N., Uryu K., Pharmer L., King T., Bojmar L., Davies A.E., Ararso Y., Zhang T., Zhang H., Hernandez J., Weiss J.M., Dumont-Cole V.D., Kramer K., Wexler L.H., Narendran A., Schwartz G.K., Healey J.H., Sandstrom P., Labori K.J., Kure E.H., Grandgenett P.M., Hollingsworth M.A., de Sousa M., Kaur S., Jain M., Mallya K., Batra S.K., Jarnagin W.R., Brady M.S., Fodstad O., Muller V., Pantel K., Minn A.J., Bissell M.J., Garcia B.A., Kang Y., Rajasekhar V.K., Ghajar C.M., Matei I., Peinado H., Bromberg J., Lyden D. (2015) Tumour exosome integrins determine organotropic metastasis. Nature. 527, 329–335.

  137. Liu Y., Gu Y., Han Y., Zhang Q., Jiang Z., Zhang X., Huang B., Xu X., Zheng J., Cao X. (2016) Tumor exosomal RNAs promote lung pre-metastatic niche formation by activating alveolar epithelial TLR3 to recruit neutrophils. Cancer Cell. 30, 243–256.

  138. Akoto T., Saini S. (2021) Role of exosomes in prostate cancer metastasis. Int. J. Molec. Sci. 22, 3528.

  139. Costa-Silva B., Aiello N.M., Ocean A.J., Singh S., Zhang H., Thakur B.K., Becker A., Hoshino A., Mark M.T., Molina H., Xiang J., Zhang T., Theilen T.M., García-Santos G., Williams C., Ararso Y., Huang Y., Rodrigues G., Shen T.L., Labori K.J., Lothe I.M., Kure E.H., Hernandez J., Doussot A., Ebbesen S.H., Grandgenett P.M., Hollingsworth M.A., Jain M., Mallya K., Batra S.K., Jarnagin W.R., Schwartz R.E., Matei I., Peinado H., Stanger B.Z., Bromberg J., Lyden D. (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell. Biol. 17, 816–826.

  140. Lin D., Chen X., Lin Z., Lin J., Liu Y., Liu D. (2021) Paper-supported co-culture system for dynamic investigations of the lung-tropic migration of breast cancer cells. Biomed. Mater. 16, 025028.

  141. Lin R., Wang S., Zhao R.C. (2013) Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model. Mol. Cell. Biochem. 383, 13–20.

  142. Abravanel D.L., Belka G.K., Pan T.C., Pant D.K., Collins M.A., Sterner C.J., Chodosh L.A. (2015) Notch promotes recurrence of dormant tumor cells following HER2/neu-targeted therapy. J. Clin. Invest. 125, 2484–2496.

  143. Capulli M., Hristova D., Valbret Z., Carys K., Arjan R., Maurizi A., Masedu F., Cappariello A., Rucci N., Teti A. (2019) Notch2 pathway mediates breast cancer cellular dormancy and mobilisation in bone and contributes to haematopoietic stem cell mimicry. Br. J. Cancer. 121, 157‒171.

  144. Yamazaki S., Iwama A., Takayanagi S., Eto K., Ema H., Nakauchi H. (2009) TGF-beta as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood. 113, 1250–1256.

  145. Lawson M.A., McDonald M.M., Kovacic N., Hua Khoo W., Terry R.L., Down J., Kaplan W., Paton-Hough J., Fellows C., Pettitt J.A., Neil Dear T., Van Valckenborgh E., Baldock P.A., Rogers M.J., Eaton C.L., Vanderkerken K., Pettit A.R., Quinn J.M., Zannettino A.C., Phan T.G., Croucher P.I. (2015) Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat. Commun. 6, 8983.

  146. Lu X., Mu E., Wei Y., Riethdorf S., Yang Q., Yuan M., Yan J., Hua Y., Tiede B.J., Lu X., Haffty B.G., Pantel K., Massagué J., Kang Y. (2011) VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors. Cancer Cell. 20, 701–714.

  147. Weilbaecher K.N., Guise T.A., McCauley L.K. (2011) Cancer to bone: a fatal attraction. Nat. Rev. Cancer. 11, 411–425.

  148. Luo X., Fu Y., Loza A.J., Murali B., Leahy K.M., Ruhland M.K., Gang M., Su X., Zamani A., Shi Y., Lavine K.J., Ornitz D.M., Weilbaecher K.N., Long F., Novack D.V., Faccio R., Longmore G.D., Stewart S.A. (2016) Stromal-initiated changes in the bone promote metastatic niche development. Cell Rep. 14, 82–92.

  149. Gao H., Chakraborty G., Lee-Lim A.P., Mo Q., Decker M., Vonica A., Shen R., Brogi E., Brivanlou A.H., Giancotti F.G. (2012) The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell. 150, 764–779.

  150. Ruppender N., Larson S., Lakely B., Kollath L., Brown L., Coleman I., Coleman R., Nguyen H., Nelson P.S., Corey E., Snyder L.A., Vessella R.L., Morrissey C., Lam H.M. (2015) Cellular adhesion promotes prostate cancer cells escape from dormancy. PLoS One. 10, e0130565.

  151. Trumpp A., Essers M., Wilson A. (2010) Awakening dormant haematopoietic stem cells. Nat. Rev. Immunol. 10, 201–209.

  152. Decker A.M., Jung Y., Cackowski F., Taichman R.S. (2016) The role of hematopoietic stem cell niche in prostate cancer bone metastasis. J. Bone Oncol. 5, 117–120

  153. Kunisaki Y., Bruns I., Scheiermann C., Ahmed J., Pinho S., Zhang D., Mizoguchi T., Wei Q., Lucas D., Ito K., Mar J.C., Bergman A., Frenette P.S. (2013) Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 502, 637–643.

  154. Hoshide R., Jandial R. (2017) The role of the neural niche in brain metastasis. Clin. Exp. Metastasis. 34, 369–376.

  155. Zeng Q., Michael I.P., Zhang P., Saghafinia S., Knott G., Jiao W., McCabe B.D., Galván J.A., Robinson H.P.C., Zlobec I., Ciriello G., Hanahan D. (2019) Synaptic proximity enables NMDAR signalling to promote brain metastasis. Nature. 573, 526–531.

  156. Agudo J., Park E.S., Rose S.A., Alibo E., Sweeney R., Dhainaut M., Kobayashi K.S., Sachidanandam R., Baccarini A., Merad M., Brown B.D. (2018) Quiescent tissue stem cells evade immune surveillance. Immunity. 48, 271–285.

  157. Vera-Ramirez L., Vodnala S.K., Nini R., Hunter K.W., Green, J.E. (2018) Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence. Nat. Commun. 9, 1944.

  158. La Belle Flynn A., Calhoun B.C., Sharma A., Chang J.C., Almasan A., Schiemann W.P. (2019) Autophagy inhibition elicits emergence from metastatic dormancy by inducing and stabilizing Pfkfb3 expression. Nat. Commun. 10, 3668.

  159. Aguirre-Ghiso J.A. (2018) How dormant cancer persists and reawakens. Science, 361, 1314–1315.

  160. Fessler E., Dijkgraaf F.E., De Sousa E.M.F., Medema J.P. (2013) Cancer stem cell dynamics in tumor progression and metastasis: is the microenvironment to blame? Cancer Lett. 341, 97–104.

  161. Carlson P., Dasgupta A., Grzelak C.A., Kim J., Barrett A., Coleman I.M., Shor R.E., Goddard E.T., Dai J., Schweitzer E.M., Lim A.R., Crist S.B., Cheresh D.A., Nelson P.S., Hansen K.C., Ghajar C.M. (2019) Targeting the perivascular niche sensitizes disseminated tumour cells to chemotherapy. Nat. Cell. Biol. 21, 238–250.

  162. Price T.T., Burness M.L., Sivan A., Warner M.J., Cheng R., Lee C.H., Olivere L., Comatas K., Magnani J., Kim Lyerly H., Cheng Q., McCall C.M., Sipkins D.A. (2016) Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone. Sci. Transl. Med. 8, 340ra73.

  163. Zhao L., Zhang K., He H., Yang Y., Li W., Liu T., Li J. (2021) The relationship between mesenchymal stem cells and tumor dormancy. Front. Cell. Dev. Biol. 9, 731393.

  164. Postovit L.M., Margaryan N.V., Seftor E.A., Kirschmann D.A., Lipavsky A., Wheaton W.W., Abbott D.E., Seftor R.E., Hendrix M.J. (2008) Human embryonic stem cell microenvironment suppresses the tumorigenic phenotype of aggressive cancer cells. Proc. Natl. Acad. Sci. USA. 105, 4329–4934.

  165. Saad N., Alberio R., Johnson A.D., Emes R.D., Giles T.C., Clarke P., Grabowska A.M., Allegrucci C. (2018) Cancer reversion with oocyte extracts is mediated by cell cycle arrest and induction of tumour dormancy. Oncotarget. 9, 16008–16027.

  166. Weidenfeld K., Barkan D. (2018) EMT and stemness in tumor dormancy and outgrowth: are they intertwined processes? Front. Oncol. 8, 381.

  167. Hsu S.K., Chiu C.C., Dahms H.U., Chou C.K., Cheng C.M., Chang W.T., Cheng K.C., Wang H.D., Lin I.L. (2019) Unfolded protein response (upr) in survival, dormancy, immunosuppression, metastasis, and treatments of cancer cells. Int. J. Mol. Sci. 20, 2518.

  168. Aguirre Ghiso J.A., Kovalski K., Ossowski L. (1999) Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J. Cell. Biol. 147, 89–104.

  169. Walker C., Mojares E., Del Rio Hernandez A. (2018) Role of extracellular matrix in development and cancer progression. Int. J. Mol. Sci. 19, 3028.

  170. Poltavets V., Kochetkova M., Pitson S.M., Samuel M.S. (2018) The role of the extracellular matrix and its molecular and cellular regulators in cancer cell plasticity. Fron. Oncol. 8, 431.

  171. Talukdar S., Bhoopathi P., Emdad L., Das S., Sarkar D., Fisher P.B. (2019) Dormancy and cancer stem cells: an enigma for cancer therapeutic targeting. Adv. Cancer Res. 141, 43–84.

  172. Malanchi I., Santamaria-Martínez A., Susanto E., Peng H., Lehr H.A., Delaloye J.F., Huelsken J. (2011) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 481, 85–89.

  173. Oskarsson T., Batlle E., Massague J. (2014) Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell. 14, 306–321.

  174. Ghajar C.M., Peinado H., Mori H., Matei I.R., Evason K.J., Brazier H., Almeida D., Koller A., Hajjar K.A., Stainier D.Y., Chen E.I., Lyden D., Bissell M.J. (2013) The perivascular niche regulates breast tumour dormancy. Nat. Cell. Biol. 15, 807–817.

  175. Locatelli F., Nazio F., Bordi M., Cianfanelli V., Cecconi F. (2019) Autophagy and cancer stem cells: molecular mechanisms and therapeutic applications. Cell. Death Differ. 26, 690–702.

  176. Sosa M.S., Bragado P., Debnath J., Aguirre-Ghiso J.A. (2013) Regulation of tumor cell dormancy by tissue microenvironments and autophagy. Adv. Exp. Med. Biol. 734, 73–89.

  177. Akkoc Y., Peker N., Akcay A., Gozuacik D. (2021) Autophagy and cancer dormancy. Front. Oncol. 11, 627023.

  178. Domingo-Domenech J., Vidal S.J., Rodriguez-Bravo V., Castillo-Martin M., Quinn S.A., Rodriguez-Barrueco R., Bonal D.M., Charytonowicz E., Gladoun N., de la Iglesia-Vicente J., Petrylak D.P., Benson M.C., Silva J.M., Cordon-Cardo C. (2012) Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells. Cancer Cell. 22, 373–388.

  179. Heidel F.H., Bullinger L., Feng Z., Wang Z., Neff T.A., Stein L., Kalaitzidis D., Lane S.W., Armstrong S.A. (2012) Genetic and pharmacologic inhibition of β‑catenin targets imatinib-resistant leukemia stem cells in CML. Cell Stem Cell. 10, 412–424

  180. Steinbichler T.B., Dudás J., Skvortsov S., Ganswindt U., Riechelmann H., Skvortsova I.I. (2018) Therapy resistance mediated by cancer stem cells. Semin. Cancer Biol. 53, 156–167.

  181. Urra H., Hetz C. (2014) A novel ER stress-independent function of the UPR in angiogenesis. Mol. Cell. 54, 542–544.

  182. Baeriswyl V., Christofori G. (2009) The angiogenic switch in carcinogenesis. Semin. Cancer Biol. 19, 329–337.

  183. Almog N., Ma L., Raychowdhury R., Schwager C., Erber R., Short S., Hlatky L., Vajkoczy P., Huber P.E., Folkman J., Abdollahi A. (2009) Transcriptional switch of dormant tumors to fast-growing angiogenic phenotype. Cancer Res. 69, 836–844.

  184. Naumov G.N., Folkman J., Straume O. (2009) Tumor dormancy due to failure of angiogenesis: role of the microenvironment. Clin. Exp. Metastasis. 26, 51–60.

  185. Zhao H., Wu L., Yan G., Chen Y., Zhou M., Wu Y., Li Y. (2021) Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct. Target Ther. 6, 263.

  186. Nishida J., Momoi Y., Miyakuni K., Tamura Y., Takahashi K., Koinuma D., Miyazono K., Ehata S. (2020) Epigenetic remodelling shapes inflammatory renal cancer and neutrophil-dependent metastasis. Nat. Cell Biol. 22, 465–475.

  187. Nolan E., Bridgeman V.L., Ombrato L., Karoutas A., Rabas N., Sewneth C.A.N., Vasquez M., Rodrigues F.S., Horswell S., Faull P., Carter R., Malanchi I. (2022) Radiation exposure elicits a neutrophil-driven response in healthy lung tissue that enhances metastatic colonization. Nat. Cancer. 3, 173–187.

  188. Barkan D., El Touny L.H., Michalowski A.M., Smith J.A., Chu I., Davis A.S., Webster J.D., Hoover S., Simpson R.M., Gauldie J., Green J.E. (2010) Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment. Cancer Res. 70, 5706–5716.

  189. Cox T.R., Bird D., Baker A.M., Barker H.E., Ho M.W., Lang G., Erler J.T. (2013) LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Cancer Res. 73, 1721–1732.

  190. Weidenfeld K., Schif-Zuck S., Abu-Tayeh H., Kang K., Kessler O., Weissmann M., Neufeld G., Barkan D. (2016) Dormant tumor cells expressing LOXL2 acquire a stem-like phenotype mediating their transition to proliferative growth. Oncotarget. 7, 71362–71377.

  191. Albrengues J., Shields M.A., Ng D., Park C.G., Ambrico A., Poindexter M.E., Upadhyay P., Uyeminami D.L., Pommier A., Küttner V., Bružas E., Maiorino L., Bautista C., Carmona E.M., Gimotty P.A., Fearon D.T., Chang K., Lyons S.K, Pinkerton K.E., Trotman L.C., Goldberg M.S., Yeh J.T., Egeblad M. (2018) Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 361, eaao4227.

  192. Bickett T.E., Karam S.D. (2020) Tuberculosis-cancer parallels in immune response regulation. Int. J. Mol. Sci. 21, 6136.

  193. Liu K., Sun E., Lei M., Li L., Gao J., Nian X., Wang L. (2019) BCG-induced formation of neutrophil extracellular traps play an important role in bladder cancer treatment. Clin. Immunol. 201, 4–14.

  194. Krall J.A., Reinhardt F., Mercury O.A., Pattabiraman D.R., Brooks M.W., Dougan M., Lambert A.W., Bierie B., Ploegh H.L., Dougan S.K., Weinberg R.A. (2018) The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy. Sci. Transl. Med. 10, eaan3464.

  195. Klein C.A. (2009) Parallel progression of primary tumours and metastases. Nat. Rev. Cancer. 9, 302–312.

  196. Buell J.F., Beebe T.M., Trofe J., Gross T.G., Alloway R.R., Hanaway M.J., Woodle E.S. (2004) Donor transmitted malignancies. Ann. Transplant. 9, 53–56.

  197. Wang H.-F., Wang S.-S., Huang M.-C., Liang X.-H., Tang Y.-J., Tang Y.-L. (2019) Targeting immune-mediated dormancy: a promising treatment of cancer. Front. Oncol. 9, 498.

  198. Sosa M.S., Valderas A.A., Bragrado P., Wen H.C., Aguirre-Ghiso J.A. (2011) ERK1/2 and p38α/β signaling in tumor cell quiescence: opportunities to control dormant residual disease. Clin. Cancer Res. 17, 5850–5857.

  199. Correia A.L., Guimaraes J.C., Auf der Maur P., De Silva D., Trefny M.P., Okamoto R., Bruno S., Schmidt A., Mertz K., Volkmann K., Terracciano L., Zippelius A., Vetter M., Kurzeder C., Weber W.P., Bentires-Alj M. (2021) Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy. Nature. 594, 566–571.

  200. Yi J.S., Cox M.A., Zajac A.J. (2010) T-cell exhaustion: characteristics, causes and conversion. Immunology. 129, 474–481

  201. Philip M., Schietinger A. (2022) CD8+ T cell differentiation and dysfunction in cancer. Nat. Rev. Immunol. 22, 209–223. https://doi.org/10.1038/s41577-021-00574-3

  202. Zheng L., Qin S., Si W., Wang A., Xing B., Gao R., Ren X., Wang L., Wu X., Zhang J., Wu N., Zhang N., Zheng H., Ouyang H., Chen K., Bu Z., Hu X., Ji J., Zhang Z. (2021) Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science. 374, abe6474.

Дополнительные материалы отсутствуют.